Connector for coupling coaxial cable to strip line

Information

  • Patent Grant
  • 9871307
  • Patent Number
    9,871,307
  • Date Filed
    Wednesday, November 26, 2014
    10 years ago
  • Date Issued
    Tuesday, January 16, 2018
    7 years ago
Abstract
A connector for coupling a coaxial cable (240) to a strip line comprises a first plate (210) to be arranged above a conductor (220) of the strip line to which a center conductor (244) of the coaxial cable (240) is soldered, the first plate (210) including: a first solder portion (212) to which a braid (242) of the coaxial cable (240) is soldered; and an aperture (214) formed adjacent to the first solder portion (212) and configured to prevent heat propagation of a solder point of the first solder portion (212) and the braid (242) of the coaxial cable (240) and to expose a solder point of the conductor (220) of the strip line and the center conductor (244) of the coaxial cable (240), wherein a biggest dimension of the aperture (214) is shaped to be less than 5% of highest frequency wavelength.
Description
FIELD OF THE INVENTION

The present invention generally relates to an electronic connector, and particularly to a connector for coupling a coaxial cable to a strip line.


BACKGROUND OF THE INVENTION

Base station antennas are built with arrays of several radiating elements, which are connected to a distribution network (e.g., power dividers, phase shifters, etc.) with transmission lines. Typically, the transmission lines are coaxial cables, and the distribution network are made with strip line devices due to high performances of the strip lines (e.g., good insertion losses, reasonable dimensions, good shielding of the lines, etc.). Specifically, referring to FIG. 1, the radiating elements of base station antennas are connected to the strip lines 112 of the strip line device 110 with coaxial cables 114, wherein the stripe lines 112 are arranged between the cover plate 116 and bottom plate 118 of the strip line device 110.


Several configurations of coaxial cable to strip line interfaces already exist, which mainly comprises two families:


In the first family, the center conductor of the coaxial cable is soldered to the strip line conductor. The braid of the coaxial cable is soldered on an interface part. This interface part is connected to the strip line cover and bottom plates using screws or studs with nuts assemblies. For this family, the potential problems with the interface are:

    • PIM (Passive Inter Modulation) level variation with screws torque stability;
    • If there is a problem in the contact with center conductors of the coaxial cable and strip line, the strip line cover must be removed to be able to repair, for example, to check or re-solder the center conductors.


In the second family, to remove the PIM potential problems due to screws torque variation, the center conductors of the coaxial cable and the strip line are still soldered together, but the coaxial cable braid is also directly soldered to the strip line plates, using special shapes of the plates. In this case, plates are made from material with good soldering capability (e.g., brass, copper, tin plated steel, etc.). For this family, the problems linked to the configuration are:

    • Difficulties to obtain a good solder with the plates due to heat diffusion across huge area around soldering point;
    • If there is a problem with the solder of the center conductors, the cover must be removed to repair. As all connection points are soldered, it is even harder to remove the cover than in the first family where it was screwed. Generally, the unsoldered cover has big deformations and must be scrapped and replaced, which is additional cost in labor time and material.


OBJECT AND SUMMARY OF THE INVENTION

Based on above concerns, it would be advantageous to achieve a connector for coupling a coaxial cable to a strip line, which could improve soldering capability between the braid of the coaxial cable and the cover plate of the strip line and allow the conductor of the strip line and the center conductor of the coaxial cable to be re-soldered without disassembling.


One embodiment of the invention provides a connector for coupling a coaxial cable to a strip line, the connector comprising:


a first plate to be arranged above a conductor of the strip line to which a center conductor of the coaxial cable is soldered, the first plate including:

    • a first solder portion to which a braid of the coaxial cable is soldered; and
    • an aperture formed adjacent to the first solder portion, configured to prevent heat propagation of a solder point of the first solder portion and the braid of the coaxial cable and to expose a solder point of the conductor of the strip line and the center conductor of the coaxial cable, wherein a biggest dimension of the aperture is shaped to be less than 5% of highest frequency wavelength.


With the aperture formed adjacent to the first solder portion, a heat break is created to prevent heat propagation of the solder point of the first solder portion and the braid of the coaxial cable to a huge area and thus the soldering capability between the braid of the coaxial cable and the first plate (e.g., the cover plate of the strip line) could be achieved. Furthermore, as the solder point of the conductor of the strip line and the center conductor of the coaxial cable is exposed, the conductor of the strip line and the center conductor of the coaxial cable could be allowed to be re-soldered without disassembling.


With the aperture formed on the first plate (e.g., the cover plate of the strip line), the degradation of impedance of the coaxial cable to strip line interface occurs, advantageously, a portion, which is under the aperture, of the conductor of the strip line is shaped to compensate impedance degradation caused by the aperture. For example, the portion of the conductor of the strip line may be widened to compensate the impedance degradation.


Advantageously, the aperture is formed over the solder point of the conductor of the strip line and the center conductor of the coaxial cable.


Advantageously, the first solder portion comprises two solder pads, and the aperture is formed between the two solder pads.


Advantageously, a second solder portion of a second plate is soldered to the first solder portion of the second plate, the second solder portion having a hole through which the coaxial cable is passed and the braid of the coaxial cable being soldered to the second solder portion.


Advantageously, the aperture is of rectangle shape.


Advantageously, the first plate is a cover plate of the strip line, and the second plate is a bottom plate of the strip line.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and features of the present invention will become more apparent from the following detailed description considered in connection with the accompanying drawings, in which:



FIG. 1 shows an isometric view of a strip line device with coaxial cable connected to the strip line;



FIG. 2a shows an isometric view of a first plate according to one embodiment of the invention;



FIG. 2b shows an isometric view of a first plate with coaxial cable connected to the strip line according to one embodiment of the invention;



FIG. 3 shows a schematic view of a coaxial cable to strip line interface without aperture and its return loss;



FIG. 4 shows a schematic view of a coaxial cable to strip line interface with aperture and its return loss; and



FIG. 5 shows a schematic view of a coaxial cable to strip line interface with aperture and compensation and its return loss.





Throughout the above drawings, like reference numerals will be understood to refer to like, similar or corresponding features or functions.


DETAILED DESCRIPTION

In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof. The accompanying drawings show, by way of illustration, specific embodiments in which the disclosure may be practiced. The illustrated embodiments are not intended to be exhaustive of all embodiments according to the disclosure. It is to be understood that other embodiments may be utilized, and structural or logical changes may be made without departing from the scope of the disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the invention is defined by the appended claims.


In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “left”, “right”, “top,” “bottom,” “front,” “back,” “leading,” “forward,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.


Hereinafter, for illustrative purposes only, the connector for coupling a coaxial cable to a strip line of the invention will be described using the base station antennas as one example of its application scenario; however those skilled in the art could appreciate that the connector can be used in any application scenario where coaxial cables and strip lines are used.


Referring to FIGS. 2a and 2b, the exemplary connector 200 of the invention includes a first plate 210 having a first solder portion 212 and an aperture 214 formed adjacent to the first solder portion 212. The first plate 210 may be a portion of the cover plate of the strip line, or be the entire cover plate of the strip line, for example. In an alternative example, the first plate 212 may be a separate part to be mounted on the cover plate of the strip line.


The first solder portion 212 can be of any suitable configuration, but generally include two solder pads 212a and 212b, and the aperture 214 is typically formed between the two solder pads 212a and 212b, as shown in FIG. 2a.


Still referring to FIG. 2b, the conductor 220 of the strip line is arranged between the first plate 212 (e.g. the cover plate of the strip line) and the second plate 230 (e.g. the bottom plate of the strip line). The second solder portion 232 of the second plate 230 is soldered to the first solder portion 212 of the first plate 210 and also has a hole (not shown) formed thereon for the coaxial cable to pass therethrough. During the assembly, the coaxial cable 240 passes through the hole of the second solder portion 232 with its braid 242 soldered to the second solder portion 232 and its center conductor 244 soldered to the conductor 220 of the strip line.


Since the aperture 214 is formed adjacent to the first solder portion 212, a heat break is created to prevent heat propagation of the solder point 254 of the first solder portion 212 of the cover plate of the strip line and the braid 242 of the coaxial cable (and thus the second solder portion 232 of the bottom plate of the strip line) to a huge area and thus the soldering capability between the braid of the coaxial cable and the cover plate of the strip line could be achieved.


Advantageously, the aperture 214 may be formed over the solder point 252 of the conductor 220 of the strip line and the center conductor 244 of the coaxial cable 240 to expose the solder point 252. As such, the conductor 220 of the strip line and the center conductor 244 of the coaxial cable 240 could be allowed to be re-soldered without disassembling.


To achieve the purpose of preventing heat propagation of the solder point 254 and exposing the solder point 252 for re-soldering, the aperture 214 may be of any suitable shape, for example, rectangle, circle, ellipse, trapezium, triangle, etc. Moreover, to consider that the radiation of the aperture 214 could be negligible at the operating frequency, the biggest dimension of the aperture 214 is shaped to be less than 5% of the highest frequency wavelength of the base station antennas.


With the aperture 214 formed on the cover plate of the strip line, the degradation of impedance of the coaxial cable to strip line interface occurs, for example the return loss is degraded to 23 dB as shown in FIG. 4, which is 10 dB degradation compared to the conventional configuration without aperture as shown in FIG. 3 (33 dB, HFSS simulation results). In this regard, advantageously, a portion 262, which is under the aperture 214, of the conductor 220 of the strip line is shaped to compensate impedance degradation caused by the aperture. For example, the portion of the conductor 220 of the strip line may be widened to compensate the impedance degradation. With proper optimization of the shape of the conductor 220 of the strip line, it is possible to obtain good impedance for the coaxial cable to strip line interface with return loss better than 35 dB, as shown in FIG. 5.


It should be noted that the above described embodiments are given for describing rather than limiting the invention, and it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art readily understand. Such modifications and variations are considered to be within the scope of the invention and the appended claims. The protection scope of the invention is defined by the accompanying claims. In addition, any of the reference numerals in the claims should not be interpreted as a limitation to the claims. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The indefinite article “a” or “an” preceding an element or step does not exclude the presence of a plurality of such elements or steps.

Claims
  • 1. A connector for coupling a coaxial cable to a strip line, the connector comprising: a first plate to be arranged above a conductor of the strip line, wherein the conductor of the strip line and a center conductor of the coaxial cable are soldered, the first plate including: a first solder portion to which a braid of the coaxial cable is soldered; andan aperture formed adjacent to the first solder portion, configured to prevent heat propagation of a solder point of the first solder portion and the braid of the coaxial cable and to expose a solder point of the conductor of the strip line and the center conductor of the coaxial cable, wherein a biggest dimension of the aperture is shaped to be less than 5% of highest frequency wavelength.
  • 2. The connector of claim 1, wherein the aperture is formed over the solder point of the conductor of the strip line and the center conductor of the coaxial cable.
  • 3. The connector of claim 1, wherein the first solder portion comprises two solder pads, and the aperture is formed between the two solder pads.
  • 4. The connector of claim 1, wherein the aperture is of rectangle shape.
  • 5. The connector of claim 1, wherein the first plate is a cover plate of the strip line.
  • 6. The connector of claim 1, further comprising the conductor of the strip line, wherein a portion, which is under the aperture, of the conductor of the strip line is shaped to compensate impedance degradation caused by the aperture.
  • 7. The connector of claim 6, wherein the portion of the conductor of the strip line is widened to compensate the impedance degradation.
  • 8. The connector of claim 1, wherein a second solder portion of a second plate is soldered to the first solder portion of the first plate, and the braid of the coaxial cable is soldered to the second solder portion.
  • 9. The connector of claim 8, wherein the second plate is a bottom plate of the strip line.
Priority Claims (1)
Number Date Country Kind
2013 1 0659556 Dec 2013 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2014/092264 11/26/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/085865 6/18/2015 WO A
US Referenced Citations (46)
Number Name Date Kind
3539966 Logan Nov 1970 A
3553607 Lehrfeld Jan 1971 A
3662318 Decuyper May 1972 A
3725829 Brown Apr 1973 A
4280112 Eisenhart Jul 1981 A
4335364 Schmitz Jun 1982 A
4487999 Baird Dec 1984 A
4906957 Wilson Mar 1990 A
5268700 Hirotsu Dec 1993 A
5404117 Walz Apr 1995 A
5517747 Pierro et al. May 1996 A
5532659 Dodart Jul 1996 A
5613859 Bellantoni Mar 1997 A
5738529 Wedell Apr 1998 A
5823790 Magnuson Oct 1998 A
6065976 Wang May 2000 A
6126453 Gomez et al. Oct 2000 A
6457979 Dove Oct 2002 B1
6468089 Hubbard Oct 2002 B1
6572407 Ko Jun 2003 B1
6682354 Carson Jan 2004 B2
6847276 Tamaki Jan 2005 B2
6894590 Dove May 2005 B2
6980068 Miyazawa Dec 2005 B2
7008265 Jonsson Mar 2006 B2
7029321 Sato Apr 2006 B2
7048547 Gottwald May 2006 B2
7690922 Huang Apr 2010 B2
7782273 Morikawa Aug 2010 B2
8035466 Payne Oct 2011 B2
8449305 Harel May 2013 B2
8704725 Xu Apr 2014 B2
20010043127 Tanji Nov 2001 A1
20020000932 Metzen Jan 2002 A1
20020177332 Hubbard Nov 2002 A1
20040057220 Tamaki et al. Mar 2004 A1
20050068250 Cornec Mar 2005 A1
20050245129 Sato Nov 2005 A1
20060255877 Jiang et al. Nov 2006 A1
20070054510 Price Mar 2007 A1
20090015495 Yoshie Jan 2009 A1
20090059540 Giboney Mar 2009 A1
20090197434 Kressner Aug 2009 A1
20110217853 Cornic Sep 2011 A1
20140153211 Malek Jun 2014 A1
20150311605 Moore Oct 2015 A1
Foreign Referenced Citations (17)
Number Date Country
2559124 Jul 2003 CN
1574450 Feb 2005 CN
1760788 Apr 2006 CN
201629411 Nov 2010 CN
102099873 Jun 2011 CN
202231185 May 2012 CN
203225416 Oct 2013 CN
103647127 Mar 2014 CN
203617413 May 2014 CN
1 936 734 Jun 2008 EP
H08293358 Nov 1996 JP
H 8-340207 Dec 1996 JP
2001-320208 Nov 2001 JP
2009-290043 Dec 2009 JP
2012-518963 Aug 2012 JP
WO 2006011768 Feb 2006 WO
WO 2014173318 Oct 2014 WO
Non-Patent Literature Citations (1)
Entry
International Search Report for PCT/CN2014/092264 dated Mar. 2, 2015.
Related Publications (1)
Number Date Country
20160308291 A1 Oct 2016 US