The present disclosure relates to a connector device.
Patent Document 1 discloses a connector device including a first connector and a second connector facing each other and configured to connect the both connectors via an adaptor. The adaptor is so mounted as to be swingable relative to the first connector. Since positional deviations of the both connectors are absorbed by the inclination of the adaptor when the first and second connectors are positionally deviated in a direction intersecting a facing direction, the both connectors can be connected.
Patent Document 1: U.S. Pat. No. 8,801,459
The following problem may occur in the case of applying the above connection structure for connecting the first and second connectors via the adaptor to a multipole connector device. Since the adaptors are freely swingable with respect to the first connector, each adaptor is possibly inclined in a direction different from other adaptors in a state where the first and second connectors are not connected yet. Thus, when an attempt is made to connect a plurality of first connectors and a plurality of second connectors, it is difficult to connect a plurality of adaptors to the second connectors at once.
A connector of the present disclosure was completed on the basis of the above situation and aims to provide a connector excellent in the reliability of a connecting operation.
The present disclosure is directed to a connector device with a first connector to be mounted on a first circuit board, and a second connector to be mounted on a second circuit board, wherein the first connector includes a plurality of first terminal units each formed such that a first inner conductor is surrounded by a first outer conductor, the second connector includes a plurality of second terminal units facing the plurality of first terminal units and a plurality of movable terminal units, the second terminal unit is formed such that a second inner conductor is surrounded by a second outer conductor, the movable terminal unit is swingable with the second terminal unit as a fulcrum, a tip part of the movable terminal unit is connectable to the first terminal unit, and the plurality of movable terminal units are coupled to swing integrally by an alignment member.
The connector device of the present disclosure is excellent in the reliability of a connecting operation.
First, embodiments of the present disclosure are listed and described.
(1) The connector device of the present disclosure is provided with a first connector to be mounted on a first circuit board, and a second connector to be mounted on a second circuit board, wherein the first connector includes a plurality of first terminal units each formed such that a first inner conductor is surrounded by a first outer conductor, the second connector includes a plurality of second terminal units facing the plurality of first terminal units and a plurality of movable terminal units, the second terminal unit is formed such that a second inner conductor is surrounded by a second outer conductor, the movable terminal unit is swingable with the second terminal unit as a fulcrum, a tip part of the movable terminal unit is connectable to the first terminal unit, and the plurality of movable terminal units are coupled to swing integrally by an alignment member. According to the configuration of the present disclosure, since the plurality of movable terminal units are caused to swing integrally by the alignment member, the tip parts of the plurality of movable terminal units are kept in the same positional relationship as the array of the plurality of first terminal units. In this way, the plurality of movable terminal units are reliably connected to the plurality of first terminal units. Therefore, the connector device of the present disclosure is excellent in connection performance.
(2) Preferably, the first connector includes a guiding portion for guiding the tip part of the movable terminal unit toward the first terminal unit. According to this configuration, the tip part of the movable terminal unit can be reliably connected to the first terminal unit only by bringing the first and second connectors closer.
(3) In (2), the guiding portion preferably surrounds the plurality of movable terminal units. According to this configuration, since the plurality of movable terminal units slide in contact with the guiding portion, it can be avoided that a load concentrates only on a specific one of the movable terminal units.
(4) Preferably, the alignment member includes hole portions, the plurality of movable terminal units being individually passed through the hole portions. According to this configuration, regardless of in which direction the movable terminal unit swings, the movable terminal unit is not separated from the alignment member.
(5) Preferably, the alignment member includes a contact portion configured to contact the movable terminal unit with a non-fracture surface. According to this configuration, it can be prevented that the movable terminal unit is damaged by a fracture surface of the alignment member.
(6) Preferably, the movable terminal unit is a member separate from the second terminal unit, and the movable terminal unit and the second terminal unit include a supporting portion for swingably supporting the movable terminal unit with respect to the second terminal unit. According to this configuration, even if the second connector is so oriented that the movable terminal units project downward from the second terminal units, the movable terminal units can be held in the second terminal units.
(7) Preferably, the second connector includes a housing for holding the plurality of second terminal units, and the alignment member and the housing include holding portions for holding the alignment member in a state mounted on the housing. According to this configuration, handling becomes easier since the alignment member and the housing can be integrated.
(8) In (7), preferably, the holding portion on the alignment member side and the holding portion on the housing side have facing surfaces facing each other in a direction intersecting a displacement direction of the alignment member when the movable terminal unit swings, and the facing surface on the alignment member side and the facing surface on the housing side are kept positioned to face each other when the alignment member is in a range where a displacement is allowed. According to this configuration, when the movable terminal unit swings, the alignment member can be displaced even without resiliently deforming the holding portions.
(9) Preferably, the movable terminal unit includes a movable outer conductor, and the alignment member is electrically conductive and contactable with a plurality of the movable outer conductors. According to this configuration, grounding performance is improved since potential differences among the plurality of movable terminal units can be prevented.
A specific embodiment of a connector device A of the present disclosure is described with reference to
The connector device A of this embodiment includes, as shown in
The first and second connectors 10, 30 are electrically conductively connected by bringing the first circuit board B closer to the second circuit board C. By connecting the both connectors 10, 30, the first and second circuit boards B, C are connected without via a wiring harness, and high-speed communication becomes possible between the first and second circuit boards B, C. In a part of the roof of the automotive vehicle where the shark fin antenna is mounted, assembling tolerances between the roof and the shark fin antenna are relatively large. Thus, the first and second circuit boards B, C are possibly positionally deviated in a horizontal direction intersecting a connecting direction of the both connectors 10, 30. In the connector device A of this embodiment, the both connectors 10, 30 are connected while positional deviations of the both circuit boards B, C are absorbed.
As shown in
The guiding portion 14 has a skirt shape projecting obliquely downward from the outer peripheral edge of the lower end of the first terminal holding portion 12. The guiding portion 14 is inclined to be wider toward the bottom with respect to the connecting direction of the both connectors 10, 30. The guiding portion 14 is continuous over the entire periphery of the first terminal holding portion 12. In a plan view, the guiding portion 14 surrounds all of the plurality of terminal accommodation chambers 13. A space in the first housing 11 defined by the guiding portion 14 below the first terminal holding portion 12 functions as a first swinging space 15. The first swinging space 15 is open downward of the first housing 11.
The plurality of first terminal units 16 are individually accommodated in the plurality of first terminal accommodation chambers 13. As shown in
The first terminal unit 16 is formed such that the small diameter portion 18 of the first inner conductor 17 is coaxially surrounded by the first dielectric 21 and the first inner conductor 17 and the first dielectric 21 are coaxially surrounded by the first outer conductor 22. The first dielectric 21 is located in an upper end part of the first outer conductor 22. A space in the first outer conductor 22 below the first dielectric 21 functions as a connection space 23 open downward. In the connection space 23, the large diameter portion 20 of the first inner conductor 17 projects downward. Each connection space 23 communicates with the swinging space 15.
As shown in
The second terminal holding portion 32 is formed with as many second terminal accommodation chambers 33 as the second terminal units 43. The second terminal accommodation chambers 33 vertically penetrate through the second terminal holding portion 32. In a plan view of the second connector 30, the second terminal accommodation chamber 33 is circular. A plurality of the second terminal accommodation chambers 33 are arranged to be aligned in the front-rear direction and the lateral direction, similarly to the plurality of first terminal accommodation chambers 13.
As shown in
Supporting wall portions 38 covering the cut portions 37 from laterally outer sides are formed on the both side wall portions 36. Both front and rear end parts of the supporting wall portion 38 are bent and connected to the outer side surface of the side wall portion 36. A space defined by the supporting wall portion 38 functions as a holding space 39 communicating with the second swinging space 35 via the cut portion 37. Holding projections 40 are formed on the inner side surfaces of the both left and right supporting wall portions 38. The holding projection 40 projects into the holding space 39 from a central part in the front-rear direction of the supporting wall portion 38. As shown in
As shown in
The second terminal unit 43 is formed such that the small diameter portion 18 of the second inner conductor 44 is coaxially surrounded by the second dielectric 45 and the second inner conductor 44 and the second dielectric 45 are coaxially surrounded by the second outer conductor 46. The second dielectric 45 is located in a lower end part of the second outer conductor 46. A space above the second dielectric 45 in the second outer conductor 46 functions as a supporting space 47 open upward. In the supporting space 47, the large diameter portion 20 of the second inner conductor 44 projects upward. Each supporting space 47 communicates with the second swinging space 35. A diameter reduced portion 48 continuous over the entire circumference is formed on the inner periphery of an upper end part of the second outer conductor 46. The diameter reduced portion 48 is arranged in the supporting space 47 and shaped to bulge radially inward.
As shown in
The movable dielectric 53 is made of synthetic resin and has a hollow cylindrical shape coaxial with an axis of the movable terminal unit 50. An insertion hole 54 coaxially penetrating through the movable dielectric 53 is formed in a central part of the movable dielectric 53. Circular accommodation recesses 55 are formed in both axial end parts of the movable dielectric 53 by coaxially recessing both end surfaces of the movable dielectric 53. The accommodation recesses 55 are spaces constituting both axial end parts of the insertion hole 54. Inner diameters of the accommodation recesses 55 are larger than that of the insertion hole 54.
The movable outer conductor 56 has a hollow cylindrical shape as a whole. As shown in
The movable terminal unit 50 is formed such that the movable inner conductor 51 is inserted in the insertion hole 54 of the movable dielectric 53 and the movable outer conductor 56 is fit on the outer periphery of the movable dielectric 53. The resilient claw pieces 52 of the movable inner conductor 51 are located in the accommodation recesses 55. As shown in
One end part of the movable terminal unit 50 is attached, as a base end part 50P of the movable terminal unit 50, to the second terminal unit 43. In attaching, the base end part 50P of the movable terminal unit 50 is inserted into the supporting space 47 of the second connector 30. With the movable terminal unit 50 attached to the second terminal unit 43, the large diameter portion 20 of the second inner conductor 44 is accommodated in the accommodation recess 55 and the resilient claw pieces 52 of the movable inner conductor 51 resiliently contact the inner periphery of the large diameter portion 20 of the second inner conductor 44. The resilient arm portions 57 of the movable outer conductor 56 are resiliently deformed and the diameter expanded portion 58 resiliently contacts the inner periphery of the second outer conductor 46.
The diameter expanded portion 58 of the movable outer conductor 56 is locked to the diameter reduced portion 48 of the second outer conductor 46, thereby restricting the separation of the movable terminal unit 50 from the second terminal unit 43. Even if the movable terminal unit 50 is vertically inverted to project downward from the second terminal unit 43, a locked state of the diameter expanded portion 58 and the diameter reduced portion 48 is maintained. The plurality of movable terminal units 50 can individually swing with contact parts of the base end parts 50P and the second terminal units 43 as fulcrums. Even if the movable terminal unit 50 swings in the front-rear direction or lateral direction with respect to the second terminal unit 43, the locked state of the diameter expanded portion 58 and the diameter reduced portion 48 is maintained.
The movable terminal unit 50 attached to the second terminal unit 43 projects upward from the second housing 31. The other end part, i.e. the upper end part, of the movable terminal unit 50 is connected, as a tip part 50T of the movable terminal unit 50, to the first terminal unit 16. Here, since one movable terminal unit 50 is supported in contact with only one second terminal unity 43, each of the plurality of movable terminal units 50 can individually swing in a direction different from the other movable terminal units 50. However, in a state where the plurality of movable terminal units 50 swing in mutually different directions, the tip parts 50T of the plurality of movable terminal units 50 cannot be simultaneously connected to the plurality of first terminal units 16 when the first and second connectors 10, 30 are connected.
As a measure against that, the second connector 30 is provided with an alignment member 60. The alignment member 60 is a single component formed by bending a metal plate material punched into a predetermined shape. As shown in
The plate-like body portion 61 is formed with a plurality of hole portions 62 in the same arrangement as the plurality of second terminal units 43 in a plan view. The hole portion 62 has a circular shape having an inner diameter larger than an outer diameter of the movable outer conductor 56, and vertically penetrates through the plate-like body portion 61. A plurality of fixed projections 63 spaced apart in a circumferential direction are formed on the inner periphery of the hole portion 62. The fixed projections 63 are formed by closely bending tip parts of extending parts extending toward a radial center from the inner periphery of the hole portion 62 so that the tip parts are folded downward.
The outer peripheral surface of the projecting end part of the fixed projection 63 functions as a fixed contact portion 64 in the form of a semicircular curved surface. The entire region of the fixed contact portion 64 is formed only by a non-fracture surface different from a fracture surface produced by press working, out of surfaces of the alignment member 60. A diameter of an inscribed circle internally tangent to the projecting ends of the plurality of fixed projections 63, i.e. the plurality of fixed contact portions 64 is equal to or slightly larger than the outer diameter of the movable outer conductor 56.
The plate-like body portion 61 is integrally formed with a plurality of resilient contact pieces 65 disposed to overlap on the upper surface of the plate-like body portion 61. The resilient contact piece 65 has an arcuate shape in a plan view. One resilient contact piece 65 is cantilevered along an opening edge of one hole portion 62 with the outer peripheral edge of the plate-like body portion 61 as a base point. A movable projection 66 is formed on an extending end part of the resilient contact piece 65. The movable projection 66 is formed by closely bending a tip part of an extending part extending toward the radial center from the inner periphery of the extending end part of the resilient contact piece 65 so that the tip part is folded upward. The outer peripheral surface of the projecting end part of the movable projection 66 functions as a movable contact portion 67 in the form of a semicircular curved surface. The entire region of the movable contact portion 67 is formed only by a non-fracture surface, similarly to the fixed contact portion 64.
As shown in
The alignment member 60 is mounted on the second housing 31 by being brought closer to the second housing 31 from above. In a mounting process, a pair of the guided portions 72 slide in contact with a pair of the guide slopes 41, whereby the pair of resilient holding pieces 68 are resiliently deformed to be displaced in directions toward each other, i.e. toward the second swinging space 35. If the guided portions 72 and the locking portions 70 pass through the holding projections 40, the pair of resilient holding pieces 68 resiliently return to be separated from each other and accommodated into the holding spaces 39. The movable-side facing surfaces 71 of the resilient holding pieces 68 face the fixed-side facing surfaces 42 of the second housing 31 from below. In the above way, the assembling of the alignment member 60 with the second housing 31 is completed.
With the alignment member 60 mounted on the second housing 31, an outer peripheral edge part of the plate-like body portion 61 is placed on the upper end surface of the peripheral wall portion 34, the leg portions 69 and the locking portions 70 are accommodated in the holding spaces 39, and the locking portions 70 creep under the holding projections 40. By locking the locking portions 70 to the holding projections 40, the separation of the alignment member 60 from the second housing 31 is restricted. With the outer peripheral edge of the plate-like body portion 61 aligned with the peripheral wall portion 34, clearances are secured between the leg portions 69 and the supporting wall portions 38 and between the locking portions 70 and the supporting wall portions 38.
Accordingly, the alignment member 60 is held on the second housing 31 with a relative displacement in a direction parallel to the plate-like body portion 61 allowed. The direction parallel to the plate-like body portion 61 is a direction which intersects perpendicularly to the connecting direction of the both connectors 10, 30 and in which positional deviations of the both circuit boards B, C are assumed. A relative displacement amount of the alignment member 60 with respect to the second housing 31 reaches its maximum when the leg portions 69 or the locking portions 70 come into contact with the supporting wall portions 38. With the relative displacement amount of the alignment member 60 with respect to the second housing 31 maximized, a state where at least parts of the movable-side facing surfaces 71 vertically face at least parts of the fixed-side facing surfaces 42 is maintained. Therefore, even if the displacement amount of the alignment member 60 is maximum, the alignment member 60 is kept mounted on the second housing 31.
After the alignment member 60 is mounted on the second housing 31, the plurality of movable terminal units 50 are attached to the second terminal units 43. In attaching the movable terminal unit 50, the base end part 50P of the movable terminal unit 50 is inserted into the second swinging space 35 through the hole portion 62 and fit into the supporting space 47 of the second terminal unit 43. Note that the alignment member 60 may be mounted on the second housing 31 after the movable terminal units 50 are attached to the second terminal units 43.
With the movable terminal units 50 and the alignment member 60 mounted in the second housing 31, the outer peripheries of the movable outer conductors 56 are surrounded over the entire circumference by hole edge parts of the hole portions 62. Since the fixed contact portions 64 and the movable contact portions 67 are in contact with the outer peripheries of the movable outer conductors 56, the movable terminal units 50 are held in the alignment member 60 with relative displacements in directions parallel to the plate-like body portion 61 restricted. The alignment member 60 is made of a metal material and electrically conductive. By the contact of the fixed contact portions 64 and the movable contact portions 67 with the outer peripheries of the movable outer conductors 56, the alignment member 60 and the plurality of movable terminal units 50 are electrically conductively connected.
The alignment member 60 is in contact with the movable outer conductor 56 in a region between the resilient arm portions 57 on the side of the base end part 50P and the resilient arm portions 57 on the side of the tip part 50P in the axial direction of the movable terminal unit 50. Therefore, neither the fixed contact portions 64 nor the movable contact portions 67 are in contact with the resilient arm portions 57. In this way, the damage and deformation of the resilient arm portions 57 are prevented.
By restricting a relative displacement of each movable terminal unit 50 with respect to the alignment member 60, relative displacements among the movable terminal units 50 are restricted by the alignment member 60. When an external force in a swinging direction is applied to any one of the movable terminal unit 50, all the movable terminal units 50 swing by the same angle and in the same direction at once, integrally with the alignment member 60. Thus, the tip parts SOT of all the movable terminal units 50 are maintained in a fixed positional relationship regardless of the swinging direction and the swing angle of the movable terminal units 50. The maintained positional relationship is the same as the arrangement of the plurality of first terminal units 16. The movable terminal unit 50 swings with the connected part of the second terminal unit 43 and the base end part SOP of the movable terminal unit 50 as a fulcrum. The swing angle of the movable terminal unit 50 reaches its maximum when the movable terminal unit 50 comes into contact with the peripheral wall portion 34.
A displacement amount of the alignment member 60 when the movable terminal unit 50 is inclined becomes larger as a contact position of the alignment member 60 gets closer to the tip part SOT of the movable terminal unit 50. A pressing force generated between the movable terminal unit 50 and the alignment member 60 when the movable terminal unit 50 sliding in contact with the guiding portion 14 pushes the alignment member 60 in a horizontal direction increases as the contact position of the alignment member 60 gets closer to the base end part 50P of the movable terminal unit 50. Since the contact position of the alignment member 60 is an intermediate position between the base end part 50P and the tip part 50T in this embodiment, the pressing force generated between the movable terminal unit 50 and the alignment member 60 can be reduced while the displacement amount of the alignment member 60 when the movable terminal unit 50 is inclined is suppressed.
If the first and second circuit boards B, C are relatively displaced when the first and second connectors 10, 30 are connected, the tip part 50T of any one of the movable terminal units 50 comes into contact with the inner surface of the guiding portion 14. If the both connectors 10, 30 are further connected from this state, the tip part 50T of the movable terminal unit 50 slides in contact with the inclined inner surface of the guiding portion 14, whereby the tip parts 50T of all the movable terminal units 50 are guided to connection positions to the first terminal units 16 while changing the swing angles at once. During this time, the base end parts 50P of the movable terminal units 50 swing in the second swinging space 35 and the tip parts 50T of the movable terminal units 50 swing in the first swinging space 15.
After passing through the guiding portion 14, the tip parts 50T of the movable terminal units 50 enter the connection spaces 23 of the first terminal units 16 and are connected to the first terminal units 16. When the tip parts 50T of the movable terminal units 50 are connected to the first terminal units 16, the first and second connectors 10, 30 are properly connected. When the both connectors 10, 30 are properly connected, the first and second circuit boards B, C are connected via the first terminal units 16, the alignment member 60 and the second terminal units 43.
The movable inner conductor 51 is inserted in the insertion hole 54 of the movable dielectric 53 with a clearance formed therebetween. Accordingly, the movable inner conductor 51 can be relatively displaced to incline an axis with respect to the movable dielectric 53 and the movable outer conductor 56. In this way, a good contact state of the movable inner conductor 51 with the first and second inner conductors 17, 44 and a good contact state of the movable outer conductor 56 with the first and second outer conductors 22, 46 can be combined regardless of the swing angle even if the movable terminal unit 50 swings and an axis of the movable terminal unit 50 is inclined with respect to those of the first and second terminal units 16, 43.
The connector device A of this embodiment includes the first connector 10 to be mounted on the first circuit board B and the second connector 30 to be mounted on the second circuit board C. The first connector 10 includes the plurality of first terminal units 16 each formed such that the first inner conductor 17 is surrounded by the first outer conductor 22. The second connector 30 includes the plurality of second terminal units 43 facing the plurality of first terminal units 16, and the plurality of movable terminal units 50. The second terminal unit 43 is formed such that the second inner conductor 44 is surrounded by the second outer conductor 46. The movable terminal unit 50 is swingable with the second terminal unit 43 as a fulcrum. The tip part 50T of the movable terminal unit 50 is connectable to the first terminal unit 16. The plurality of movable terminal units 50 are coupled to swing integrally by the alignment member 60.
According to this configuration, the plurality of movable terminal units 50 are caused to swing integrally by the alignment member 60. Thus, the tip parts 50T of the plurality of movable terminal units 50 maintain the same positional relationship as the array of the plurality of first terminal units 16, regardless of at which angle and in which direction the movable terminal unit 50 swings. In this way, the plurality of movable terminal units 50 are reliably connected to the plurality of first terminal units 16. Therefore, the connector device A of this embodiment is excellent in the reliability of a connecting operation.
The first connector 10 includes the guiding portion 14 for guiding the tip parts 50T of the movable terminal units 50 toward the first terminal units 16. By providing the guiding portion 14, the tip parts 50T of the movable terminal units 50 can be reliably connected to the second terminal units 43 only by bringing the first and second connectors 10, 30 closer to each other. The guiding portion 14 is formed to collectively surround all of the plurality of movable terminal units 50 in a connection process of the both connectors 10, 30. According to this configuration, since the plurality of movable terminal units 50 slide in contact with the guiding portion 14, it can be avoided that a load concentrates only on a specific one of the movable terminal units 50.
The alignment member 60 includes the plurality of hole portions 62 through which the plurality of movable terminal units 50 are individually passed. The inner peripheral edge of the hole portion 62 surrounds the movable terminal unit 50 over the entire circumference. Accordingly, regardless of in which direction the movable terminal unit 50 swings, the movable terminal unit 50 is not separated from the alignment member 60. The alignment member 60 includes the fixed contact portions 64 and the movable contact portions 67 configured to contact the movable outer conductors 56 of the movable terminal units 50 with the non-fracture surfaces. Therefore, it can be prevented that the outer peripheral surfaces of the movable outer conductors 56 are damaged by the fracture surfaces of the alignment member 60.
The movable terminal unit 50 is a member separate from the second terminal unit 43. The movable outer conductor 56 of the movable terminal unit 50 includes the diameter expanded portion 58. The second outer conductor 46 of the second terminal unit 43 includes the diameter reduced portion 48. The diameter expanded portion 58 and the diameter reduced portion 48 function as supporting portions for swingably supporting the movable terminal unit 50 with respect to the first terminal unit 43. According to this configuration, even if the second connector 30 is so oriented that the movable terminal units 50 project downward from the second terminal units 43, the movable terminal units 50 can be held in the second terminal units 43.
The second connector 30 includes the second housing 31 and the plurality of second terminal units 43. The second housing 31 holds the plurality of second terminal units 43. The alignment member 60 includes the resilient holding pieces 68 and the second housing 31 includes the holding projections 40. The resilient holding pieces 68 and the holding projections 40 function as holding portions for holding the alignment member 60 in a state mounted on the second housing 31. According to this configuration, since the alignment member 60 and the housing can be integrated, handling becomes easier.
The resilient holding piece 68 serving as the holding portion on the side of the alignment member 60 has the movable-side facing surface 71, and the holding projection 40 serving as the holding portion on the side of the second housing 31 has the fixed-side facing surface 42. The movable-side facing surface 71 and the fixed-side facing surface 42 are facing each other in a direction intersecting a displacement direction of the alignment member 60 when the movable terminal unit 50 swings. When the alignment member 60 is in a range where a displacement is allowed, the movable-side facing surface 71 and the fixed-side facing surface 42 are positioned to face each other. According to this configuration, when the movable terminal unit 50 swings, the alignment member 60 can be displaced even without resiliently deforming the resilient holding pieces 68.
The connector device A of this embodiment includes the plurality of first terminal units 16 to be mounted on the first circuit board B, the plurality of second terminal units 43 to be mounted on the second circuit board C, the plurality of movable terminal units 50 and the alignment member 60. The first terminal unit 16 includes the first outer conductor 22 surrounding the first inner conductor 17. The second terminal unit 43 includes the second outer conductor 46 surrounding the second inner conductor 44. The movable terminal unit 50 includes the movable outer conductor 56 surrounding the movable inner conductor 51. The movable terminal unit 50 is swingable with the second terminal unit 43 as a fulcrum. The tip part 50T of the movable terminal unit 50 is connectable to the first terminal unit 16.
The alignment member 60 is made of an electrically conductive material. The alignment member 60 functions as a connecting member for shorting the plurality of movable outer conductors 56 to each other. Since the plurality of movable outer conductors 56 are made electrically conductive with each other via the alignment member 60, no potential difference is produced among the plurality of movable outer conductors 56. In this way, no potential difference is produced also among the plurality of first outer conductors 22 and no potential difference is produced also among the plurality of second outer conductors 46. Therefore, the connector device A of this embodiment is excellent in grounding performance.
The alignment member 60 includes the resilient contact pieces 65 configured to resiliently contact the movable outer conductors 56. Since the resilient contact piece 65 is cantilevered along the outer periphery of the movable outer conductor 56, even if the movable terminal unit 50 is radially displaced with respect to the alignment member 60, the resilient contact piece 65 flexibly follows a movement of the movable terminal unit 50. Since a contact state of the alignment member 60 and the movable outer conductor 56 is stabilized in this way, the alignment member 60 and the movable outer conductor 56 can be reliably kept in the contact state.
The present invention is not limited to the above described and illustrated embodiment and is represented by claims. The present invention is intended to include all changes in the scope of claims and in the meaning and scope of equivalents and also include the following embodiments.
Although the movable terminal unit is a member separate from the second terminal unit in the above embodiment, the movable terminal unit may be integrated with the second terminal unit.
Although one guiding portion surrounds the plurality of second terminal units in the above embodiment, one guiding portion may surround only one second terminal unit. Also in this case, the plurality of movable terminal units can be connected to the plurality of second terminal units by guiding one movable terminal unit by the guiding portion.
Although the alignment member is provided with the plurality of hole portions, through which the plurality of movable terminal units are individually passed, in the above embodiment, the movable terminal units may be held in the alignment member by a plurality of arm portions or the like spaced apart in the circumferential direction.
Although the projections are formed on the inner periphery of the hole portion in the above embodiment, the inner peripheral edge of the hole portion may be so shaped that neither projections nor recesses are present on the inner peripheral edge of the hole portion over the entire circumference.
Although the fixed contact portion and the movable contact portion formed by the non-fracture surfaces contact the movable terminal unit in the above embodiment, fracture surfaces may contact the movable terminal unit.
Although the holding portions for holding the alignment member in such a state where the separation of the alignment member from the second terminal units is restricted are provided in the above embodiment, such holding portions may not be provided.
Although the holding portions (resilient holding pieces) of the alignment member and the holding portions (holding projections) of the second housing are relatively displaceable in the above embodiment, both holding portions may be relatively undisplaceably fit. In this case, the alignment member can be moved by resiliently deforming at least either the holding portions of the alignment members or the holding portions of the housing.
Although the alignment member is electrically conductive in the above embodiment, the alignment member may not be electrically conductive.
Number | Date | Country | Kind |
---|---|---|---|
2019-205754 | Nov 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/039867 | 10/23/2020 | WO |