1. Field of the Invention
The present invention generally relates to a connector assembly, and more particularly to a connector assembly used for power transmission.
2. Description of Related Art
Metal strain relief member is widely used in a cable connector assembly for providing mechanical support and grounding function to a cable. Usually, there are two types of strain relief member currently. One type is that a conductive shell forms a train relief section grasping a metal braiding layer of a cable to provide mechanical support and grounding function. The other type is that a cable connector assembly has a separate strain relief member comprising a strain relief section grasping a metal braiding layer of the cable and electrically connects with a metal shell of the cable connector assembly to realize mechanical support and grounding function, such as disclosed in U.S. Pat. Nos. 6,706,970B2, 6,663,415B1. However, none of the patents mentioned above discloses that when a cable connector assembly has a printed circuit board and has no conductive shell, how to arrange a strain relief member in such cable connector assembly and how to realize the mechanical support and grounding function to a cable? Thus, it is desired to design a new structure to address the problems above.
Accordingly, an object of the present invention is to provide a connector assembly with improved strain relief structure for achieving reliable mechanical support to the connector assembly.
In order to achieve the above-mentioned object, a connector assembly in accordance with the present invention comprises a housing defining a plurality of passageways along a mating direction, a plurality of conductive contacts interferentially received in the passageways of the housing, a circuit board electrically connecting with the conductive contacts and comprising opposite front and rear surfaces and opposite top and bottom edges connecting with the front and rear surfaces, a cable electrically connecting with the circuit board, and comprising an inner conductor, a metal braiding layer and an outer jacket enclosing the metal braiding layer, and a strain relief member comprising a strain relief section grasping the metal braiding layer of the cable and at least one connecting portion electrically connecting with the circuit board, the connecting portion of the strain relief member contacts the opposite front and rear surfaces and locates adjacent to one of the opposite top and bottom edges of the circuit board at the same time.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made to the drawing figures to describe the present invention in detail.
Referring to
Now turning to
Now referring to
Referring to
Referring to
The strain relief member 5 is stamped from metal material or other conductive material. The strain relief member 5 comprises a strain relief section 52 for grasping outer jacket of the cable 9, a pair of arms 51 extending horizontally from upper and lower locations of the strain relief section 52 and parallel to each other, and a pair of connecting portions 510 formed at distal ends of the pair of arms 51. Each arm 51 is located in the horizontal plane and comprises an inclined section 511 connecting with the strain relief section 52, and a flat section 512 connecting with the connecting portion 510. The connecting portion 510 is of U-shape and comprises a flat connecting section 5101 and a pair of arc-shape side sections 5102 substantially vertically extending from the connecting section 5101 to form the U-shape for electrically connecting with the pads 44 of the circuit board 4.
The cable 9 comprises an inner conductor 91, a metal braiding layer 92 surrounding the inner conductor 91, and an outer jacket enclosing the metal braiding layer 92. A front portion of the outer jacket is stripped to expose part of the inner conductor 91 and the metal braiding layer 92. Further, the exposed metal braiding layer 92 of the cable 9 is formed into two parts served as a negative pole of the connector assembly 100, of course, the inner conductor 91 is served as a positive pole of he connector assembly 100.
The front and rear covers 1, 7 are respectively assembled to the housing 2. The front cover 1 is made from conductive material and capable of being attracted by the complementary connector. The front cover 1 comprises a body portion 12 and a front rectangular flange 10 with certain thickness and formed with front edge of the body portion 12. The flange 10 defines an elliptical-shape front receiving cavity 101 recessed rearwardly from a front surface thereof for receiving complementary connector. The body portion 12 defines a rectangular rear receiving passage 120 recessed forwardly from a rear surface thereof to communicate with the front receiving cavity 101 for receiving the housing 2. The receiving passage 120 has a large size along a lateral direction of the front cover 1 than that of the receiving cavity 101, thus, forming a step surface 16.
The rear cover 7 is made from resin material and of toothbrush shape. The rear cover 7 comprises a substantially rectangular main body 70 and a pipe-shape existing portion 72 extending vertically from the main body 70. The main body 70 defines a receiving space 700 recessed rearwardly from front surface thereof, while, the existing portion 72 defines a circular existing channel 720 communicating with the receiving space 700 for existing the cable therefrom. Particularly, the rear cover 7 defines a window area 73 with irregular shape. A light pipe 71 is firstly molded and shaped corresponding to the configuration of the left end of the circuit board 4 and the pair of LEDs 43, then the rear cover 7 is molded over the light pipe 71 to expose the light pipe 71 in the window area 73. Thus, the rear cover 7 and the light pipe 71 are formed as a unitary one. The light emitted from the pair of LEDs 43 spreads from the inner mold 6 to the light pipe 71, and finally can be seen from outside.
The inner mold 6 is made from transparent or semitransparent material and the light emitted from the LEDs 43 is capable of being spread out through the inner mold 6 to outside.
Referring to
Then the inner mold 6 is molded to the connection area between the contacts 3 and the circuit board 4, the solder tails 8, and rear portion of the insulative housing 2 with the right end of the circuit board 4 exposed beyond the inner mold 6. Since the material of the inner mold 6 is transparent or semitransparent, the light emitted from the LEDs 43 of the circuit board 4 can be spread out from the left corner of the inner mold 6. The inner conductor 91 and the two parts of the metal braiding layer 92 of the cable 9 are respectively inserted into and soldered to the through holes 42 of the circuit board 4 to form electrical connection with the circuit board 4, further with the contacts 3. The strain relief member 5 is assembled to the circuit board 4 and the cable 9. The pair of side sections 5102 of each connecting portion 510 are respectively soldered to the pair of traces 44 formed on the front and rear surfaces of the circuit board 4, while the flat connecting sections 5101 of the pair of connecting portions 510 respectively locate adjacent to the top and bottom edges 45, 46 of the circuit board 4, even touch the top and bottom edges 45, 46. The front end of the cable 9 is sandwiched between the pair of arms 51 and compressed by the inclined sections 511 and grasped by the strain relief section 52. Thus, the strain relief member 5 realizes the mechanical support to the cable 9. Since the through holes 42 electrically connect with corresponding passageways 41 further with the contacts 3 via inner traces in the circuit board 4, the circuit board 4 realizes the positive and negative power transmission of the cable 9.
Finally, the rear cover 7 and the light pipe 71 are assembled to the assembly achieved above to enclose the all elements except for the flange 10 of the front cover 1. Thus, the toothbrush configuration of the connector assembly 100 is achieved. After the assembly, the front portion of the cable 9 is received in the pipe-shape existing portion 72 of the rear cover 7 and other portion thereof exists from the rear end of the existing portion 72.
Now referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
4406512 | Schell | Sep 1983 | A |
4453798 | Asick et al. | Jun 1984 | A |
6663415 | Wu | Dec 2003 | B1 |
6706970 | Laub et al. | Mar 2004 | B2 |
6971913 | Chu | Dec 2005 | B1 |
7186144 | Khemakhem et al. | Mar 2007 | B1 |
7204695 | Shiu et al. | Apr 2007 | B1 |
20070072443 | Rohrbach et al. | May 2007 | A1 |
20080003881 | Wu | Jan 2008 | A1 |
20080318476 | Weber et al. | Dec 2008 | A1 |
20090004917 | Ice | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
M260910 | Apr 2005 | TW |
M266589 | Jun 2005 | TW |
Number | Date | Country | |
---|---|---|---|
20080305658 A1 | Dec 2008 | US |