Applicants claim priority of French Patent Application, Ser. No. 0410244, filed Sep. 28, 2004; and the present invention is related to pending U.S. patent application of Pascal Leymarie et al., Ser. No. 11/230,401, filed Sep. 20, 2005, entitled “IN-TANK FUEL DELIVERY ASSEMBLY WITH A PIVOTALLY MOUNTED EMISSIONS CANISTER”, assigned to the assignee hereof and incorporated herein by reference.
This invention relates generally to fuel delivery systems for vehicles and, more particularly, to a fuel delivery assembly disposed in a fuel tank and including an accessory such as an emissions canister.
For quite some time, fuel delivery systems for vehicles have typically included a fuel delivery assembly mounted within and received through an access opening in an upper wall of a fuel tank of a vehicle. A typical fuel delivery assembly may include a fuel pump module for delivering fuel from the fuel tank to a vehicle engine, a mounting flange for mounting to the upper wall of the fuel tank within the access opening, and a reservoir housing connected to the mounting flange. The reservoir housing may be of generally cylindrical shape, under normal operating conditions, contains a predetermined volume of fuel therein regardless of normal changes in inclination of the vehicle, and houses an electric fuel pump therein with an intake port and filter in communication with the interior of the reservoir housing. The fuel pump module is mounted to and within the fuel tank so that the bottom of the reservoir housing rests on the bottom of the fuel tank either directly or via supporting feet. The mounting flange may include various conduits that extend from the vehicle engine, through the mounting flange, and terminate in connections to various components of the fuel delivery assembly. The fuel pump module may also include a fuel level sender mounted to the reservoir housing and having a float and variable resistor to sense the level of fuel in the fuel tank.
More recently, fuel delivery assemblies may also include various accessories, such as a filter, a fuel additive cartridge, or a carbon canister for reducing evaporative emissions from the fuel tank. The carbon canister functions to limit emissions of fuel vapors from the fuel tank into the atmosphere. The carbon canister includes a housing containing activated carbon therein to trap fuel vapors therein and store the fuel vapors for subsequent release and combustion in the engine. The carbon canister includes conduits, which are connected between the canister housing to nipples on the mounting flange. Carbon canisters are of generally cylindrical shape and may be relatively loosely placed within the fuel tank and connected to the reservoir housing by flexible and twistable plastic brackets.
Unfortunately, however, when the vehicle is in motion, sometimes the loosely mounted carbon canister may move and interfere with other components.
A connector attaches an accessory, such as a carbon canister, to a fuel pump module within a fuel tank of a vehicle. The connector includes a fuel pump module mounting member with attachment features to attach the mounting member to the fuel pump module, and movement limiting features to resist relative movement with respect to the fuel pump module. The connector also includes an accessory mounting extension that extends from the mounting member and includes attachment features to attach the accessory to the connector.
According to preferred aspects of the connector, the connector is ring shaped and configured to surround a reservoir tank of the fuel pump module, and the connector is snap-fit fastened to the reservoir tank and to the accessory. Also preferably, the connector includes movement limiting features to resist axial and rotational movement of the connector relative to the fuel pump module.
At least some of the objects, features and advantages that may be achieved by at least certain embodiments of the invention include providing a device to enable accessories such as carbon canisters to be fastened within a fuel tank; positioning an accessory in relation to a fuel pump module to simplify conduit connections between them; providing a connector that immobilizes an accessory inside a fuel tank of a vehicle to avoid any unwanted movement of the accessory when the vehicle is in motion; prevents the accessory from interfering with other components; provides a common or modular connector to enable attachment of various types of accessories to a common type of fuel pump module; is of relatively simple design and economical manufacture and assembly, rugged, durable, reliable and in service has a long useful life.
Of course, other objects, features and advantages will be apparent in view of this disclosure to those skilled in the art. Various other connectors embodying the invention may achieve more or less than the noted objects, features or advantages.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiment and best mode, appended claims, and accompanying drawings in which:
Referring in more detail to the drawings,
The fuel pump module M includes a mounting flange E for mounting to a lip of the upper wall of the fuel tank R within the access opening O, and a reservoir housing B connected to the mounting flange E in any suitable manner. The fuel pump module M is mounted via the mounting flange E to the top wall of the fuel tank R, and extends downwardly into the fuel tank R so that the bottom of the reservoir housing B preferably rests on the bottom of the fuel tank R either directly or via supporting feet. Accordingly, in assembly, the fuel pump module M constitutes an anchored device within the fuel tank R and to which the accessory A may be connected. As shown, various conduits T may extend through the mounting flange E, and terminate in connections to various components of the fuel delivery assembly.
The reservoir housing B may be of generally cylindrical shape, preferably in normal operation contains a predetermined volume of fuel therein regardless of normal changes in inclination of the vehicle, and houses an electric fuel pump P therein with an intake port and filter F in communication with the interior of the reservoir housing B. The fuel pump module M may also include a fuel level sender mounted to the reservoir housing B and having a float J and variable resistor (not shown) to sense the level of fuel in the fuel tank R.
The accessory A may be any suitable accessory such as a filter, a fuel additive cartridge, or preferably a carbon canister for reducing evaporative emissions from the fuel tank R. The carbon canister functions to limit emissions of fuel vapors from the fuel tank R into the atmosphere. The carbon canister includes a housing of generally cylindrical shape containing activated carbon therein to trap fuel vapors therein and store the fuel vapors for subsequent release and combustion in the engine. The carbon canister may also include conduits, which are connected between the canister housing to nipples on the mounting flange E.
The reservoir tank B is an assembly composed of a receptacle RE, topped with a lid C. The reservoir tank B is of a generally cylindrical shape with a longitudinal central axis X—X. The receptacle RE and the lid C are attached, and preferably welded, to each other after the fuel pump is installed therein. A radially outwardly extending annular collar CR borders a circular top opening of the receptacle RE, and a collar CC of similar shape borders the lid C. The weld joint between the receptacle RE and the lid C is preferably between the collars CR and CC.
Referring now to
As best shown in
As shown in
As shown in
Referring to
Referring now to
Referring to
As shown in
The accessory A is accurately positioned in relation to the fuel pump module M by the hinge members defined by the plates 60, 60′ of the accessory A and the mounting extension 5 of the connector. Accordingly, the accessory A is not only attached to the fuel pump module M, but is also preferably hinged in relation to the fuel pump module M. The hinge provides a certain degree of freedom between accessory A and the fuel pump module M that can be advantageous during introduction of the assembly into the fuel storage tank R and facilitates connection of the conduits TX extending between the accessory A and the fuel pump module M.
According to other implementations not shown in the drawings, the mounting extension 5 could be simply snap-fit connected to the accessory A instead of also being hinged. Likewise, it would also be possible to lengthen the brackets 2, 2′ so that the wings 21, 21′ are positioned above the lid C and not on the collar CC. According to yet another embodiment, the ring 1 could be constructed of two separate parts attached together and clamped around on the reservoir tank B such as by screwing the two parts together.
As used in this specification and claims, the terms “for example,” “for instance,” and “such as,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that that the listing is not to be considered as excluding other, additional components, elements, or items. Moreover, directional words such as top, bottom, upper, lower, radial, circumferential, axial, lateral, longitudinal, vertical, horizontal, and the like are employed by way of description and not limitation. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation. When introducing elements of the present invention or the embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements.
It is to be understood that the invention is not limited to the particular exemplary embodiments disclosed herein, but rather is defined by the following claims. In other words, the statements contained in the foregoing description relate to a particular exemplary embodiment and are not to be construed as limitations on the scope of the invention as claimed or on the definition of terms used in the claims, except where a term or phrase is expressly defined above.
Although the present invention has been disclosed in conjunction with a presently preferred exemplary embodiment, many others are possible and it is not intended herein to mention all of the possible equivalent forms and ramifications of the present invention. Other modifications, variations, forms, ramifications, substitutions, and/or equivalents will become apparent or readily suggest themselves to persons of ordinary skill in the art in view of the foregoing description. In other words, the teachings of the present invention encompass many reasonable substitutions or equivalents of elements recited in the following claims. As just one example, the disclosed structure, materials, sizes, shapes, and the like could be readily modified or substituted with other similar structure, materials, sizes, shapes, and the like. Indeed, the present invention is intended to embrace all such forms, ramifications, modifications, variations, substitutions, and/or equivalents as fall within the spirit and broad scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
04 10244 | Sep 2004 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4768925 | Geupel | Sep 1988 | A |
4807582 | Tuckey | Feb 1989 | A |
4964787 | Hoover | Oct 1990 | A |
5758627 | Minagawa et al. | Jun 1998 | A |
6293770 | Matsumoto et al. | Sep 2001 | B1 |
6302144 | Graham et al. | Oct 2001 | B1 |
6308733 | Murakoshi et al. | Oct 2001 | B2 |
6378504 | Horiuchi et al. | Apr 2002 | B1 |
6401751 | Murakoshi et al. | Jun 2002 | B2 |
6513503 | Iwamoto et al. | Feb 2003 | B2 |
6517327 | Beyer et al. | Feb 2003 | B2 |
6619271 | Iwamoto et al. | Sep 2003 | B2 |
6773241 | Suzuki et al. | Aug 2004 | B2 |
6904928 | Powell et al. | Jun 2005 | B2 |
6923164 | Mitsudou et al. | Aug 2005 | B1 |
6966330 | Frohwein | Nov 2005 | B2 |
7025574 | Cremer et al. | Apr 2006 | B2 |
20020112700 | Iwamoto et al. | Aug 2002 | A1 |
20060065247 | Leymarie et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
2771972 | Jun 1999 | FR |
WO 0225094 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060065248 A1 | Mar 2006 | US |