Information
-
Patent Grant
-
6726497
-
Patent Number
6,726,497
-
Date Filed
Wednesday, November 6, 200222 years ago
-
Date Issued
Tuesday, April 27, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 260
- 439 261
- 439 494
- 439 495
- 439 496
-
International Classifications
-
Abstract
An FPC connector permits downsizing and not exerting residual stress on terminals irrespective of the pivoting position of an actuator while an FPC is not connected. The FPC connector is provided with biasing beams respectively arranged adjacent contact terminals disposed in an insulative housing. The biasing beams are pivotable about support points at intermediate portions thereof. The biasing beams are pivoted by means of pivotal actuator.
Description
FIELD OF THE INVENTION
The present invention relates generally to a connector for a flat printed circuit or a flat flexible cable which is typically referred to as FPC or FFC. Throughout the disclosure and claims, the wording “FPC” will be used to generally referred to both the flat flexible cable and the flat printed circuit.
DESCRIPTION OF THE RELATED ART
Conventionally, an FPC connector includes an insulative housing provided with an FPC insertion cavity and a plurality of contact terminals disposed within the insulative housing in a side-by-side relationship with a predetermined pitch. The terminals have contact portions which extend into the FPC insertion cavity. A pivoting actuator is disposed between contacts of the FPC and is designed to apply the necessary contact pressure to cause displacement of contact beams integrally formed with the contact terminals by pivotal motion thereof. Displacement of the contact beams is either for urging the contacts onto the conductors of the FPC or for widening an insertion gap for the FPC. Such FPC connectors are disclosed in U.S. Pat. No. 5,906,498, Japanese Unexamined Patent Publication No. Heisei 11-31561. Japanese Unexamined Patent Publication No. Heisei 10-208822 and Japanese Unexamined Patent Publication No. Heisei 10-214661.
As set forth above, displacement of the contact beams integral with the contact terminals by pivotal motion of the pivotal actuator causes resilient deformation of the contact terminals. Therefore, in order to permit pivotal motion of the pivotal actuator without requiring a large activation force, a relatively large arm is required to reduce the force needed to move the actuator so that sufficient force is provided to create an adequate electrical and mechanical engagement between the terminals and the FPC conductors. Therefore, the extra length serves as a hindrance for down-sizing of the FPC connector.
On the other hand, a stress is exerted on the contact terminal by pivotal motion of the pivotal actuator. It is possible that during a solder reflow process for mounting the FPC connector on the printed circuit board the stress which remains in the contact terminals can cause the characteristics of the terminal to change in the pressure of the heat. Also, since the force of the actuator is placed between the housing and the terminals, the housing must be larger to accommodate this extra force.
SUMMARY OF THE INVENTION
The present invention has been designed to solve the shortcomings set forth above. It is therefore an object of the present invention to provide an FPC connector which has a structure permitting down-sizing.
Another object of the present invention is to provide an FPC connector which has a structure not exerting residual stress on terminals irrespective of pivoting position of an actuator while an FPC is not connected and to not have the force of the actuator placed between the housing and the terminal thereby permitting former housing downsizing.
A further object of the present invention is to provide an FPC connector which has a structure to be easily designed for obtaining he necessary contact pressure.
In order to accomplish the above-mentioned objects, a connector releasably coupling, electrically and mechanically, connectors of a flat printed circuit according to the present invention is provided with an insulative housing defining an FPC insertion cavity. A plurality of terminal is held in said housing in a side by side relationship with contact beams extending in the FPC insertion cavity, the terminals each have a support post held to and extending away from the base. Extending laterally from the support post is a pivot point and a contact beam. A plurality of biasing beams arranged adjacent the terminals have a first end, a second end and a fulcrum point. A pivoting actuator including a shaft rotates within the pivot point of the terminals. The shaft has a cam which, when the actuator is in the down or locked position, engages the first end of the biasing beam causing the biasing beams to rotate about their fulcrum points moving the second end into contact with the FPC whereby the FPC is in electrical engagement with the terminals and the FPC is tightly held mechanically between the terminals and the biasing beams.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be understood more fully from the detailed description given hereinafter and from the accompanying drawings of the preferred embodiment of the present invention, which, however, should not be taken to be limitative to the invention, but are for explanation and understanding only.
FIG. 1
is a partially cut out perspective view of the preferred embodiment of an FPC connector according to the present invention, which is illustrated in a condition before connection with an FPC;
FIG. 2
is a side view of the section of the preferred embodiment of the FPC connector shown in
FIG. 1
;
FIG. 3
is a perspective view of a contact terminal and biasing beam forming the preferred embodiment of the FPC connector of the present invention;
FIG. 4
is a partially cut out perspective view of the preferred embodiment of the FPC connector according to the present invention, which is illustrated in a condition where the FPC is connected (the FPC is not shown); and
FIG. 5
is a side view of the section of the preferred embodiment shown in
FIG. 4
with the FPC in place.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention will be discussed hereinafter in detail in terms of the preferred embodiment of the present invention with reference to the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known structures are not shown in detail in order to avoid unnecessary obscurity of the present invention.
The preferred embodiment of an FPC connector
10
has an insulative housing
20
formed of an insulative plastic and a pivotal actuator
30
. In the insulative housing
20
, a plurality of contact terminals
40
and biasing beams
50
are loaded in side-by-side relationship at a predetermined pitch. These contact terminals
40
and biasing beams
50
are formed by stamping a thin metal blank. As shown in
FIG. 3
, adjacent individual contact terminal
40
and individual biasing beams
50
are combined in a scissors-like form.
The insulative housing
20
has a top plate
21
and a bottom plate
22
. Between the top plate
21
and the bottom plate
22
, a plurality of terminal receptacle cavities
23
are defined. In
FIG. 2
, the contact terminals
40
and the biasing beams
50
can be loaded from the rear. In
FIG. 2
, an FPC insertion cavity
24
opening to the front end is defined for receiving an end portion of an FPC
60
(see FIG.
5
).
Each contact terminal
40
had a base
41
extending along the bottom plate
22
of the insulative housing
20
and a contact beam
42
extending in an upper side of the FPC insertion cavity
24
in cantilever fashion, and a support post
43
integrally interconnecting the base
41
and the contact beam
42
. On the upper end of the support post
43
, a pivot point
44
in the form of a hook portion is provided. The hook portion
44
is located and exposed in the back side of the top plate
21
of the insulative housing
20
so that the pivotal actuator
30
may pivot without interference.
The upper end of the contact beam
42
has a thickened portion. This thickened portion is located so that a clearance is formed between the top of the thickened portion and the lower surface of the top plate
21
of the insulative housing
20
. The resulting tapered contact beam
42
may have spring characteristics as elastically deformed toward the top plate
21
. Formed on the lower edge of the tip end portion of the contact beam
42
, is a contact projection
45
.
The base
41
of the terminal
40
extends parallel to the upper surface of the bottom plate
22
of the insulative housing
20
so that it may contact with the bottom plate
22
in substantially its entire length. The base
41
has a length projecting rearwardly beyond the bottom plate
22
to form a solder tail
46
lying substantially flush with the lower surface of the bottom plate
22
.
The biasing beams
50
are placed adjacent respective of the contact terminals
40
. Each biasing beam
50
includes a second end
53
extending toward the FPC insertion cavity
24
of the insulative housing
20
and a first end
52
extending along the base
41
of the contact terminal
40
. Each biasing beam is pivotably supported by the fulcrum point
51
. As shown in
FIGS. 1 and 2
, when the biasing beam
50
is in a free condition, it is substantially parallel with the bottom plate
22
of the insulative housing
20
, and the first end
52
is lifted upwardly. As shown in
FIGS. 4 and 5
, when the first end
52
is substantially parallel with the bottom plate
22
, the second end
53
is lifted upwardly.
Fulcrum point
51
, joining the ends
52
and
53
, is bent in a vertical plane to joint both ends in an angled relationship so that the biasing beam
50
may pivot over the base
41
.
In the shown embodiment, the biasing beam
50
is formed by stamping a thin metal blank to have electrical conductivity. However, the biasing beam may be formed of an insulative plastic as non-conductive member.
The pivotal actuator
30
has a shape and size to be received within an actuator receptacle portion
25
defined on the rear end of the insulative housing
20
. The actuator
30
is formed with a plurality of window openings
31
at positions respectively corresponding to the positions of the hook portions
44
of the contact terminals
40
. By inserting respective hook portions
44
into the window openings
31
, interengagement between the pivotal actuator
30
and the contact terminals
40
is established for permitting pivotal movement of the actuator
30
. The lower edge of the hook portion
44
is formed into a semi-circular engaging edge
47
. A shaft
32
is received within this engaging edge
47
. Thus, the pivotal actuator
30
is pivotable between the substantially vertical position as illustrated in
FIGS. 1 and 2
and the substantially horizontal position as illustrated in
FIGS. 4 and 5
.
A cam projection
33
extends from the shaft
32
. An arc-shaped cam face
33
a
is formed on the lower surface side of the cam projection
33
. The arc-shaped cam face
33
a
is formed over the entire width of the pivotal actuator
30
. On the upper edges of the first end
52
of the biasing beam
50
opposing the cam face
33
a
, is a recessed portion
54
. This recessed portion provides a smooth sliding surface with cam face
33
a.
When the pivotal actuator
30
is pivoted to the vertical position, as shown in
FIGS. 1 and 2
, the cam projecting piece
33
of the shaft
32
engages abutment
48
at the tip of the hook portions
44
to stop pivotal motion. When the pivoting actuator
30
is pivoted to a substantially horizontal position, as shown in
FIGS. 4 and 5
, the lower surface of the pivoting actuator
30
contacts the upper edges of the base
41
of the contact terminals
40
to stop pivotal motion. Both side edges of the pivotal actuator
30
engage with engaging portions
27
provided in the side walls
26
of the insulative housing
20
defining the actuator receptacle portion
25
to maintain the pivotal actuator
30
in the substantially horizontal condition.
When the pivotal actuator
30
is pivoted to a substantially vertical position, the cam projection
33
is released from the first end
52
of the biasing beam
50
to open the distance between contact
45
and contact tip at the second end
53
on the biasing beam. This opening will facilitate the insertion of the FPC
60
into the connector through the FPC insertion cavity
24
with little or no resistance.
After insertion of the FPC
60
, the pivoting actuator
30
is pivoted to the substantially horizontal position. Movement of the cam projection
33
slidingly moves the cam face
33
a
onto the upper edges of the movable beams
52
of the biasing beams
50
. According to this pivotal motion, the first ends
52
are moved downwardly. In conjunction therewith, the second ends
53
move the FPC
60
inserted into the housing toward the contact beams
42
to cause engagement between the contacts
45
of the contact beams
42
and the contacts
61
of the FPC with a contact pressure necessary for establishing electrical connection. Thus, the contacts
45
and the contacts
61
are urged toward each other as if vertically biased by means of springs to reliably establish electrical connection.
In the prior art, the beam which engages the FPC is pivoted via elastic deformation which requires a greater force applied to the terminal because the subject invention does not require as much force since there is no elastic deformation. Therefore, the length of the biasing beams
50
can be shorter to permit the depth of the FPC connector in the insertion direction of the FPC to be shorter. In the preferred embodiment, the biasing beam
50
has a length extending backwardly beyond the recessed portions
54
located opposite to the cam face
33
a
. However, the length of the movable beams
52
can be shortened to terminate at the position corresponding to the recessed portion. Corresponding to this, the base
41
of the contact terminals
40
can be shortened for downsizing.
In the condition where the FPC
60
is not inserted into the FPC connector
10
, at any position of the pivotal actuator
30
, particularly, even if the pivotal actuator
30
is in substantially horizontal position as shown in
FIGS. 4 and 5
, no stress will be exerted on the contact terminals and the biasing beams
50
. Accordingly, when the FPC connector
10
is fed into a solder reflow process for mounting the FPC connector
10
on the printed circuit board, heating can be performed without stress placed on the terminals which stress combined with heat could change the characteristics of the metal. Accordingly, the spring performance will not be changed.
In an alternative embodiment, it is possible to construct the connector by arranging the biasing beams on the side of the top plate
21
of the housing and the contact beams of the contact terminals on the side of the bottom plate
22
of the housing. In such case, the contacts formed at the tip end of the contact beams and the contact formed on the lower side of the FPC are urged toward each other to establish electrical connection with a necessary contact pressure.
Although the present invention has been illustrated and described with respect to exemplary embodiment thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omission and additions may be made therein and thereto, without departing from the spirit and scope of the present invention. Therefore, the present invention should not be understood as limited to the specific embodiment set out above but to include all possible embodiments which can be embodied within a scope encompassed and equivalent thereof with respect to the feature set out in the appended claims.
Claims
- 1. An electrical connector releasably coupling, electrically and mechanically, conductors of a flat printed circuit (FPC) comprising:an insulative housing defining an FPC insertion cavity, a plurality of terminal held in said housing in a side by side relationship with contact beams extending in said FPC insertion cavity; said terminals each having a support post held to and extending away from said base extending laterally from said support post is a pivot point and a contact beam; a plurality of biasing beams arranged adjacent said terminals having a first end, a second end, and a fulcrum point; and a pivoting actuator including a shaft designed to rotate within the pivot point of the terminals, the shaft having a cam which, when the actuator is in the down or locked position, engages the first end of the biasing beam causing the biasing beams to rotate about their fulcrum points moving the second end into contact with the FPC whereby the FPC is in electrical engagement with the terminals and the FPC is tightly held mechanically between the terminals and the biasing beams.
- 2. The electrical connector of claim 1 wherein the biasing beams are bent at said fulcrum point so that the fulcrum point is located over a portion of the terminal base.
- 3. The electrical connector of claim 1 wherein the pivot point is an arm extending from the support post in a direction opposite to the contact beam.
- 4. The electrical connector of claim 3 wherein the pivot point arm has a hook shape and said cam has a shape coinciding with a portion of the hook shape which engage one another preventing the actuator from rotating beyond a preset open position.
- 5. The electrical connector of claim 1 wherein both the terminals and the biasing beams are formed from metal.
US Referenced Citations (8)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0 263 296 |
Apr 1988 |
EP |
10208822 |
Aug 1998 |
JP |
10-214661 |
Aug 1998 |
JP |
11-31561 |
Feb 1999 |
JP |
11-307198 |
Nov 1999 |
JP |