The present invention relates to a connector device for connecting a plug of a USB memory and others to a duplicator and other equipment.
In a conventional connector device, in order to prevent a plug from taking off a receptacle, elastically forcing means such as a leaf spring is provided in one or both of the plug and the receptacle as described in Patent Literatures 1-3.
Force of the elastically forcing means makes the plug difficult to be inserted into the receptacle. If it is forced, the plug or the receptacle is likely to be deformed or broken, and increased friction between the plug and the receptacle makes the connector device less durable.
In a duplicator or a dubbing device in which the same music and video information is simultaneously written into each USB memory attached to a number of USB ports, the USB memories are frequently attached to and detached from the USB memories, and the foregoing problems are significantly caused
In view of the disadvantages in the prior art, it is an object of the present invention to provide a connector device in which a plug is attached to and detached from a receptacle easily and readily without friction, the plug being firmly held in the receptacle without taking off.
The problem is solved by the present invention as below.
(1) A connector device comprising:
a receptacle in the device;
a plug detachably disposed in the receptacle;
a receptacle contact portion in the receptacle;
a plug contact portion in the plug, the plug putting into the receptacle to enable the plug contact portion to contact the receptacle contact portion; and
a forcing unit moving between a pressing position for forcing the plug contact portion disposed in the receptacle toward the receptacle contact portion and a release position for releasing it.
By the structure, when the forcing unit is in the release position, the plug is inserted in the receptacle. Thereafter, the forcing unit is changed to the pressing position, the inserted plug is firmly held on the receptacle without taking off the receptacle. When the forcing unit is changed to the release position again, the plug is pulled out of the receptacle. Hence, the plug can be easily and readily attached to and detached from the receptacle without friction.
Even if the plug is attached and detached repeatedly, the plug and/or receptacle is not worn, deformed or damaged, thereby improving durability.
(2) The connector device of the item (1) wherein the forcing unit comprises an elastic portion pivotally mounted to the connector device to turn between the pressing position and the release position, the elastic portion contacting part of the plug to push the plug contact portion toward the receptacle contact portion.
After the plug is inserted, the plug contact portion is pushed toward the receptacle contact portion, thereby preventing wear between the contact portions and simplifying the structure of the forcing unit.
(3) The connector device of the item (1), further comprising a switching unit for moving the forcing unit between the pressing position and the release position.
The switching unit is changed between the pressing position and the release position not manually, but by the switching unit.
(4) The connector device of the item (3) wherein the switching unit comprises a solenoid for moving the forcing unit to one of the pressing position and the release position when the solenoid is excited and for moving the forcing unit to the other of the pressing position and the release position when the solenoid is not excited.
The switching unit can be electrically controlled, facilitating automation thereof.
(5) The connector device of any one of the items (1) to (4) wherein the receptacle is provided in a USB port, the plug being for a USB memory.
The plug of the USB memory can be easily and readily attached to and detached from the USB port of the device without friction. The plug is firmly held in the receptacle without taking off.
According to the present invention, there is provided a connector device in which a plug can be easily and readily attached to and detached from the receptacle, the plug being firmly held in the receptacle without taking off.
One embodiment of the present invention will be described with respect to appended drawings.
As shown in
As shown in
The duplicator 3 can detect whether or not to write them into the eight flash memories 5 fitting in the USB ports 4 and can supply specified information which is not normally written and error information.
In
A projection 6b projects rearward on the rear surface of a front wall 6a of the receptacle 6, and a receptacle contact portion 6c is provided on the upper surface of the projection 6d.
A rectangular opening 7 is formed in the front wall 6a and an upper wall 6d of the receptacle 6.
The flash memory 5 comprises a rectangular memory body 5a on which a rectangular plug 5b smaller than the memory body 5a in height and length projects on the front end face of the memory body 5.
The plug 5b comprises a rectangular frame 8; a support 9 fixed to the inner upper surface of the frame 8; and a plug contact portion 10 on the lower surface of the support 9.
The plug contact portion 10 can come in contact with the receptacle contact portion 6c of the receptacle 6 in
In
In
The leaf spring 12 comprises a wider vertical portion 12a and eight elastic portions 12b spaced from each other at the lower end of the vertical portion 12a. The lower ends of side portions 12c formed by bending the vertical portion 12 at right angles forward are pivotally mounted in the duplicator 3 on a transverse shaft 15.
The front end of each of the tension coil spring 13 is mounted to the upper ends of the vertical portion 12a of the leaf spring 12. The rear end of each of the tension coil springs 13 is mounted to a suspending portion 16 of the upper wall of the duplicator 3. Hence, the leaf spring 12 is forced to turn clockwise in
The solenoid 14 is fixed in the middle in front of the leaf spring 12 in the duplicator 3 with a plunger 17. The rear end of the plunger 17 is secured to the middle of the vertical portion 12a of the leaf spring 12. When the plunger 17 is excited, the plunger 17 moves forward to allow the leaf spring 12 to turn counterclockwise in
When the solenoid 14 is not excited, forward force which exerts the plunger 17 disappears, so that the leaf spring 12 turns clockwise by force of the tension coil spring 13 in
Then, the solenoid 14 is energized and excited to allow the plunger 17 to move forward, so that the leaf spring 12 turns counterclockwise against the force of the tension coil spring 13 in FIG. 3A. The end of the pressing portion 12d leaves the upper surface of the plug 5b, releasing downward force of the plug 5b in a release position in
The solenoid acts as switching means for moving the forcing unit 11 between the pressing position and release position.
In the embodiment, the receptacle 6, the plug 5b, the receptacle contact portion 6c, the plug contact portion 10 and the forcing unit 11 constitute a connector device A. In the connector device A, the plug 5b is inserted into the receptacle 6 when the forcing unit 11 is in the release position, and by moving the forcing unit 11 into the pressing position, the plug 5b is held firmly without coming out of the receptacle 6. When the forcing unit is in the release position again, the plug 5b is taken out of the receptacle 6 enabling the plug 5b to fit in or fall off the receptacle 6 easily and readily.
Thus, even if the plug 5b fits in and falls off repeatedly, durability can be improved without wear or deformation of the plug 5b and receptacle 6.
Instead of the tension coil spring 13, a compression spring or another spring may be used. The direction for forcing the spring may be counterclockwise contrary to that in
The leaf spring 12 may rise and lower with a motor-driving elevating device (not shown) as switching means while it remains in a posture as shown in
The magazine B comprises a body storing portion 23 comprising side plates 20,20, a rear plate 21 and a pair of front plates 22,22 covering the sides 20,20, the rear face and the front face of the memory body 5a including the plug 5b in a plurality of flash memories 5. The plug 5b of each of the flash memories 5 projects from a space S between the front plates 22 and 22.
The housing 23 is formed by molding a steel plate as antistatic material or other conductive material.
On the upper ends of the side plates 20,20, upward projections 20a,20a which face each other are provided, and on the lower ends of the side plates 20,20, downward projections 20b,20b are provided.
Pear-shaped holes 24 with which another device is attached are formed in the upper and lower parts of the rear plate 21. The pear-shaped hole 24 comprises a larger-diameter hole 24a and a smaller-diameter hole 24b on the larger-diameter hole 24a.
During transportation, the housing 23 is filled with the stacked flash memories 5. Between the upward projections 20a and 20a and between the downward projections 20b and 20b, elastic materials 26 made of foamed synthetic resin are disposed. The elastic material is fixed by putting a detachable pin 27 such as a nylon rivet into a hole 26 of the projections 20a,20b thereby cushioning impact exerting the flash memories during transportation and preventing the flash memories 5 from falling off the housing 23.
By taking off the pin 27 and removing the elastic material 25 from the housing 23, the flash memories 5 can be taken out of the housing 23 one by one.
The magazine B allows a plurality of flash memories 5 to be stacked in the housing 23 improving storage efficiency and enabling the memories 5 at the minimum volume of the magazine B. The memory body 5a of each of the flash memories 5 is covered with plates, preventing the flash memories 5 from external force. The magazine B is attached to the automatic flash memory supply device C. The lowest flash memory 5 is taken out of the magazine B one by one and supplied to another device such as a duplicator. Hence, the magazine B is suitable for use with the automatic flash memory supply device C.
The magazine B is simple in structure and can be manufactured at low cost.
Then, the automatic flash memory supply device C will be described.
In
Each of the pushers 30 comprises a receiving portion 30a mounted on the base plate 2 at the lower end of each of the magazines B to move forward and backward and to receive the lowest flash memory 5 in the magazine B so that the lowest flash memory 5 does not move forward and backward; a pushing portion 30b standing from the lower part of the receiving portion 30a for pushing the flash memory 5 stored in the receiving portion 30a; a gate portion 30c extending rearward upper than the bottom of the receiving portion 30a by thickness of substantially one flash memory to prevent the next-stage flash memory 5 in each of the magazines B from lowering; and a standing portion 30d at the front end of the receiving portion 30a, the standing portion 30d contacting the front end of the memory body 5a of the flash memory 5 to allow the plug 5b of the flash memory 5 in the USB port 4 to pull out when the pusher 30 moves from the front-limit position to the intermediate position, not to prevent the flash memory 5 to move transversely by the ejection unit 32 when the pusher 30 is in the intermediate position, such that the pusher 30 moves between the rear-limit position where the receiving portion 30a receives the lowest flash memory 5 in the magazine B; the intermediate position where the receiving portion 30a is positioned in front of the magazine B; and the front-limit position where the plug 5b of the flash memory 5 in the receiving portion 30a can be put in the USB port 4.
In the back of the base plate 2, a rear hollow support 33 having an opening in the front is provided. A magazine support 34 which stands along the front edge of the rear support 33. In
The external diameter of a head 35a of each of the headed pins 35 is slightly smaller than the internal diameter of a larger-diameter hole 24a of the pear-shaped hole 24, while the external diameter of the shank 35b of each of the headed pins 35 is slightly smaller than the smaller-diameter hole 24b of the pear-shaped hole 24 of the magazine B.
The magazine B is easily attached to the magazine support 34 by putting the head 35a through the larger-diameter hole 24a of each of the upper and lower pear-shaped holes 24, pressing down the rear plate 21 onto the front surface of the magazine support 34 and engaging the shank 35b of the headed pin 34 on the upper edge 24b of the pear-shaped hole 24. Reversely the magazine B can be taken off.
On the base plate 2, a longitudinally moving member 36 slides along a pair of guide rods 36a,36a fixed on the support 1.
The longitudinally moving member 36 comprises a U-shaped basic plate 37 and a receiving plate 38 fixed on the basic plate 37. The receiving plate 38 comprises a standing portion 38a at the front end and a stepped standing portion 38b extending from the intermediate portion to the rear end.
The distance from the rear end of the standing portion 38a to the front end of the stepped standing portion 38b is substantially equal to or is slightly larger than the length of the memory body 5a of the flash memory 5 stored in the magazine B. The height of the standing portion 38a is smaller than the distance from the front lower edge of the memory body 5a of the flash memory 5 to the lower surface of the plug 5b when the flash memory 5 is stored in the magazine B.
A plurality of grooves 39 is formed from the front end to the rear end in the stepped standing portion 38b thereby creating the vertical pushing portion 30b and the horizontal gate portion 30c of the right pushers 30 corresponding to the USB ports 4.
In front of the pushing portion 30b of the receiving plate 38, the receiving portion 30a of the pusher 30 has the same width as a total width of the pressing portions 30b and the gate portions 30c. The receiving portion 30a forms the standing portion 30d of the pusher 30.
The receiving plates 38 constitute the eight pushers 30 where the receiving portions 30a and the standing portions 30d are the same.
The eight pushers 30 separately produced may be moved simultaneously by the longitudinal motion driver 31 forward and backward.
The width of the gate portion 30c of the pusher 30 is almost equal to the width of the memory body 5a of the flash memory 5. By putting the gate portion 30c of the pusher 30 between the projections 20b and 20b at the lower end of the magazine B, the magazine B is installed to the magazine support 34. When the gate portion 30c of the pusher 30 is positioned under the magazine B, the upper surface of the gate portion 30c prevents the flash memory 5 in the magazine B from lowering.
The longitudinal motion driver 31 comprises a rack 40 fixed in the middle on the lower surface of the support plate 37 of the longitudinally moving member 36 and having teeth 40a on the side; a geared motor 42 provided on the lower surface of the base plate 2 such that a rotary shaft 41 passes through the base plate 2 to project upward; and a pinion 43 fixed to the rotary shaft 41 of the geared motor 42 to mesh with the teeth 40a of the rack 40.
The ejection unit 32 comprises a pair of guide rods 44,44 fixed at each end on the base plate 3; a transversely moving member 45 which transversely slides along the guide rods 44,44; a plurality of partition plates 46 fixed to the lower surface of the transversely moving member 45; and a mover 47 for moving the transversely moving member 45 transversely. The plurality of partition plate 46 is positioned between the adjacent pushers 30 and 30 when the pusher 30 moves forward and backward, and positioned in the receiving portion 30a to hold the flash memory 5 stored in the receiving portion 30a when the pusher is in the intermediate position, enabling the flash memory 5 stored in the receiving portion 30a of the pusher 30 to move the flash memory 5 transversely by moving with the transversely moving member 45 transversely, the plurality of partition plates 46 engaging with the grooves 39 of the receiving plate 38 when the pusher 30 moves from the intermediate position to the front-limit position. The plurality of partition plates 46 guides the flash memory 5 stored in the receiving portion 30a of the pusher 30 when the pusher 30 is positioned rearward from the intermediate position.
The mover 47 comprises a pair of toothed pulleys 48,48 on the base plate 2; an endless timing belt 49 wound around the toothed pulleys 48,48 and partially mounted to the transversely moving member 45; and a geared motor 50 for turning one of the toothed pulleys 48 normally and reversely.
The transversely moving member 45 moves between a basic position where each of the partition plates 46 is in line with the groove 39 in
When each of the pushers 30 is positioned in the intermediate position, the partition plates 46 can move transversely because the sides of the receiving portion 30a of each of the pushers 30 are open.
From the right side of the base plate 2, an extension 2a is provided. In the extension 2a, a rejected-item ejection gate 51 and the good-item ejection gate 52 are disposed side by side at a position corresponding to the intermediate position where the receiving portion 30a of the pusher 30 is placed.
In the rejected-item ejection gate 51, a door 51a opens and closes with a solenoid (not shown). According to instructions from a control later described, a flash memory 5 identified as rejected item drops into a rejected-item collection box (not shown) by opening the door 51a as soon as the flash memory 5 passes on the door 51a.
The good-item ejection gate 52 has a chute 52a for guiding flash memories 5 except the flash memory 5 identified as rejected item, into a good-item collection box (not shown).
Numeral 60 denotes a duplicator control system, and 61 denotes an automatic flash memory supply device control system connected to each other with a connector 62.
In the duplicator control system 60, the CPU 63 is connected to a USB port control 64 in each of the USB ports 4; a memory 65 for storing master information such as music information and video information to be duplicated; a mechanism control 66 for controlling a mechanism; an operation control 68 for controlling operating information of an operating portion 67; and a display control 70 for controlling a display 69.
The connector 62 is connected to the mechanism control 66.
In the automatic flash memory supply device control system, the connector 62 is connected to an automatic transportation control 71 for controlling the geared motor 50 in the ejection unit 32; and a rejected-item control 72 for controlling the solenoid for opening and closing the door 51a of the rejected-item ejection gate 51.
Then, with respect to a flowchart in
In
Then, the geared motor 42 turns in a normal direction to allow the pusher 30 to move forward in Step S5.
The pusher 30 moves forward to the front-limit position shown by two dotted lines in
The solenoid 14 turns off in Step S8, and the leaf spring 12 turns clockwise by the tension coil spring 13 in
Master information stored in the memory 65 is written into each of the flash memories 5 in Step S9.
The writing completes in Step S10. The solenoid 14 is excited in Step S11, and the leaf spring 12 is moved by the tension coil spring 13 to the release position in
The geared motor 42 turns in a predetermined reversing direction and the pusher 30 moves backward in Step S14.
The geared motor 50 turns in a predetermined normal direction, and the transversely moving member 45 at rest in the basic position moves rightward in Step S15.
The transversely moving member 45 reaches the ejecting position, and the sensor (not shown) detects it in Step S16. The geared motor 50 turns reversely and the transversely moving member 45 moves leftward in Step S17.
Before the transversely moving member 45 reaches the ejecting position, the written flash memories 5 stored in the receiving portions 30a of the pushers 30 held between the partition plates 46 and 46 of the transversely moving members 45 are all ejected into the good-item collection box through the good-item ejection gate 52 if no error occurs.
The flash memories 5 are all ejected, and the transversely moving member 45 moved leftward reaches the basic position, and a sensor (not shown) detects it in Step S18 to allow the geared motor 50 to stop, so that the transversely moving member 5 stops in the basic position.
Thereafter, the geared motor 42 turns reversely again to allow the pusher 30 to move backward in Step S20.
A sensor (not shown) detects that the pusher 30 reaches the rear-limit position in Step S21. The geared motor 42 stops to allow the pusher 30 to stop in the rear-limit position in Step S22.
When the pusher 30 stops in the rear-limit position, all the flash memories 5 in each of the magazines B lowers by one memory. The lowest flash memory 5 is stored in the receiving portion 30a of the pusher 30 in the rear-limit position and is ready for the next cycle.
In the foregoing, all the flash memories 5 are normally processed without error. However, if any of the eight flash memories are not normally written owing to any reason, the corresponding USB port control chip 64 detects that an error occurs in any one of the flash memories 5 in Step S23 after master information stored in the memory 65 is written in each of the flash memories 5 in Step S10 as above in
Thereafter, similar steps to after Step S18 in
The present invention is not limited to the foregoing embodiment, and variations as below are possible.
(1) In the foregoing embodiment, the connector device A connects the USB port of the duplicator 3 to the plug 5b of the USB flash memory 5, but may connect various equipment to other equipment, cords and electric parts and accessories.
(2) The forcing unit 11 is not limited to a combination of the leaf spring 12 and the tension coil spring 13, but may comprise any structure that is movable between a pressing position for forcing the plug contact portion 10 of the plug disposed in the receptacle 6 and a release position for releasing the force.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/069339 | 11/13/2009 | WO | 00 | 9/24/2010 |