This invention relates to a connector for securing veneer to back-up walls.
Many construction techniques have been developed for commercial buildings utilizing a back-up wall and a set of thin walled veneer panels that are supported on the back-up wall. Typically, there is a cavity between the veneer panels and the back-up wall to allow for the insertion of insulation and other materials. The veneer panels are connected to the back up wall using any of several different styles of connectors that are currently available. In addition to supporting the veneer panels, these connectors typically withstand various other loads, such as shear and wind loads.
Typically prior art connectors are relatively expensive to manufacture, and offer relatively poor load-bearing capacity for their weight and cost. One such prior art connector consists of an L-shaped member, and a veneer connector plate. The vertical portion of the L-shaped member is mounted to the back-up wall, and the horizontal portion extends outwardly therefrom. The horizontal portion typically includes slotted holes therethrough, for the mounting of the veneer connector plate thereon. The veneer connector plate extends outwards and supports at its outwardmost edge, a portion of a veneer panel.
For several reasons, these connectors are typically relatively expensive, and can add to the overall cost of erecting a building. One reason for their cost is that, to support the required loads during use, such connectors are typically required to be made from relatively thick materials. For example, for some applications, the L-shaped member is made from angle having a ⅜″ wall thickness. Furthermore, many building codes require such connectors to be made from stainless steel, to resist corrosion and subsequent weakening or failure. Because of this materials requirement, the cost of the L-shaped member is increased substantially.
Furthermore, in order to cut ⅜″ thick angle when making the L-shaped member, a sophisticated cutting device may be required, such as, for example, a plasma cutter. Plasma cutters are typically more expensive to operate than other cutting devices, and also, plasma cutter operators are more expensive than other cutting machine operators due to their relatively uncommon expertise.
A further issue driving the cost of prior art connectors is that, typically, they include at least two stainless steel bolts in their assembly, for example, to attach the veneer connector to the L-shaped piece. Stainless steel bolts are relatively expensive and can add significantly to the overall cost of the connector.
Accordingly, there is a need for a connector that is relatively inexpensive to manufacture, for use in supporting veneer panels.
According to one aspect, a connector for retaining at least one veneer panel on a back up wall is provided. The veneer panel may have a top edge and a bottom edge. The connector comprises a veneer connector and a support member. The support member comprises a mounting flange adapted for securing the support member to the back-up wall, and first and second support member side walls extending outwardly from the mounting flange. The first and second support member side walls define at least one generally horizontal surface when the support member is secured to the back-up wall. The veneer connector is securable to the horizontal surface by a mechanical fastener and is adapted to support a generally horizontal edge of the at least one veneer panel when the support member is secured to the back-up wall and when the veneer connected is supported by the generally horizontal surface. The connector is mountable on the back up wall such that the veneer connector supports one of the top and bottom edges of the at least one veneer panel.
The mounting flange may have an adjustment aperture therethrough. The adjustment aperture may be elongate and may be adapted to adjustably receive a fastener therethrough for mounting the support member to the back-up wall. The adjustment aperture may be generally vertical.
The generally horizontal surface may be provided by an upper surface of the first and second support member side walls.
The connector may further comprise a separate fastener for securing the veneer connector to the generally horizontally extending surface.
The veneer connector may comprise a section that abuts the veneer panel and is adapted to receive fasteners that engage the veneer panel.
According to another aspect, a connector for coupling a veneer panel to a back-up wall is provided. The connector comprises a support member comprising a mounting flange adapted for securing the support member to said back-up wall, and first and second support member side walls extending outwardly from the mounting flange. The first and second support member side walls define at least one generally horizontal slot when the support member is secured to the back-up wall. The connector further comprises a veneer connector configured for non-rotational sliding receipt in the generally horizontal slot and adapted to support a generally horizontal edge of said veneer panel when the veneer connector is received in the generally horizontal slot and when the support member is secured to the back-up wall.
The veneer connector may have a load transfer region for supporting the veneer panel, and the first and second support member side walls may extend outward from the mounting flange sufficiently to support the veneer connector proximate the load transfer region.
The veneer connector may have at least one veneer connector side wall. The veneer connector side wall may be generally vertical and may extend at least along a portion of the veneer connector that is unsupported by the support member.
The veneer connector may have a generally horizontal load transfer region for mounting to a horizontal edge of the veneer panel.
The generally horizontal slot may comprise a generally horizontal lower surface.
The mounting flange may comprise a first mounting flange portion and a second mounting flange portion. Each may have an aperture therethrough for mounting the support member to the back-up wall. At least one of the apertures may be positioned above the slot.
An elongate veneer connector adjustment aperture may be defined in the veneer connector. An elongate support member adjustment aperture may be defined in the support member. The support member adjustment aperture and the veneer connector adjustment aperture may extend generally perpendicularly to each other.
A veneer connector aperture may be defined in the veneer connector. A support member aperture may be defined in the support member. The support member aperture and the veneer connector aperture may be alignable with respect to each other for the pass through of a single mechanical fastener for securing the veneer connector to the support member.
The first and second side walls may be connected to each other by a side wall connecting portion. The first and second side walls may be joined together by a horizontal load support wall. The horizontal load support wall may be positioned at the top of the side walls.
The veneer connector may comprise a section that abuts the veneer panel and is adapted to receive fasteners that engage the veneer panel.
For a better understanding of the present invention and to show clearly how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:
a is a plan view of a variant of the veneer connector shown in
a is an end view of the connector shown in
a is a magnified plan view of the support member shown in
b is a perspective view of the support member shown in
a is an end view the support member variant shown in
a and 12b are perspective views of the work piece shown in
Reference is made to
The back-up wall 18 may be of form-poured concrete construction. Alternatively, the back-up wall 18 may be constructed of any suitable material, such as, for example, metallic studs, or block masonry. The veneer panels 14 may be spaced from the back-up wall 18 to provide a cavity 20 therebetween. Optionally, an insulation material 24 and a vapor barrier 26 may be installed in the cavity 20.
Reference is made to
The veneer connector 12 includes a plurality of veneer connection apertures 34, which may be positioned proximate the second edge 30. The veneer connector 12 may include any suitable number of veneer connection apertures 34, such as, for example, three apertures 34, as shown in
The veneer connection apertures 34 are positioned proximate the second edge 30 of the veneer connector 12 to prevent the unwanted protrusion of the second edge 30 past the outer face of the veneer 14. Thus, the second edge 30 can be buried in the mortar between vertically adjacent panels of veneer 14.
Referring to
Referring to
The veneer connector 12 supports the veneer panel 14 (
Reference is made to
The mounting flange 42 has an adjustment aperture 50 therethrough, which is adapted to receive a fastener 52, for fastening the support member 16 to the back-up wall 18 (
The mounting flange 42 also includes a securing aperture 54 therethrough, may be positioned on the second mounting flange 48, generally opposite the adjustment aperture 50. The securing aperture 54 is adapted for receiving a fastener 56 therethrough to further retain the support member 16 on the back-up wall 18 (
Reference is made to
The support portion 44 is made up of two spaced apart side walls 58, which are connected at their respective upper ends by a top portion 59. The top portion 59 and the spaced configuration of the side walls 58 provide resistance to bending loads that can occur in the lateral (x) direction during use. It is expected that any lateral loads will be smaller than the vertical loads incurred from the weight of the veneer 14 (
The top portion 59 can thus be referred to as a horizontal load support wall 59. As such it is not necessary for the horizontal load support wall 59 to be positioned at the top of the support member 16. For example, referring to
In the embodiments in
Referring to
Referring to
The slot 60 is preferably positioned proximate the upper ends of the side walls 58, to reduce its impact on the overall moment of inertia of the support portion 44 in the vertical (y) direction. It will be noted that the slot 60 may extend in a plane that is other than horizontal. For example the slot 60 may be angled generally downwards towards its blind end, so that the veneer connector 12 may be retained in place temporarily without the use of a fastener.
An adjustment aperture 62 may be defined in the upper portion 59, for receiving the fastener 65 therethrough. The fastener 65 may pass through the adjustment aperture 62 and the adjustment aperture 32 in the veneer connector 12 for fixedly retaining the veneer connector 12 in place in the support member 16. The adjustment aperture 62 may be generally elongate, and may extend in a direction that is generally perpendicular the aperture 32 in the veneer connector 12. In this way, the apertures 62 and 32 cooperate to provide adjustment for the veneer connector 12 within the slot 60 in both the (x) and (z) directions.
The fastener 65 may be any suitable type of fastener. For example, the fastener 65 may be made up of a stainless steel hex-head bolt 65a, a washer 65b, and a nut 65c. The hex head bolt 65a extends upwards from under the veneer connector 12, and is sized so that the side walls 58 capture the head of the bolt 65a and prevent it from rotating. The threaded end of the bolt 65a passes up and through the adjustment aperture 62 on the support member 16. The washer 65b and nut 65c are positioned on the exposed end of the bolt 65a and are tightened to provide a secure connection between the support member 16 and the veneer connector 12. By having captured the bolt 65a between the side walls 58, the task of installing the fastener 65 is facilitated. It will be noted that other types of bolts and other types of fasteners altogether could alternatively be used to connect the support member 16 and the veneer connector 12.
Reference is made to
It will be noted that the washer 65b′ may have any suitable shape for pushing the side walls 58 together. For example, the washer 65b′ may alternatively have an inverted V-shape in side view instead of an arcuate shape. Furthermore, the washer 65b′ may have any shape in plan view. For example, the washer 65b′ may have a generally circular shape or may alternatively have a rectangular shape so that it better captures the side walls 58.
Reference is made to
By making the support member 16 by appropriately machining and by applying two simple bends to the single, integral plate 70, the cost of manufacture for the support member 16 are reduced, relative to complex structures of the prior art which are made from multiple pieces which are welded together.
Reference is made to
Reference is made to
Reference is made to
Reference is made to
The support member 16, as shown in
The side walls 58 of the support portion 44 are shown in
Reference is made to
The upper support wall 116 may be made generally planer to assist in supporting and stabilizing the veneer connector 12″. The adjustment aperture 62 is provided in the upper support wall 116. The upper support wall 116 extends between the two spaced apart side walls 118. The side walls 118 may be similar to the side walls 58, shown in the support member 16, shown in
The veneer connector 12″ rests on top of the upper support wall 116. The veneer connector 12″ has the adjustment aperture 32 which is alignable with the adjustment aperture 62 on the support member 16′″″ when the veneer connector is positioned on the upper support wall 116. The adjustment aperture 32 is generally perpendicular to the adjustment aperture 62 in order to provide adjustability for the veneer connector 12″ on the support member 16′″″ in two orthogonal directions in a horizontal plane.
Referring to
The washers 65b and 65d are provided to inhibit the pulling through of the bolt 65a or nut 65c through the adjustment apertures 62 and 32 during assembly and use of the connector 110.
Referring to
The veneer connector 12″ may include a pair of side webs 120, which may be similar to the side webs 84 on the veneer connector 12′″, as shown in
The veneer connector 12″ may include one or more strengthening ribs 121 on its upper surface 122. The strengthening ribs 121 provide additional vertical bending resistance for the central region of the veneer connector 12″ which is spaced relatively far away from the side webs 120. By positioning the strengthening ribs 121 on the upper surface 122, they do not create an interference hazard when mounting the veneer connector 12″ on the support member 16″′″. Like the side webs 120, the strengthening ribs 121 must be positioned so as not to obstruct the connection of the veneer connector 12″ with the veneer panel 14 that will ultimately sit above it (see
Referring to
Reference is made to
The top and bottom edges of the panel 14 are supported by at least one of each connector 106 and 108. As a result, the weight of the panel 14 is prevented from dragging the connectors 106 and 108 down the wall 18, because the adjustment apertures extend in different directions. Thus, because the adjustment apertures 98 and 98′ are not parallel to each other when the connectors 106 and 108 are installed on the back-up wall and are in use, the adjustment apertures 98 and 98′ cooperate with their respective fasteners and with each other to prevent the connectors 106 and 108 from being dragged down from their supported load.
It will be noted that more than one of each connector 106 and 108 may be used to support an edge of the veneer panel 14. For example, several of one type of connector, eg. connector 106 and one or two of the other type of connector, eg. connector 108, may be used to support an edge of the veneer panel 14. At least one of each connector 106 and 108 is used, however.
It will be noted that the features shown in the support members disclosed herein may all be combined into a support member in accordance with the present invention in any desired way. For example, a support member may be provided that includes the basic structure of support member 16, but that has a low-positioned slot, similar to the slot 90 of support member 16′ (
In the embodiments described above, the side walls of the support members have been described and shown as extending outwardly from the mounting flanges along vertical planes. It will be noted that the vertical planes need not be strictly vertical, but are at least generally vertical. In another alternative, the side walls of the support members need not be strictly planar, and may instead be curved or may have further folds, which are preferably generally vertical.
In the embodiments described above, the veneer connector mounts to the support member using a single fastener, such as a bolt. Using a single fastener instead of a plurality of fasteners can provide a significant cost savings in the overall cost of the connector, particularly in jurisdictions which require the use of stainless steel for connectors supporting veneer panels in a cavity wall.
The connectors of the present invention are able to support the same loads as the L-shaped connectors of the prior art, but can be manufactured from thinner material, with fewer fasteners. As a result the connectors of the present invention can be less expensive than the L-shaped connectors of the prior art.
While what has been shown and described herein constitutes the preferred embodiments of the subject invention, it will be understood that various modifications and adaptations of such embodiments can be made without departing from the present invention, the scope of which is defined in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/217,688, filed Sep. 2, 2005, (now U.S. Pat. No. 7,654,058) which is a continuation in part of U.S. patent application Ser. No. 10/430,298, filed on May 7, 2003 (now U.S. Pat. No. 6,973,756), both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
750595 | Campbell | Jan 1904 | A |
1324537 | Belcher | Dec 1919 | A |
1818299 | Bowman | Aug 1931 | A |
2860504 | Sinner et al. | Nov 1958 | A |
3319983 | Zibell | May 1967 | A |
3342005 | Rickards et al. | Sep 1967 | A |
3350830 | Smith, Jr. et al. | Nov 1967 | A |
3842554 | Swick | Oct 1974 | A |
3984077 | Shine | Oct 1976 | A |
4076203 | McDonnell | Feb 1978 | A |
4107887 | Wendt | Aug 1978 | A |
4223505 | Krebel et al. | Sep 1980 | A |
4429850 | Weber et al. | Feb 1984 | A |
4523413 | Koppenberg | Jun 1985 | A |
4631888 | Palmans | Dec 1986 | A |
4799643 | Shepard | Jan 1989 | A |
5265396 | Amimoto | Nov 1993 | A |
5283992 | Morassutti | Feb 1994 | A |
5860257 | Gerhaher et al. | Jan 1999 | A |
6055787 | Gerhaher et al. | May 2000 | A |
6098364 | Liu | Aug 2000 | A |
6128883 | Hatzinikolas | Oct 2000 | A |
6164029 | Lee | Dec 2000 | A |
6484465 | Higgins | Nov 2002 | B2 |
6503558 | Williamson | Jan 2003 | B2 |
6574936 | Anderson, Sr. | Jun 2003 | B1 |
6598362 | Hikai | Jul 2003 | B2 |
6729080 | Zambelli et al. | May 2004 | B1 |
6792727 | Krieger | Sep 2004 | B2 |
20030150179 | Moreno | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
0120788 | Oct 1984 | EP |
0479733 | Apr 1992 | EP |
5-33461 | Feb 1993 | JP |
5-65759 | Mar 1993 | JP |
5-65760 | Mar 1993 | JP |
9409222 | Apr 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20100088992 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11217688 | Sep 2005 | US |
Child | 12639247 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10430298 | May 2003 | US |
Child | 11217688 | US |