This section is intended to provide background information to facilitate a better understanding of various technologies described herein. As the section's title implies, this is a discussion of related art. That such art is related in no way implies that it is prior art. The related art may or may not be prior art. It should therefore be understood that the statements in this section are to be read in this light, and not as admissions of prior art.
There are two types of concrete construction that require some form of formwork: vertical formwork and shoring. Vertical formwork provides the ability to form structures that hold vertical loads. Shoring provides the ability to form structures that hold horizontal loads. Vertical structures like walls, columns and foundations require formwork, and horizontal structures like slabs, beams and girders require shoring to cast them into place as an elevated structural component. Examples where shoring provides horizontal concrete members include: slabs, horizontal concrete girders, cross-t's under highways, etc.
Many companies in existence today have developed specific independent formwork systems and independent shoring systems. They generally carry a sizable inventory of several different types that are both rented and sold to contractors who build concrete structures.
The applications of formwork and shoring are unlimited given the wide range of project types in both the industrial and commercial construction markets. From high-rise buildings, to the construction of an industrial facility, formwork and shoring are used to help contractors cast foundations, columns, walls, elevated slabs and elevated beams in an enormous variety of shapes and uses. Chances are that all of the buildings in which people live and work have some sort of poured in-place concrete that was casted using a formwork system.
Older generation systems required formwork and shoring providers to have significantly large inventories of parts in order to make up the variety of configurations necessary. Those systems consisted of endless amounts of components used by a building contractor. Along with the large amount of inventory items, the assembly efficiency for those systems was often on the low side, as compared to systems in use today. Due to the large amount of pieces, it was common for many of these items to be lost during the construction process.
In either vertical formwork or shoring, it is sometimes becomes necessary to utilize columns for bearing a load. The columns may be monolithic or they may be multiple columns connected end-to-end to one-another. In end-to-end connections, the columns may experience slippage, which may be catastrophic. Therefore, it may be helpful for the columns to be connected to each other so that they do not slip, thereby avoiding catastrophe.
Briefly, particular implementations of the claimed subject matter may relate to formwork structural support members.
In an implementation, an end fitting for a structural support member may include a substrate having a first substantially planar surface and a first interlock section on the substrate. The first interlock section may include a first projection projecting from the first substantially planar surface. The first projection may be at least partially defined by a first edge, a second edge and a third edge coupled together in a right triangle configuration.
In a further implementation, a structural support member end fitting system may include a first end fitting and a second for a structural support member. The first and the second end fitting may each include a substrate having a first planar surface and a first interlock section on the substrate. The first interlock section may include a first projection projecting from the first substantially planar surface. The first interlock section may be at least partially defined by a first edge, a second edge and a third edge coupled together in a right-triangle configuration.
In other implementations, a method of connecting end fittings may include connecting a first interlock section of a first end fitting to a second interlock section of a second end fitting, disconnecting the first interlock section from the second interlock section of the second end fitting, rotating the first end fitting a first ninety degrees in a first direction, and reconnecting the first interlock section of the first end fitting to the second interlock section of the second end fitting. Each of the first and second end fittings may have a first plurality of projections and recesses.
The above referenced summary section is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description section. Additional concepts and various other implementations are also described in the detailed description. The summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter, nor is it intended to limit the number of inventions described herein. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Implementations of various techniques will hereafter be described with reference to the accompanying drawings. It should be understood, however, that the accompanying drawings illustrate only the various implementations described herein and are not meant to limit the scope of various techniques described herein.
Integrated construction system components include support members, i.e., posts, having ends that may be connected in a butt-end connection. In a butt-end connection, it may be helpful to add an end fitting at the end of the post. An end fitting may increase the surface area of contact between butt-ends of the post. Thus, an end fitting of an end of a first post may abut an end fitting of an end of an adjoining post.
End fittings on the butt ends of posts may be substantially flat. Substantially flat end fittings include a risk of lateral displacement of one end fitting relative to an adjoining end fitting. Projections and recesses such as ridges, corrugations, valleys, indentations, etc. may be added to each of the end fittings to prevent lateral movement of one end fitting relative to an adjoining end fitting, which may help to ensure stabilization of the position of each end fitting relative to the other.
To further stabilize the end fittings relative to each other, the projections and recesses may be configured so that they have a mated relationship. For example, the projections and recesses of the end fittings may be configured such that they can properly abut each other in only one position. Changing a position of one end fitting relative to the other may be prevented by the design of each of the end fittings. Previous designs of end fittings were limited to one or, at most, two positions at which end fittings could connect to each other.
Presently disclosed implementations of end fittings may be designed so that they connect to each other in more than two configurations. For example, in some implementations, a first end fitting may be connected to an adjoining end fitting, removed, rotated ninety degrees and reconnected with the adjoining end fitting without jeopardizing stability of the position of each end fitting relative to the other. In the same implementation, the first end fitting may be connected to the adjoining end fitting, removed, rotated an additional ninety degrees and reconnected with the adjoining end fitting without jeopardizing stability of the position of each end fitting relative to the other. In yet the same implementation, the first end fitting may be connected to an adjoining end fitting, removed, rotated a yet further ninety degrees and reconnected with the adjoining end fitting without jeopardizing stability of the position of each end fitting relative to the other.
An implementation 100 of a post for formwork/shoring is illustrated in
Each post 102a and each adjustable screw leg 102b may include an end fitting 104, i.e., a bracket. In some implementations, the post 102a is implemented without an adjustable screw leg. Thus, an end fitting 104 may be on opposing ends of a single post or on an end of a post 102a and on an end of the adjustable screw leg 102b within the post.
The adjustable screw leg 102b may be provided for adjustment of the length of the implementation. For example, a length can be adjusted by rotating the adjustable screw leg 102b around a longitudinal axis of the adjustable screw leg 102b. Thus, an implementation may be used in environments that require different lengths. The adjustable screw leg 102b may also be provided to tighten the implementation in place or to loosen the implementation from place within a structure.
As illustrated in
A threaded through-hole 214 may be included in the sleeve 212. A threaded screw (not shown) or other fastener known to a person of ordinary skill, such as a clamp or cotter pin, may engage the threaded through-hole 214 to tighten the sleeve 212 to the end region 206a and/or 206b of the post 102a and/or adjustable screw leg 102b, respectively.
The substrate 208 may include at least one interlock section 308. Each interlock section 308 may include projections 310 and/or recesses 312. For example, the implementation of the substrate 208 illustrated in
As illustrated in
Each projection 310 and each recess 312 may be triangular and may form a pinwheel type of pattern on the substrate 208. The pinwheel pattern is formed by multiple projections and multiple recesses. As illustrated in
Each of the multiple projections has a shape substantially similar to a shape of the other projections in the interlock section. For example, each of the first projection 310a, second projection 310b, third projection, 310c and fourth projection 310d may have a respective hypotenuse, i.e., a first hypotenuse on the first projection, a second hypotenuse on the second projection, a third hypotenuse on the third projection and a fourth hypotenuse on the fourth projection.
Each projection 310 may include a substantially planar surface that is substantially parallel to the substrate 208. The substantially planar surface may be bound by a first edge 406, a second edge 408 and a third edge 410. It is not necessary for the projection to include a substantially planar surface between the first, second and third edges. Each edge may be a raised linear edge that projects from the substrate 208. It is not necessary that each of the first edge 406, the second edge 408 and third edge 410 connect with each other. A combination of partial raised first, second and third edges may form the projection.
The triangular shape of each projection 310 and each recess 312 may be the shape of a right triangle, i.e., a triangle in which an angle formed by two of the sides is ninety degrees. For example, the first edge 406 of the projection 310 may be a hypotenuse of the right triangle and the second edge 408 and the third edge 410 of the projection 310 may be legs that meet each other at a ninety degree angle.
A pinwheel pattern is not necessary. Fewer than all four projections may be used. Any one, two or three of the projections in their current configuration on the substrate may be used to join two interlock sections to each other. Any one, two or three of the recesses in their current configuration on the substrate may be used to join two interlock sections to each other.
The end fittings 502 and 504 may be held together by the fasteners 306. For example, a fastener may be rotatably attached to the edge recess 304 on end fitting 502 and engage an empty recess 304 on end fitting 504. It may be helpful that each fastener be attached to a left recess only (or attached to a right recess only) so that when end fitting 502 is attached to end fitting 504, each fastener 306 is guaranteed to engage an empty recess 304.
Each projection is ninety degrees apart from an adjacent projection. The first end fitting 502 may engage the second end fitting 504 in four configurations that are ninety degrees apart from each other. Engagement of projections and recesses prevents lateral motion between the first end fitting 502 and the second end fitting 504.
Some implementations may include a single material or a combination of materials. For example, the entire end fitting 104 may be made of a first particular material, e.g., aluminum. In some implementations, the substrate 208 may be made of a particular material, e.g., aluminum, and the remaining material may be a different material. In other implementations, some or all of the projections may be a particular material, e.g., aluminum, and the remaining material may be a different material. The material of the end fitting is not limited to soft metals such as aluminum and may include a harder material than aluminum. Other implementations may include a softer material than aluminum.
Various implementations described herein may also be directed to a method of connecting two end fittings, which may include connecting the first interlock section of the first end fitting to the first interlock section of the second end fitting, disconnecting the first interlock section of the first end fitting from the first interlock section of the second end fitting, rotating the first end fitting any of ninety degrees, one hundred and eighty degrees and two hundred and seventy degrees, and reconnecting the first interlock section of the first end fitting to the first interlock section of the second end fitting.
In combination with the robust nature of the materials of the integrated construction system and the method of assembly, the cost to own the present integrated construction system is vastly reduced for both a dead asset basis, as well as the physical maintenance cost required to maintain a formwork and access inventory. In addition, the integrated construction system provides an increased flexibility to handle field applications, as well as increase the efficiency for the contractors that will use the integrated construction system to build concrete structures.
The discussion above is directed to certain specific implementations. It is to be understood that the discussion above is only for the purpose of enabling a person with ordinary skill in the art to make and use any subject matter defined now or later by the patent “claims” found in any issued patent herein.
It is specifically intended that the claimed invention not be limited to the implementations and illustrations contained herein, but include modified forms of those implementations including portions of the implementations and combinations of elements of different implementations as come within the scope of the following claims. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made to achieve the developers' specific goals, such as compliance with system-related and business related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure. Nothing in this application is considered critical or essential to the claimed invention unless explicitly indicated as being “critical” or “essential.”
In the above detailed description, numerous specific details were set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first object or step could be termed a second object or step, and, similarly, a second object or step could be termed a first object or step, without departing from the scope of the invention. The first object or step, and the second object or step, are both objects or steps, respectively, but they are not to be considered the same object or step.
The terminology used in the description of the present disclosure herein is for the purpose of describing particular implementations only and is not intended to be limiting of the present disclosure. As used in the description of the present disclosure and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context. As used herein, the terms “up” and “down”; “upper” and “lower”; “upwardly” and downwardly”; “below” and “above”; and other similar terms indicating relative positions above or below a given point or element may be used in connection with some implementations of various technologies described herein.
While the foregoing is directed to implementations of various techniques described herein, other and further implementations may be devised without departing from the basic scope thereof, which may be determined by the claims that follow. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application is a continuation of U.S. patent application Ser. No. 18/110,777, filed Feb. 16, 2023, which is a continuation of U.S. patent application Ser. No. 16/791,811, filed Feb. 14, 2020 and now U.S. Pat. No. 11,624,196, which is a continuation-in-part of U.S. patent application Ser. No. 16/222,825, filed Dec. 17, 2018 and now U.S. Pat. No. 11,306,492, which is a continuation-in-part of U.S. patent application Ser. No. 15/971,620, filed May 4, 2018 and now U.S. Pat. No. 11,976,483, which is a continuation-in-part of U.S. patent application Ser. No. 15/910,698, filed Mar. 2, 2018 and now U.S. Pat. No. 10,415,262, which is a continuation-in-part of U.S. patent application Ser. No. 15/845,962, filed Dec. 18, 2017 and now U.S. Pat. No. 10,465,399, which is a continuation-in-part of U.S. patent application Ser. No. 15/630,923, filed Jun. 22, 2017 and now U.S. Pat. No. 10,472,823, which claims the benefit of U.S. Provisional Application No. 62/471,173, filed Mar. 14, 2017, and U.S. Provisional Application No. 62/354,325, filed Jun. 24, 2016, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62471173 | Mar 2017 | US | |
62354325 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18110777 | Feb 2023 | US |
Child | 18815090 | US | |
Parent | 16791811 | Feb 2020 | US |
Child | 18110777 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16222825 | Dec 2018 | US |
Child | 16791811 | US | |
Parent | 15971620 | May 2018 | US |
Child | 16222825 | US | |
Parent | 15910698 | Mar 2018 | US |
Child | 15971620 | US | |
Parent | 15845962 | Dec 2017 | US |
Child | 15910698 | US | |
Parent | 15630923 | Jun 2017 | US |
Child | 15845962 | US |