1. Field of the Invention
The present invention generally relates to a connector for a flexible printed circuit (FPC hereinafter for simplification) board, and more particularly to an FPC connector capable of receiving two FPC boards therein.
2. The Related Art
A traditional FPC connector includes an insulating housing defining a mouth, a plurality of terminals disposed in the insulating housing, and an actuator rotatably mounted to the mouth of the insulating housing so as to be opened or closed freely. After an FPC board is inserted into the mouth of the FPC connector, the actuator is rotated from an open position to a closed position so as to ensure an electrical connection between the FPC board and the terminals of the FPC connector. However, the traditional FPC connector can only receive one FPC board therein. With the development of electrical field, electrical products are gradually microminiaturized, thus an FPC connector capable of receiving two or more FPC boards therein is required.
An object of the present invention is to provide a connector which can receive at least two flexible printed circuit boards therein. The connector includes an insulating housing defining a first mouth at a front thereof and a receiving recess behind the first mouth, a plurality of first terminals disposed in a front of the insulating housing and stretching into the first mouth, a first actuator rotatably mounted to the first mouth of the insulating housing, and a plurality of second terminals disposed in a rear of the insulating housing. The first mouth has a top and a front opened freely. The receiving recess is higher than the first mouth and has a front opened freely. Each of the second terminals has a second connecting arm at an upper portion thereof and a third connecting arm at a lower portion thereof. A free end of the second connecting arm protrudes downward to form a second contact portion and a free end of the third connecting arm protrudes upward to form a third contact portion. The second and third contact portions stretch into the receiving recess. Wherein one of the flexible printed circuit boards can be inserted into the first mouth and pressed downward by the first actuator to electrically contact the first terminals, the other flexible printed circuit board can be inserted into the receiving recess and clipped between the second and third connecting arms to electrically contact the second and third contact portions of the second terminals.
As described above, the foregoing connector can simultaneously receive two flexible printed circuit boards therein from the same direction such that can suffice a microminiaturization requirement with the development of electrical field.
The present invention will be apparent to those skilled in the art by reading the following description of a preferred embodiment thereof, with reference to the attached drawings, in which:
With reference to
Referring to
The top of the insulating housing 1 further defines a rectangular second mouth 12 penetrating through a rear thereof. A bottom middle of the second space 102 extends downward and then extends rearward to form a rectangular receiving recess 103 higher than the first mouth 11 and having a front communicating with the first space 101. A top and a bottom of the receiving recess 103 respectively define a plurality of second passageways 121 arranged at regular intervals along a transverse direction thereof and each extending longitudinally to penetrate through a front of the second mouth 12 and communicate with the second mouth 12. The front of the second mouth 12 further defines a plurality of second receiving cavities 122 each extending vertically to connect rear ends of the corresponding two second passageways 121. A bottom of the second mouth 12 defines a plurality of third passageways 123 extending rearward from a bottom of the corresponding second receiving cavities 122. A rear end of each third passageway 123 extends downward to penetrate through the insulating housing 1 to form a second fixing cavity 124. Two opposite sides of the second mouth 12 extend oppositely to form a pair of second pivoting grooves 125 in a substantial middle and a pair of second locking grooves 126 opened freely at a rear thereof. Accordingly, a preventing wall 127 is formed between the second pivoting groove 125 and the corresponding second locking groove 126.
Referring to
Each of the first terminals 2 has a rectangular base board 21 disposed vertically. A front edge of the base board 21 extends forward to form a first bearing arm 22 at top and a first connecting arm 23 longer than the first bearing arm 22 at bottom. A free end of the first bearing arm 22 protrudes downward to form a first interference portion 24. The first connecting arm 23 protrudes upward to form a first contact portion 25 at a substantial middle thereof and extends downward to form a soldering portion 26 at a free end thereof.
Each of the second terminals 3 has a base portion 31 extending vertically. A front edge of the base portion 31 extends forward to form a second connecting arm 32 at top and a third connecting arm 33 shorter than the second connecting arm 32 at bottom. A rear edge of the base portion 31 extends rearward to form a second bearing arm 34 at top and a fourth connecting arm 35 longer than the second bearing arm 34 at bottom. A free end of the second connecting arm 32 protrudes downward to form a second contact portion 321 and a free end of the third connecting arm 33 protrudes upward to form a third contact portion 331. A free end of the second bearing arm 34 protrudes downward to form a second interference portion 341. A free end of the fourth connecting arm 35 extends downward to form a rectangular soldering board 351.
Referring to
Referring to
The base portion 31 of each of the second terminals 3 is fastened in the corresponding second receiving cavity 122 of the insulating housing 1 and the second bearing arm 34 stretches into the second mouth 12. The second connecting arm 32 and the third connecting arm 33 are respectively received in the corresponding second passageways 121, and the second contact portion 321 and the third contact portion 331 stretch into the receiving recess 103. The fourth connecting arm 35 is received in the respective third passageway 123 and the soldering board 351 is inserted in the corresponding second fixing cavity 124 for being soldered to the printed circuit board. The second actuator 5 is rotatably mounted to the second mouth 12 of the insulating housing 1 so as to be opened or closed freely. The second piloting portions 52 are pivoted in the respective second pivoting grooves 125. The free end of the second bearing arm 34 is received in the corresponding second locating slot 53 and the second prop beam 55 is located under the second bearing arm 34 in front of the corresponding second interference portion 321, so the second actuator 5 can be prevented from falling off the insulating housing 1 while being opened or closed.
When the FPC connector 100 is used, on one hand, the first actuator 4 is opened rearward to make the first FPC board 200 inserted rearward into the first mouth 11 and located between the first bearing arms 22 and the first connecting arms 23 of the first terminals 2 to electrically contact the first contact portions 25. Then the first actuator 4 is closed forward in the first mouth 11 to make the first base body 41 abut against the first FPC board 200 so as to ensure a steadily electrical connection between the first terminals 2 and the first FPC board 200. Moreover, the first locking blocks 44 are buckled into the respective first locking grooves 1141 to make the first actuator 4 closed firmly and further ensure the first terminals 2 electrically contact the first FPC board 200 steadily.
On the other hand, the second actuator 5 is opened forward to make the second FPC board 300 inserted rearward into the receiving recess 103 and located between the second connecting arms 32 and the third connecting arms 33 of the second terminals 3 to electrically contact the second contact portions 321 and the third contact portions 331. Then the second actuator 5 is closed rearward to make the second prop beams 55 push the corresponding second bearing arms 34 upward that drives the corresponding second connecting arms 32 to incline downward and further drives the second contact portions 321 to move downward due to a fulcrum function of the corresponding base portions 31, so the second FPC board 300 can be tightly clipped between the second contact portions 321 and the third contact portions 331 so as to ensure a steadily electrical connection between the second terminals 3 and the second FPC board 300. When the second actuator 5 is fully closed in the second mouth 12, the second locking blocks 54 are buckled into the corresponding second locking grooves 126 to make the second actuator 5 closed firmly and further ensure the second terminals 3 electrically contact the second FPC board 300 steadily.
When the first FPC board 200 and the second FPC board 300 are to be withdrawn from the FPC connector 100, firstly, the second actuator 5 is opened forward to drive the second prop beams 55 rotate to make the second bearing arms 34 move downward due to self-elasticity that further drives the second connecting arms 32 and the second contact portions 321 to move upward due to the fulcrum function of the corresponding base portions 31. So when the second actuator 5 is fully opened, the second FPC board 300 can be easily withdrawn from the receiving recess 103. Then, the first actuator 4 is opened rearward to make the first FPC board 200 withdrawn from the first mouth 11.
As described above, the FPC connector 100 of the present invention can simultaneously receive the first FPC board 200 and the second FPC board 300 therein from the same direction such that can suffice a microminiaturization requirement with the development of electrical field.
Number | Name | Date | Kind |
---|---|---|---|
6146172 | Wu et al. | Nov 2000 | A |
6508661 | Yu | Jan 2003 | B1 |
7527511 | Peng et al. | May 2009 | B1 |