Connector for use with endoscope

Information

  • Patent Grant
  • 9560954
  • Patent Number
    9,560,954
  • Date Filed
    Tuesday, July 24, 2012
    12 years ago
  • Date Issued
    Tuesday, February 7, 2017
    7 years ago
Abstract
The present specification discloses a disposable tubing joint connector system which connects a tubing set and an endoscope. The connector embodiments disclosed herein include dual o-ring seals, in two separate channels, that enable an efficient and leak proof connection between two ports of an endoscope and corresponding flexible tubing.
Description
FIELD

The present application discloses a connector for use in medical devices. More particularly, the present application discloses disposable tubing joint cover connection apparatuses and methods of attachment between a tubing set and an endoscope.


BACKGROUND

An endoscope is a medical instrument used for examining and treating internal body parts such as the alimentary canals, airways, the gastrointestinal system, and other organ systems. Conventional endoscopes have at least a flexible tube carrying a fiber optic light guide for directing light from an external light source situated at a proximal end of the tube to a distal tip. Also, most endoscopes are provided with one or more channels, through which medical devices, such as forceps, probes, and other tools, may be passed. Further, during an endoscopic procedure, fluids, such as water, saline, drugs, contrast material, dyes, or emulsifiers are often introduced or evacuated via the flexible tube. A plurality of channels, one each for introduction and suctioning of liquids, may be provided within the flexible tube.


Usually, endoscopes also include a connector section for connecting the flexible tube to one or more of an electrical system, a light system, a water or other fluid system, and/or a suction system, which may be collectively termed as the control section of the endoscope. U.S. Pat. No. 4,753,222 discloses a flexible tube applied to an endoscope. U.S. Pat. No. 4,753,222 discloses a construction of a flexible tube, which is applied to an insertion section of an endoscope, adapted to be inserted into the body cavity. The flexible tube comprises a spiral tube formed by transforming a belt-shaped metal member into a spiral, a braid formed of fibers intertwined like a net, and fitted on the outer peripheral surface of the spiral tube, and a sheath covering the outer peripheral surface of the braid, and having a multilayer structure composed of inner and outer layers, at least for part of its length. The inner layer is a tube member which is formed of a high-polymer material, and is fitted on the outer peripheral surface of the braid. The outer layer is formed by applying a molten high-polymer material to the outer peripheral surface of the tube member, for cross-linking.


The flexible tube may be attached to the control section of an endoscope directly via a surface to surface tubing port interface. However, such direct connection may not provide an effective sealing between the air and water carrying channels when an acceptable maximum insertion force is applied during operation of the endoscope.


Alternately, conventional connector designs employ single ‘o-ring’ connectors in tube to endoscope connections for sealing off the water/fluid carrying channels. U.S. Pat. No. 7,841,880 discloses a connector for an endoscope which includes O-ring. U.S. Pat. No. 6,582,361 discloses a watertight cap which is detachably attached to a connector of an endoscope, the watertight cap comprising an external cylinder having an engaging part being detachably engaged with an outer periphery of a shell member provided around a connector pin of the connector and an internal cylinder arranged inside the external cylinder, an end of the internal cylinder being closed, the internal cylinder having a seal member being pressed against an inner periphery of the shell member, wherein a discharge hole opening to outside is formed between the external cylinder and the internal cylinder when the watertight cap is attached on the connector.


An O-ring seal maybe used in endoscope connectors as the seal allows a high local stress, and is capable of containing high pressure. However, it has been observed that it is difficult to maintain the seal integrity during multiple insertions of the endoscope tube into a body cavity. Since pressure in varying degrees is applied to the endoscope during operation, the use of a conventional o-ring design may result in failure of the seal or may require such a tight fit that causes difficulty in inserting the connector onto the air and water ports.


Hence, there is need for a connector that enables efficient and leak proof connection between an endoscope and one or more flexible tubing sets. There is also a need for a connector that can withstand normal endoscope working pressures without the seal integrity being compromised. Further, there is need for a connector that may be used to connect endoscope ports to one or more tubing sets with a minimal application of force.


SUMMARY

In one embodiment, the present application discloses a joint interface for connecting a first port of an endoscope and a second port of an endoscope to a connector, made of a material, having a first conduit and a second conduit, wherein said joint interface comprises a molded component and wherein said molded component comprises: a) a first connector channel adapted to receive said first port, wherein said first connector channel comprises a first end attached to a portion of said connector and wherein said first channel has a second end comprising a first o-ring and a second o-ring; and b) a second connector channel adapted to receive said second port, wherein said second connector channel comprises a first end attached to a portion of said connector and wherein said second channel has a third o-ring and a fourth o-ring.


Optionally, the joint interface comprises material that is more physically compliant than the material of said connector. The connector is rigid. The connector is a Y connector having the first conduit positioned at an angle relative to said second conduit. The second connector channel comprises a first channel portion and a second channel portion, wherein the second channel portion has a smaller diameter than the first channel portion and wherein the second channel portion comprises said third o-ring and said fourth o-ring. The molded component is formed by overmolding said molded component onto the connector. The diameter of the first o-ring is equal to a diameter of the second o-ring. The diameter of the third o-ring is equal to a diameter of the fourth o-ring. The first and the second o-rings are separated by a predefined distance.


Optionally, the first port of the endoscope is securely connected to the first connector channel via the first and the second o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure. The second port of the endoscope is securely connected with the second connector channel via the third and the fourth o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure. The first and the second o-rings are configured to be compressed during connection with the first port of the endoscope. The third and the fourth o-rings are configured to be compressed during connection with the second port of the endoscope.


In another embodiment, the present application discloses a connector for connecting a first port of an endoscope and a second port of an endoscope to a tubing set, comprising: a component, made of a material, comprising a first conduit and a second conduit; and a compliant interface, wherein said compliant interface comprises a) a first connector channel adapted to receive said first port, wherein said first connector channel is in fluid communication with the first conduit and wherein said first channel has at least two o-rings; and b) a second connector channel adapted to receive said second port, wherein said second connector channel is in fluid communication with the second conduit and wherein said second channel has at least two o-rings.


Optionally, the compliant interface comprises material that is less rigid than the material of said component. The component is a Y connector having the first conduit positioned at an angle relative to said second conduit. The second connector channel comprises a first channel portion and a second channel portion, wherein the second channel portion has a smaller diameter than the first channel portion and wherein the second channel portion comprises a third o-ring and a fourth o-ring. The compliant interface is formed by overmolding said compliant interface onto the component. The first connector channel comprises a first o-ring and a second o-ring and wherein a diameter of the first o-ring is equal to a diameter of the second o-ring. The diameter of the third o-ring is equal to a diameter of the fourth o-ring. The first and the second o-rings are separated by a predefined distance.


Optionally, the first port of the endoscope is securely connected to the first connector channel via the first and the second o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure. The second port of the endoscope is securely connected with the second connector channel via the third and the fourth o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure. The first and the second o-rings are configured to be compressed during connection with the first port of the endoscope. The third and the fourth o-rings are configured to be compressed during connection with the second port of the endoscope.


The aforementioned and other embodiments of the present shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be further appreciated, as they become better understood by reference to the detailed description when considered in connection with the accompanying drawings:



FIG. 1A illustrates an internal view of a joint cover connector, in accordance with one embodiment;



FIG. 1B illustrates a front opaque view of the joint cover connector, in accordance with one embodiment;



FIG. 2A illustrates yet another view of the joint cover connector, in accordance with one embodiment;



FIG. 2B illustrates the dual o-rings 220, 222 used in the joint cover connecter system 200, in accordance with one embodiment;



FIG. 2C illustrates the dual o-rings 230, 232 used in the joint cover connecter system 200, in accordance with one embodiment;



FIG. 2D illustrates yet another view of the joint cover connector system 200, in accordance with one embodiment;



FIG. 3 illustrates a top view of the joint cover connector, in accordance with one embodiment; and



FIG. 4 illustrates the joint cover connector coupled with a tubing set to be used with an endoscope, in accordance with one embodiment.





DETAILED DESCRIPTION

The present specification discloses a disposable tubing joint cover enabling connection between a tubing set and an endoscope. The joint cover embodiments disclosed herein comprise dual o-ring seals that enable efficient and leak proof connection between an endoscope comprising, among other features, an irrigation port and corresponding flexible tubing.


The present specification discloses multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.


A control section of an endoscope comprises one or more ports for connecting with one or more tubing sets which are used to carry water or provide suction during an endoscopic procedure. Traditional seal integrity designs typically rely on a surface-to-surface tubing to port interface, which are very difficult to maintain a seal while still achieving acceptable insertion force values, or single o-ring connector designs, which are difficult to maintain seal integrity during multiple insertions and which are compromised during movement of tubing set to endoscope.


As is commonly known in the art, an o-ring is also known as a packing, or a toric joint, and is a mechanical gasket in the shape of a torus. More specifically, it is a loop of a material, typically an elastomer, with a disc-shaped cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, thereby creating a seal at the interface of the two or more parts. An o-ring may be used in static applications or in dynamic applications where there is relative motion between the parts and the o-ring. O-rings can seal large magnitudes of pressure.


The present specification discloses a connector system that includes two connector channels and is shaped in the form of a joint cover that may be fitted around the endoscope ports for receiving one or more tubes. The joint cover connector comprises dual o-ring seals designed to fit snugly around the endoscope ports and provide an air tight seal while withstanding a threshold level of pressure generated during operation of the endoscope. The use of two o-ring seals placed in an aligned position with a predetermined gap separating the seals enables tubing to be connected to the endoscope with reduced force, as compared with prior art connection techniques, while still maintaining a sufficient seal pressure. The incorporation of dual o-rings into each connector channel facilitates the seal between the endoscope irrigation and suction ports, on the one hand, and the tubing set access channels, on the other hand. In various embodiments, the interface between the dual o-rings and both channels prevent seal integrity failures when a side load is placed on the joint cover connector and also allows for ease of connection to the endoscope. A single o-ring design does not protect against this type of failure.


By employing a dual o-ring design, the connector has a reduced amount of force required to connect the tubing set connector to the endoscope while maintaining a homogeneous seal that will withstand normal endoscope functioning pressures. Dual o-ring design acts as a fulcrum/seal, allowing displacement and pliability to the access ports during movement of the tubing set in reference to the endoscope irrigation and suction ports while minimizing the overall side to side displacement. Benefits include a) increased pliability to the seal between the tubing set and endoscope relative to a single o-ring design, b) a more forgiving internal diameter which reduces the force required to connect the tubing set to the endoscope, c) an increase in the surface area contact of the o-rings to endoscope ports, thus increasing the seal integrity, d) seal integrity during offset displacement of endoscope ports which occurs during movement of tubing set to endoscope, and e) minimized fatigue of o-ring integrity during multiple connections of tubing sets to endoscopes during a 24 hour window of product use.


Additionally, as further described below, the connector comprises a flexible portion, which includes the dual o-ring connector portion, with a more rigid portion to which air and fluid tubing are connected. The combined flexible and rigid structure provides for a flexible interface that is easy to connect to endoscope ports, while still maintaining overall structural integrity through the rigid portion.



FIG. 1A illustrates an internal view of a joint cover connector, in accordance with one embodiment of the present invention. As illustrated, the joint cover connector 100 comprises a compliant interface 109 which has been overmolded onto a rigid Y connector 101. The rigid Y connector 101 comprises a first section 104 and a second section 102. The first section 104 is physically adhered to, by virtue of an overmolding process, to a first channel 114 having an o-ring 108 structure leading to an aperture 104b on the distal end. The second section 102 is physically adhered to, by virtue of an overmolding process, to a second channel 115 having an o-ring 106 leading to an aperture 102b on the distal end.


The distal end 104b of the first channel 114 fits around a first port of an endoscope and the distal end 102b of the second channel 115 fits around a second port of the endoscope. In various embodiments, the joint cover connector is compatible with all available endoscope designs that have air and water ports.


The proximal end 104a of the first channel 114 is fixedly attached to the distal end 105 of a first portion 107 of a Y connector 101 and the proximal end 102a of the second channel 115 is fixedly attached to the distal end 103 of a second portion 108 of the Y connector 101. The first portion 107 of the Y connector joint 101, which defines a first conduit, extends downward and connects to the second portion 108 of the Y connector joint 101, which defines a second conduit, at an angled juncture 111. In one embodiment, the Y connector joint 101 may be used to introduce into an endoscope, through the first conduit 107 and channel 114 and/or second conduit 108 and channel 115, water, or any other fluid, via the joint cover connector system 100. In various embodiments, the “Y” connector joint is rigid, is made out of polycarbonate and is injection molded using conventional injection molding processes.


Both channels 114 and 115 comprise dual o-ring seals 108 and 106 respectively. The dual o-ring seals 106, 108 provide a strong sealing action between the endoscope's irrigation and suction ports and tubing set 101 and its access conduits 107, 108, which access the joint cover connector system 100 through the proximal ends 104a, 102a, of the first and second channels, 114, 115. The distal end 102b of the second channel 115 fits around, and snugly attaches to, a first port of an endoscope and the distal end 104b of the first channel 114 fits around, and snugly attaches to, a second port of the endoscope.



FIG. 1B illustrates a front opaque view of the joint cover connector system 100, in accordance with one embodiment. A connecting portion of a standard endoscope is fitted into the joint cover connector 100 through end 120 while a tubing set is fixedly attached to the joint cover connector 100 through the end of Y-connector 110. Referring to FIGS. 1A and 1B, the dual o-ring seals 106 and 108 cause the joint cover connector system 100 to securely attach to the corresponding ports of an endoscope. In both cases, except for the spacing created by, and defined within, channels 114, 115 and conduits 107, 108 through which fluid or air flows are applied, the joint cover connector system is a solid structure with all of the volume between the periphery or surface 130 of the joint cover connector system and the internal channels or conduits being filled by plastic, or more specifically, an elastomer or moldable material. In another embodiment, there may be areas within the joint cover connector system, other than the internal channels or conduits that have voids, spaces, or are otherwise not filled with material.


By employing the dual o-ring seals 106, 108 a measure of force required to connect the tubing set 101 to an endoscope while maintaining a homogeneous seal that would withstand normal endoscope functioning pressures, is reduced by a predefined amount. As stated above, the flexible portion of the joint cover connector 100 combines with a more rigid Y-connector 110 to yield a structure that provides for a flexible interface which is easy to connect to endoscope ports, while still maintaining overall structural integrity through the rigid portion.


In various embodiments, with the use of two o-rings the internal diameters of the channels that mate with the air or water ports may be made larger than when using a single o-ring. Hence, the channel and tubing interfaces are looser with the use of two o-rings. In order to obtain the same seal integrity with a single o-ring the internal diameters of the channels that mate with the air or water ports would have to be smaller (tighter interface) which would require greater force to make the connection between the joint connector and the endoscope air and water ports.



FIG. 2A illustrates yet another view of the joint cover connector system 200 without the Y joint structure comprising the first and second conduits, in accordance with one embodiment. The joint cover connector system 200 comprises a first channel and a second channel that are over-molded onto a rigid base that functions as the distal portion of the rigid Y connector. The rigid base comprises a first base 202. The first base 202 is coupled with a first channel 204. The rigid base further comprises a second base 206. The second base 206 is coupled with a second channel 208 via a third channel 210. The first, second, and third channels 204, 208, 210 are defined by voids or spaces in a molded plastic casing 212 which is solid from the sections to the surface of the casing 212.


As illustrated, the first base 202 comprises an upper end 214 and a lower end 216 which have an equal diameter which is more than a diameter of a middle portion 215 of the base 202. A lower end of the first channel 204 is connected to the upper end 214 of the first base 202. The lower end 216 is fixedly attached to a remaining portion of the rigid Y-connector that extends out from the molded, flexible casing 212.


An upper end 218 of the first channel 204 comprises a pair of o-rings 220, 222. The o-rings 220 and 222 have an equal diameter and thickness. The upper end 218 of the first channel 204 is configured to interface with an endoscope port through which water, or any other fluid, may be introduced. As illustrated, the o-rings 220, 222 are part of the molded channel structures in the joint cover connector near the upper end 218 of the first channel 204. The two o-rings 220, 222 are separated by a predetermined distance and a portion 224 of the first channel 204 lying between the two o-rings 220 and 222.


In an embodiment, the first channel 214 receives an air port of an endoscope while the second channel 208 receives a water port. The second base 206 comprises an upper end 226 and a lower end 228 which have an equal diameter and which are more than a diameter of a middle portion 227 of the base 206. In an embodiment, the upper, middle and lower portions of the second base 206 is thicker than corresponding upper, middle and lower portions of the first base 202. The lower end 228 is fixedly attached to a remaining portion of the rigid Y-connector that extends out from the molded, flexible casing 212.


A lower end of the third channel 210 is connected to the upper end 226 of the second base 206. An upper end of the third channel 210 is connected with a lower end of the second channel 208. An upper end of the second channel 208 receives a port of an endoscope. The third channel 210 comprises a pair of o-rings 230, 232. The o-rings 230 and 232 have an equal diameter and thickness. As illustrated, the o-rings 230, 232 are part of the molded middle portion of the third channel 210. The two o-rings 230, 232 are separated by a predetermined distance and a portion 234 of the third channel 210 lying between the two o-rings 230 and 232.


In the illustrated embodiment, the lower portion 216 of the first base 202 and the lower portion 228 of the second base 206 are connected by a rigid connecting strip 236. Further the first and the second bases 202 and 206 are also connected at a middle location via a rigid curved connecting member 238. The curved connecting member 238 comprises a lower flat end which is connected with an upper end of the connecting strip 236; and an upper curved end. The sides of the curved connecting member 238 are connected with a side each of the first and the second bases 202, 206 as illustrated. In various embodiments, the curved connecting member 238 is a support truss and may be of a plurality of shapes and designs. In an embodiment, the connecting strip 236 and the curved connecting member 238 are physically and permanently attached to the first and the second bases 202, 206 and are made of the same rigid material as the first and the second bases 202, 206.



FIG. 2B illustrates the dual o-rings 220, 222 used in the joint cover connecter system 200, in accordance with an embodiment of the present invention. As illustrated an internal diameter 140 of the o-rings is approximately 2.4 mm while the external diameter 141 is 3.15 mm. The radius 148 of the o-rings is 0.375 mm. The lengths of sections 142, 144 and 146 are 1.1, 10.08 and 3.17 mm respectively. FIG. 2C illustrates the dual o-rings 230, 232 used in the joint cover connecter system, in accordance with an embodiment of the present invention. As illustrated an internal diameter 150 of the o-rings is approximately 2.4 mm while the external diameter 151 is 3.45 mm. The lengths of sections 152, 154 and 156 are 1.1, 2.2 and 3.3 mm respectively. The radius 158 of the o-rings is 0.525 mm. In an embodiment, the internal diameters of the dual o-rings used for both the water and the air ports are the same. Also, in various embodiments the material used for constructing the joint cover connector is poly vinyl chloride (PVC) 70A.



FIG. 2D illustrates yet another view of the joint cover connector system, in accordance with one embodiment of the present invention. As illustrated the lengths of sections 162, 164, 166, 168, 170 are 14.83, 10, 8.5, 5.5, 4.49 respectively and sections 172, 174, 176, 178, and 180 are 1.5, 5.5, 8.5, 11.8 and 18 mm respectively.



FIG. 3 illustrates a view of the joint cover connector system 100, in accordance with one embodiment. FIG. 3 illustrates a view of one end 120 of the joint cover connector system 100. An aperture 302 receives a first port of an endoscope, whereas an aperture 304 receives a second port of an endoscope.


In an embodiment, the aperture 302 is an upper end of a first channel comprising a first pair of o-rings for providing an air-tight seal to the first endoscope port. Also, in an embodiment, the aperture 304 is an upper end of a second channel which has a lower end that in turn is connected with a third channel comprising a second pair of o-rings for providing an air-tight seal to the second endoscope port. Aperture 304 preferably is defined by a ring of elastomeric material 305 that, relative to the connector joint cover surface 120 is indented or otherwise depressed. Similarly, aperture 302 preferably is defined by a ring of elastomeric material 303 that, relative to the connector joint cover surface 120 is indented or otherwise depressed.


The top end of the connector joint cover 120 is shaped in the form of two intersecting circles, or a figure eight placed on its side. One side, which defines aperture 302, has a ring of material, 307 distinct from the material that comprises the end of the joint cover 120 and the depressed internal ring 303. The second side, which defines aperture 304, has a depressed portion 312 that curves up and a surface 315 that surrounds aperture 304.



FIG. 4 illustrates the joint cover connector 400 coupled with a tubing set 402 to be used with an endoscope, in accordance with one embodiment. As illustrated, a joint cover connector system 400 is coupled with tubing set 402 which in turn is attached to other structures using a clip 404. In an embodiment, the tubing set 402 may be connected to a joint cover of a bottle containing sterile water that is delivered to a control section of an endoscope via the joint cover connector 400.


It should be appreciated that the joint cover connector comprises a compliant interface and rigid Y joint section where the compliant interface is a single molded part in which the O-rings are molded as part of the compliant interface. Operationally, the rigid Y joint section is made using a conventional molding process. The compliant interface is then overmolded on the rigid Y joint section with core pins used to mold the o-ring channel shape. The O-rings are molded as part of the molding of the compliant interface, not inserted or created after the compliant interface is created.


Furthermore, it should be appreciated that the joint cover connector of the present invention provides a sturdier seal between a tubing set and an endoscope as compared to prior art connectors having a single o-ring design. The seal is more resilient and can withstand normal endoscope working pressures. The joint cover connector comprises an internal diameter which reduces the force required to connect a tubing set to an endoscope.


The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.

Claims
  • 1. A connector device for connecting a first port of an endoscope and a second port of an endoscope to a plurality of tubing, wherein the connector device comprises: a rigid portion, wherein said rigid portion comprises a tubing connector having a first conduit and a second conduit, wherein, at a first end of the tubing connector, the first conduit and second conduit are in a parallel relationship and wherein, at a second end, the first conduit and second conduit are in a non-parallel relationship and terminate in a base; anda flexible portion, wherein the flexible portion is a molded component and comprises: a first connector channel adapted to receive said first port, wherein said first connector channel comprises a first end attached to a first portion of said base, wherein said first channel has a second end comprising a first seal formed integrally of a first o-ring and a second o-ring, wherein the first and the second o-rings are made of elastomeric material and configured to be compressed during connection with the first port of the endoscope and wherein a material of the first seal extends between the first and second o-rings to separate the first and second o-rings by a predefined distance; anda second connector channel adapted to receive said second port, wherein said second connector channel comprises a first end attached to a second portion of said base, wherein said second channel has a second seal formed integrally of a third o-ring and a fourth o-ring, wherein the third and the fourth o-rings are made of elastomeric material and are configured to be compressed during connection with the second port of the endoscope, and wherein a material of the second seal extends between the third and fourth o-rings to separate the third and fourth o-rings by a predefined distance.
  • 2. The connector device of claim 1 wherein said tubing connector is a Y connector having the first conduit positioned at an acute angle relative to said second conduit.
  • 3. The connector device of claim 1 wherein the second connector channel comprises a first channel portion and a second channel portion, wherein the second channel portion has a smaller diameter than the first channel portion and wherein the second channel portion comprises said third o-ring and said fourth o-ring.
  • 4. The connector device of claim 1, wherein the flexible portion is formed by overmolding said molded component onto the base.
  • 5. The connector device of claim 1, wherein a diameter of the first o-ring is equal to a diameter of the second o-ring.
  • 6. The connector device of claim 1, wherein a diameter of the third o-ring is equal to a diameter of the fourth o-ring.
  • 7. The connector device of claim 1, wherein the first port of the endoscope is securely connected to the first connector channel via the first and the second o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure.
  • 8. The connector device of claim 1, wherein the second port of the endoscope is securely connected with the second connector channel via the third and the fourth o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure.
  • 9. A connector for connecting a first port of an endoscope and a second port of an endoscope to a tubing set, comprising: a rigid component, made of a first material, comprising a Y connector and having a first conduit and a second conduit extending therethrough, wherein, at a first end of the Y connector, the first conduit and the second conduit are in a parallel relationship and wherein, at a second end, the first conduit and second conduit are in a non-parallel relationship and terminate in a base; anda compliant interface positioned on said base and comprising a second material that is more flexible than said first material, wherein said compliant interface comprises: a first connector channel adapted to receive said first port, wherein said first connector channel is in fluid communication with the first conduit, wherein said first channel has a first seal formed integrally of a first and second o-rings wherein the first and the second o-rings are made of elastomeric material and configured to be compressed during connection with the first port of the endoscope and wherein a material of the first seal extends between the first and the second o-rings to separate the first and second o-rings by a predefined distance; anda second connector channel adapted to receive said second port, wherein said second connector channel is in fluid communication with the second conduit, wherein said second channel has a second seal formed integrally of a third and fourth o-rings, wherein the third and the fourth o-rings are made of elastomeric material and configured to be compressed during connection with the second port of the endoscope and wherein a material of the second seal extends between the third and the fourth o-rings to separate the third and fourth o-rings by a predefined distance.
  • 10. The connector of claim 9 wherein the second connector channel comprises a first channel portion and a second channel portion, wherein the second channel portion has a smaller diameter than the first channel portion and wherein the second channel portion comprises the third o-ring and the fourth o-ring.
  • 11. The connector of claim 9, wherein the compliant interface is formed by over-molding said second material onto the rigid component.
  • 12. The connector of claim 9, wherein a diameter of the first o-ring is equal to a diameter of the second o-ring.
  • 13. The connector of claim 10, wherein a diameter of the third o-ring is equal to a diameter of the fourth o-ring.
  • 14. The connector of claim 9, wherein the first port of the endoscope is securely connected to the first connector channel via the first and the second o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure.
  • 15. The connector of claim 13, wherein the second port of the endoscope is securely connected with the second connector channel via the third and the fourth o-rings and wherein said secure connection is leak proof and capable of withstanding a predetermined operational pressure.
US Referenced Citations (758)
Number Name Date Kind
4084401 Belardi Apr 1978 A
4253448 Terada Mar 1981 A
4261345 Yamaguchi Apr 1981 A
4402313 Yabe Sep 1983 A
4414608 Furihata Nov 1983 A
4439030 Ueda Mar 1984 A
4469090 Konomura Sep 1984 A
4494549 Namba Jan 1985 A
4522196 Cunningham Jun 1985 A
4565423 Ueda Jan 1986 A
4576144 Ishii Mar 1986 A
4588294 Siegmund May 1986 A
4590923 Watanabe May 1986 A
4641635 Yabe Feb 1987 A
4699463 D'Amelio Oct 1987 A
4708126 Toda Nov 1987 A
4727859 Lia Mar 1988 A
4736732 Shimonaka Apr 1988 A
4753222 Morishita Jun 1988 A
4764001 Yokota Aug 1988 A
4794913 Shimonaka Jan 1989 A
4801792 Yamasita Jan 1989 A
4841952 Sato Jun 1989 A
4846154 MacAnally Jul 1989 A
4868644 Yabe Sep 1989 A
4877314 Kanamori Oct 1989 A
4878485 Adair Nov 1989 A
4888639 Yabe Dec 1989 A
4902115 Takahashi Feb 1990 A
4905670 Adair Mar 1990 A
4914521 Adair Apr 1990 A
4974075 Nakajima Nov 1990 A
4976522 Igarashi Dec 1990 A
4982724 Saito Jan 1991 A
4984878 Miyano Jan 1991 A
4998182 Krauter Mar 1991 A
5166787 Irion Nov 1992 A
5193525 Silverstein Mar 1993 A
5239983 Katsurada Aug 1993 A
5296971 Mori Mar 1994 A
5299561 Yoshimoto Apr 1994 A
5305121 Moll Apr 1994 A
5309227 Inoue May 1994 A
5313934 Wiita May 1994 A
5339800 Wiita Aug 1994 A
5359456 Kikuchi Oct 1994 A
5380049 Smowton Jan 1995 A
5398056 Yabe Mar 1995 A
5408623 Dolidon Apr 1995 A
5412478 Ishihara May 1995 A
5420644 Watanabe May 1995 A
5432543 Hasegawa Jul 1995 A
5436767 Suzuki Jul 1995 A
5447148 Oneda Sep 1995 A
5452391 Chou Sep 1995 A
5460167 Yabe Oct 1995 A
5483951 Frassica Jan 1996 A
5485316 Mori Jan 1996 A
5489256 Adair Feb 1996 A
5507717 Kura Apr 1996 A
5512940 Takasugi Apr 1996 A
5515449 Tsuruoka May 1996 A
5518501 Oneda May 1996 A
5518502 Kaplan May 1996 A
5547455 McKenna Aug 1996 A
5547457 Tsuyuki Aug 1996 A
5550582 Takasugi Aug 1996 A
5585840 Watanabe Dec 1996 A
5587839 Miyano Dec 1996 A
5589874 Buchin Dec 1996 A
5592216 Uehara Jan 1997 A
5605530 Fischell Feb 1997 A
5609560 Ichikawa Mar 1997 A
5617136 Iso Apr 1997 A
5630782 Adair May 1997 A
5653677 Okada Aug 1997 A
5656011 Uihlein Aug 1997 A
5662588 Iida Sep 1997 A
5675378 Takasugi Oct 1997 A
5679110 Hamazaki Oct 1997 A
5685823 Ito Nov 1997 A
5701155 Wood Dec 1997 A
5702345 Wood Dec 1997 A
5702347 Yabe Dec 1997 A
5707344 Nakazawa Jan 1998 A
5716323 Lee Feb 1998 A
5725474 Yasui Mar 1998 A
5725476 Yasui Mar 1998 A
5725477 Yasui Mar 1998 A
5728045 Komi Mar 1998 A
5751340 Strobl May 1998 A
5764809 Nomami Jun 1998 A
5777797 Miyano Jul 1998 A
5782751 Matsuno Jul 1998 A
5793539 Konno Aug 1998 A
5800341 McKenna Sep 1998 A
5812187 Watanabe Sep 1998 A
5830124 Suzuki Nov 1998 A
5836894 Sarvazyan Nov 1998 A
5852511 Tateyama Dec 1998 A
5860913 Yamaya Jan 1999 A
5870234 EbbesmeierneeSchitthof Feb 1999 A
5871439 Takahashi Feb 1999 A
5871440 Okada Feb 1999 A
5876326 Takamura Mar 1999 A
5879284 Tsujita Mar 1999 A
5894322 Hamano Apr 1999 A
5912764 Togino Jun 1999 A
5913817 Lee Jun 1999 A
5914810 Watts Jun 1999 A
5916148 Tsuyuki Jun 1999 A
5929901 Adair Jul 1999 A
5930424 Heimberger Jul 1999 A
5933275 Igarashi Aug 1999 A
5933282 Tomioka Aug 1999 A
5936773 Togino Aug 1999 A
5940126 Kimura Aug 1999 A
5961445 Chikama Oct 1999 A
5969888 Sukekawa Oct 1999 A
5986693 Adair Nov 1999 A
5989185 Miyazaki Nov 1999 A
5993037 Tomioka Nov 1999 A
5995136 Hattori Nov 1999 A
6009189 Schaack Dec 1999 A
6025873 Nishioka Feb 2000 A
6043839 Adair Mar 2000 A
6069698 Ozawa May 2000 A
6080104 Ozawa Jun 2000 A
6104540 Hayakawa Aug 2000 A
6110127 Suzuki Aug 2000 A
6117068 Gourley Sep 2000 A
6124989 Oode Sep 2000 A
6139175 Tomioka Oct 2000 A
6139490 Breidenthal Oct 2000 A
6147808 Togino Nov 2000 A
6163401 Igarashi Dec 2000 A
6166858 Togino Dec 2000 A
6181481 Yamamoto Jan 2001 B1
6184923 Miyazaki Feb 2001 B1
6185046 Togino Feb 2001 B1
6196967 Lim Mar 2001 B1
6201646 Togino Mar 2001 B1
6201648 Togino Mar 2001 B1
6210322 Byrne Apr 2001 B1
6211904 Adair Apr 2001 B1
6215517 Takahashi Apr 2001 B1
6217500 Helseth Apr 2001 B1
6245086 Storz Jun 2001 B1
6249391 Hayakawa Jun 2001 B1
6260994 Matsumoto Jul 2001 B1
6261226 McKenna Jul 2001 B1
6275255 Adair Aug 2001 B1
6295368 Hasegawa Sep 2001 B1
6306082 Takahashi Oct 2001 B1
6310642 Adair Oct 2001 B1
6310736 Togino Oct 2001 B1
6315712 Rovegno Nov 2001 B1
6322496 Iida Nov 2001 B1
6327094 Aoki Dec 2001 B1
6327101 Miyano Dec 2001 B1
6334845 Higuchi Jan 2002 B1
6353504 Yamamoto Mar 2002 B1
6375610 Verschuur Apr 2002 B2
6387045 Takahashi May 2002 B1
6398723 Kehr Jun 2002 B1
6400514 Minami Jun 2002 B2
6422995 Akiba Jul 2002 B2
6425857 Rudischhauser Jul 2002 B1
6450950 Irion Sep 2002 B2
6461304 Tanaka Oct 2002 B1
6464631 Girke Oct 2002 B1
6464633 Hosoda Oct 2002 B1
6468201 Burdick Oct 2002 B1
6468202 Irion Oct 2002 B1
6471636 Sano Oct 2002 B1
6471637 Green Oct 2002 B1
6473116 Takahashi Oct 2002 B1
6476851 Nakamura Nov 2002 B1
6500115 Krattiger Dec 2002 B2
6514210 Ohara Feb 2003 B2
6520908 Ikeda Feb 2003 B1
6527704 Chang Mar 2003 B1
6530881 Ailinger Mar 2003 B1
6533722 Nakashima Mar 2003 B2
6545703 Takahashi Apr 2003 B1
6551239 Renner Apr 2003 B2
6554767 Tanaka Apr 2003 B2
6567114 Takahashi May 2003 B2
6569084 Mizuno May 2003 B1
6582361 Hirano Jun 2003 B2
6589168 Thompson Jul 2003 B2
6606113 Nakamura Aug 2003 B2
6618205 Murayama Sep 2003 B2
D481125 Hayamizu Oct 2003 S
6638212 Oshima Oct 2003 B1
6638214 Akiba Oct 2003 B2
6641531 Kehr Nov 2003 B2
6656111 Fujii Dec 2003 B2
6671099 Nagata Dec 2003 B2
6677983 Takahashi Jan 2004 B1
6677984 Kobayashi Jan 2004 B2
6677992 Matsumoto Jan 2004 B1
6692430 Adler Feb 2004 B2
6692431 Kazakevich Feb 2004 B2
6699181 Wako Mar 2004 B2
6699185 Gminder Mar 2004 B2
6704052 Togino Mar 2004 B1
6712760 Sano Mar 2004 B2
D490898 Hayamizu Jun 2004 S
6764439 Schaaf Jul 2004 B2
6778208 Takeshige Aug 2004 B2
6788343 Togino Sep 2004 B1
6793621 Butler Sep 2004 B2
6801325 Farr Oct 2004 B2
6809499 Solingen Oct 2004 B2
6809866 Xie Oct 2004 B2
6829003 Takami Dec 2004 B2
6832984 Stelzer Dec 2004 B2
6844985 Murayama Jan 2005 B2
6846311 Gatto Jan 2005 B2
6849043 Kondo Feb 2005 B2
6860516 Ouchi et al. Mar 2005 B2
6876380 Abe Apr 2005 B2
6887194 Hart May 2005 B2
6888119 Iizuka May 2005 B2
6898086 Takami May 2005 B2
6899673 Ogura May 2005 B2
6900829 Ozawa May 2005 B1
6900950 Nagata May 2005 B2
6902529 Onishi Jun 2005 B2
6903761 Abe Jun 2005 B1
6918693 Ota Jul 2005 B2
6921362 Ouchi Jul 2005 B2
6930705 Tanaka Aug 2005 B2
6933962 Yamamoto Aug 2005 B2
6937267 Takahashi Aug 2005 B1
6937269 Sugimoto Aug 2005 B2
6943821 Abe Sep 2005 B2
6943822 Iida Sep 2005 B2
6944031 Takami Sep 2005 B2
6945929 Ando Sep 2005 B2
6947070 Takami Sep 2005 B2
6950691 Uchikubo Sep 2005 B2
6956703 Saito Oct 2005 B2
6967673 Ozawa Nov 2005 B2
6977670 Takahashi Dec 2005 B2
6980227 Iida Dec 2005 B2
6982740 Adair Jan 2006 B2
6985170 Tsuyuki Jan 2006 B1
6992694 Abe Jan 2006 B2
6995786 Abe Feb 2006 B2
6997871 Sonnenschein Feb 2006 B2
7027231 Miyano Apr 2006 B2
7030904 Adair Apr 2006 B2
7037258 Chatenever May 2006 B2
7042488 Higuchi May 2006 B2
7043153 Takeyama May 2006 B2
7046270 Murata May 2006 B2
7050086 Ozawa May 2006 B2
7074181 Futatsugi Jul 2006 B2
7074182 Rovegno Jul 2006 B2
7085064 Uzawa Aug 2006 B2
7097615 Banik Aug 2006 B2
7104951 Hasegawa Sep 2006 B2
7108656 Fujikawa Sep 2006 B2
7108657 Irion Sep 2006 B2
7119830 Saito Oct 2006 B2
7123288 Abe Oct 2006 B2
7128709 Saruya Oct 2006 B2
7129472 Okawa Oct 2006 B1
7133063 Abe Nov 2006 B2
D534656 Pilvisto Jan 2007 S
7156863 Sonnenschein Jan 2007 B2
7158314 Fujii Jan 2007 B2
7179221 Tsujita Feb 2007 B2
7180686 Kato Feb 2007 B2
7218454 Miyano May 2007 B2
7223231 Akiba May 2007 B2
7231135 Esenyan Jun 2007 B2
7232409 Hale Jun 2007 B2
7233820 Gilboa Jun 2007 B2
7242833 Yang Jul 2007 B2
7248281 Abe Jul 2007 B2
7248296 Iketani Jul 2007 B2
7252633 Obata Aug 2007 B2
7255676 Higuchi Aug 2007 B2
7262797 Weldum Aug 2007 B2
7267647 Okada Sep 2007 B2
7273452 Barbato Sep 2007 B2
7277120 Gere Oct 2007 B2
7280140 Henderson Oct 2007 B2
7280283 Kasai Oct 2007 B1
7282025 Abe Oct 2007 B2
7306588 Loeb Dec 2007 B2
7330749 Bhunachet Feb 2008 B1
D564659 Hayashi Mar 2008 S
D564660 Hayashi Mar 2008 S
7351202 Long Apr 2008 B2
7355625 Mochida Apr 2008 B1
7358987 Takeshige Apr 2008 B2
7365768 Ono Apr 2008 B1
7371211 Akiba May 2008 B2
7379252 Murayama May 2008 B2
7384308 Boehnlein Jun 2008 B2
7399304 Gambale Jul 2008 B2
7400341 Abe Jul 2008 B2
7401984 Pattie Jul 2008 B2
7409130 Hatori Aug 2008 B2
7420586 Higuchi Sep 2008 B2
7427263 Hoeg Sep 2008 B2
7431619 Boehnlein Oct 2008 B2
7435217 Wiklof Oct 2008 B2
7435218 Krattiger Oct 2008 B2
7440005 Enomoto Oct 2008 B2
7443488 Ogawa Oct 2008 B2
7450151 Kaneko Nov 2008 B2
7466490 Igarashi Dec 2008 B2
7471310 Amling Dec 2008 B2
7484709 Efinger Feb 2009 B2
7486449 Miyano Feb 2009 B2
7492388 Odlivak Feb 2009 B2
7514667 Matsumoto Apr 2009 B2
7518632 Konomura Apr 2009 B2
7530948 Seibel May 2009 B2
7542069 Tashiro Jun 2009 B2
7553276 Iddan Jun 2009 B2
7559889 Takahashi Jul 2009 B2
7559892 Adler Jul 2009 B2
7561351 Konno Jul 2009 B2
7569012 Tanaka Aug 2009 B2
7573499 Doguchi Aug 2009 B2
7576310 Konno Aug 2009 B2
7581988 Boehnlein Sep 2009 B2
7582055 Komiya Sep 2009 B2
7582056 Noguchi Sep 2009 B2
7584534 Pease Sep 2009 B2
7585274 Homma Sep 2009 B2
7588535 Adler Sep 2009 B2
7593051 Suda Sep 2009 B2
7621868 Breidenthal Nov 2009 B2
7621869 Ratnakar Nov 2009 B2
7623150 Kobayashi Nov 2009 B2
7627189 Donomae Dec 2009 B2
7630148 Yang Dec 2009 B1
7671888 Nogami Mar 2010 B2
7683927 Higuchi Mar 2010 B2
7695429 Hino Apr 2010 B2
7699772 Pauker Apr 2010 B2
7701650 Lin Apr 2010 B2
7725013 Sugimoto May 2010 B2
7728867 Fukuyama Jun 2010 B2
7734160 Sudo Jun 2010 B2
7746566 Mizusawa Jun 2010 B2
7746572 Asami Jun 2010 B2
7749156 Ouchi Jul 2010 B2
7749159 Crowley Jul 2010 B2
7758495 Pease Jul 2010 B2
7758499 Adler Jul 2010 B2
7772786 Hosoda Aug 2010 B2
7773110 Abe Aug 2010 B2
7773122 Irion Aug 2010 B2
7773318 Takato Aug 2010 B2
7775971 Fujimori Aug 2010 B2
7775973 Okada Aug 2010 B2
7789822 Suzuki Sep 2010 B2
7800656 Takeuchi Sep 2010 B2
RE41807 Yokoi Oct 2010 E
7821529 Mochida Oct 2010 B2
7837614 Segawa Nov 2010 B2
7841880 Ikeda Nov 2010 B2
7846090 Pilvisto Dec 2010 B2
7852513 Donomae Dec 2010 B2
7893956 Ayrenschmalz Feb 2011 B2
7896802 Otawara Mar 2011 B2
7901352 Minami Mar 2011 B2
7907168 Eino Mar 2011 B2
7907170 Watanabe Mar 2011 B2
7907352 Miyano Mar 2011 B2
7914443 Uchimura Mar 2011 B2
7918788 Lin Apr 2011 B2
7938773 Kawai May 2011 B2
7940296 Ogino May 2011 B2
7942814 Remijan May 2011 B2
7951068 Kura May 2011 B2
7967745 Gilad Jun 2011 B2
7976462 Wright Jul 2011 B2
7995093 Takeuchi Aug 2011 B2
7998064 Otawara Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8027101 Suda Sep 2011 B2
8033992 Hino Oct 2011 B2
8035684 Wakito Oct 2011 B2
8038600 Uchiyama Oct 2011 B2
8043207 Adams Oct 2011 B2
8060172 Ishihara Nov 2011 B2
8063962 Hagihara Nov 2011 B2
8066631 Wimmer Nov 2011 B2
8072483 Tomioka Dec 2011 B2
8072537 Schwarz Dec 2011 B2
8072693 Togino Dec 2011 B2
8075477 Nakamura Dec 2011 B2
8075478 Campos Dec 2011 B2
8098441 Sasamoto Jan 2012 B2
8100920 Gambale Jan 2012 B2
8102415 Iriyama Jan 2012 B2
8105233 AbouElKheir Jan 2012 B2
8113846 Wallaker Feb 2012 B2
8125514 Sekiguchi Feb 2012 B2
8125515 Hibi Feb 2012 B2
8130454 Noguchi Mar 2012 B2
8135192 Matsuzaki Mar 2012 B2
8135454 Daniels Mar 2012 B2
8139296 Ito Mar 2012 B2
8144191 Kawanishi Mar 2012 B2
8149274 Yamazaki Apr 2012 B2
8152718 Cheng Apr 2012 B2
8152821 Gambale Apr 2012 B2
8157798 Takahashi Apr 2012 B2
8164836 Uzawa Apr 2012 B2
8167791 Tanaka May 2012 B2
8167795 Hoeg May 2012 B2
8167796 Negishi May 2012 B2
8182419 Kohno May 2012 B2
8187171 Irion May 2012 B2
8187174 Wang May 2012 B2
8189041 Konishi May 2012 B2
8189062 Irion May 2012 B2
8194380 Murata Jun 2012 B2
8197400 Boutillette Jun 2012 B2
8200042 Doi Jun 2012 B2
8208015 Unsai Jun 2012 B2
8211009 Tanaka Jul 2012 B2
8212862 Kase Jul 2012 B2
8212863 Tanaka Jul 2012 B2
8221309 Iida Jul 2012 B2
8221311 Campos Jul 2012 B2
8223198 Shibasaki Jul 2012 B2
8228369 Kojima Jul 2012 B2
8229549 Whitman Jul 2012 B2
8235942 Frassica Aug 2012 B2
8248414 Gattani Aug 2012 B2
8262558 Sato Sep 2012 B2
8262565 Okada Sep 2012 B2
8279275 Gono Oct 2012 B2
8295566 Nishimura Oct 2012 B2
8300325 Katahira Oct 2012 B2
8310529 Krupnick Nov 2012 B2
8334900 Qu Dec 2012 B2
8345092 Takasaki Jan 2013 B2
8348835 Fujimori Jan 2013 B2
8360960 Sasaki Jan 2013 B2
8360964 Ertas Jan 2013 B2
8366623 Misono Feb 2013 B2
8382673 Nagano Feb 2013 B2
8394013 Ichimura Mar 2013 B2
8394014 Fuerst Mar 2013 B2
8425405 Mitani Apr 2013 B2
8435173 Hosaka May 2013 B2
8439829 Miyamoto May 2013 B2
8444547 Miyamoto May 2013 B2
8444548 Kumei May 2013 B2
8449456 Ueno May 2013 B2
8449457 Aizenfeld May 2013 B2
8456562 Ishii Jun 2013 B2
8460182 Ouyang Jun 2013 B2
8465421 Finkman Jun 2013 B2
8480670 Sugita Jul 2013 B2
8491467 Miyamoto Jul 2013 B2
8520919 Stepp Aug 2013 B2
8523764 Hatcher Sep 2013 B2
8523766 Kudoh Sep 2013 B2
8764642 Bendele Jul 2014 B2
9144373 Kaye Sep 2015 B2
20020007110 Irion Jan 2002 A1
20020087047 Remijan Jul 2002 A1
20020098732 Shimizu Jul 2002 A1
20020109774 Meron Aug 2002 A1
20020151768 Akiba Oct 2002 A1
20020161281 Jaffe Oct 2002 A1
20020161282 Fulghum Oct 2002 A1
20020183591 Matsuura Dec 2002 A1
20030030918 Murayama Feb 2003 A1
20030032860 Avni Feb 2003 A1
20030036681 Aviv Feb 2003 A1
20030055314 Petitto Mar 2003 A1
20030083552 Remijan May 2003 A1
20030125788 Long Jul 2003 A1
20030130564 Martone Jul 2003 A1
20030139648 Foley Jul 2003 A1
20030158462 Takase Aug 2003 A1
20030181787 Kondo Sep 2003 A1
20030199860 Loeb Oct 2003 A1
20040015049 Zaar Jan 2004 A1
20040019347 Sakurai Jan 2004 A1
20040024290 Root Feb 2004 A1
20040034311 Mihalcik Feb 2004 A1
20040073120 Motz Apr 2004 A1
20040104999 Okada Jun 2004 A1
20040111012 Whitman Jun 2004 A1
20040133076 Kobayashi Jul 2004 A1
20040138532 Glukhovsky Jul 2004 A1
20040143162 Krattiger Jul 2004 A1
20040158129 Okada Aug 2004 A1
20040160682 Miyano Aug 2004 A1
20040176661 Futatsugi Sep 2004 A1
20040190159 Hasegawa Sep 2004 A1
20040210113 Hasegawa Oct 2004 A1
20040220451 Gravenstein Nov 2004 A1
20040242958 Fujikawa Dec 2004 A1
20040242961 Bughici Dec 2004 A1
20040249247 Iddan Dec 2004 A1
20040254423 Wendlandt Dec 2004 A1
20040267093 Miyagi Dec 2004 A1
20050020876 Shioda Jan 2005 A1
20050027164 Barbato Feb 2005 A1
20050038317 Ratnakar Feb 2005 A1
20050038318 Goldwasser Feb 2005 A1
20050043583 Killmann Feb 2005 A1
20050080342 Gilreath Apr 2005 A1
20050090709 Okada Apr 2005 A1
20050096501 Stelzer May 2005 A1
20050154255 Jacobs Jul 2005 A1
20050154262 Banik Jul 2005 A1
20050182295 Soper Aug 2005 A1
20050203338 Couvillon Sep 2005 A1
20050234296 Saadat Oct 2005 A1
20050234347 Yamataka Oct 2005 A1
20050251127 Brosch Nov 2005 A1
20050256376 Bar-Or et al. Nov 2005 A1
20050261553 Swain Nov 2005 A1
20050272975 McWeeney Dec 2005 A1
20050283048 Gill Dec 2005 A1
20050284491 Tashiro Dec 2005 A1
20060047184 Banik Mar 2006 A1
20060052663 Koitabashi Mar 2006 A1
20060063976 Aizenfeld Mar 2006 A1
20060069307 Boulais Mar 2006 A1
20060069314 Farr Mar 2006 A1
20060149129 Watts Jul 2006 A1
20060173244 Boulais Aug 2006 A1
20060183971 Haviv Aug 2006 A1
20060183975 Saadat Aug 2006 A1
20060189845 Maahs Aug 2006 A1
20060211916 Kasahara Sep 2006 A1
20060217594 Ferguson Sep 2006 A1
20060224040 Khait Oct 2006 A1
20060229499 Eisenkolb Oct 2006 A1
20060241347 Whitehead Oct 2006 A1
20060252994 Ratnakar Nov 2006 A1
20060264704 Fujimori Nov 2006 A1
20060293556 Garner Dec 2006 A1
20060293562 Uchimura Dec 2006 A1
20070015964 Eversull Jan 2007 A1
20070015968 Shelnutt Jan 2007 A1
20070019916 Takami Jan 2007 A1
20070020694 Pickford Jan 2007 A1
20070030345 Amling Feb 2007 A1
20070049803 Moriyama Mar 2007 A1
20070055100 Kato Mar 2007 A1
20070073109 Irion Mar 2007 A1
20070078304 Shimizu Apr 2007 A1
20070083081 Schlagenhauf Apr 2007 A1
20070100206 Lin May 2007 A1
20070106119 Hirata May 2007 A1
20070115376 Igarashi May 2007 A1
20070118019 Mitani May 2007 A1
20070123748 Meglan May 2007 A1
20070142711 Bayer Jun 2007 A1
20070162095 Kimmel Jul 2007 A1
20070167673 Enomoto Jul 2007 A1
20070167681 Gill Jul 2007 A1
20070173686 Lin Jul 2007 A1
20070173687 Shima Jul 2007 A1
20070177008 Bayer Aug 2007 A1
20070177009 Bayer Aug 2007 A1
20070185384 Bayer Aug 2007 A1
20070197875 Osaka Aug 2007 A1
20070203396 McCutcheon Aug 2007 A1
20070206945 DeLorme Sep 2007 A1
20070208225 Czaniera Sep 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213591 Aizenfeld Sep 2007 A1
20070225556 Ortiz Sep 2007 A1
20070225565 Ogino Sep 2007 A1
20070229656 Khait Oct 2007 A1
20070244353 Larsen Oct 2007 A1
20070244362 El-Hachem Oct 2007 A1
20070244366 Murata Oct 2007 A1
20070249899 Seifert Oct 2007 A1
20070265498 Ito Nov 2007 A1
20070282165 Hopkins Dec 2007 A1
20070293720 Bayer Dec 2007 A1
20080009672 Krattiger Jan 2008 A1
20080021274 Bayer Jan 2008 A1
20080021281 Fujimori Jan 2008 A1
20080039689 Yoshimitsu Feb 2008 A1
20080039693 Karasawa Feb 2008 A1
20080045797 Yasushi Feb 2008 A1
20080051628 Pecherer Feb 2008 A1
20080051629 Sugiyama Feb 2008 A1
20080051655 Sato Feb 2008 A1
20080058595 Snoke Mar 2008 A1
20080058598 Ries Mar 2008 A1
20080058601 Fujimori Mar 2008 A1
20080064931 Schena Mar 2008 A1
20080065127 Adams Mar 2008 A1
20080071290 Larkin Mar 2008 A1
20080100699 Hibi May 2008 A1
20080130108 Bayer Jun 2008 A1
20080139881 Cover Jun 2008 A1
20080163652 Shatskin Jul 2008 A1
20080167529 Otawara Jul 2008 A1
20080171910 Kanazawa Jul 2008 A1
20080177139 Courtney Jul 2008 A1
20080177140 Cline Jul 2008 A1
20080188715 Fujimoto Aug 2008 A1
20080221388 Seibel et al. Sep 2008 A1
20080225134 Amling Sep 2008 A1
20080255425 Voegele Oct 2008 A1
20080262302 Azarbarzin Oct 2008 A1
20080262312 Carroll Oct 2008 A1
20080312497 Elmouelhi Dec 2008 A1
20090005643 Smith Jan 2009 A1
20090054790 Czaniera Feb 2009 A1
20090062615 Yamaya Mar 2009 A1
20090086017 Miyano Apr 2009 A1
20090093679 Suigetsu Apr 2009 A1
20090118577 Snay May 2009 A9
20090137869 Soutorine May 2009 A1
20090147076 Ertas Jun 2009 A1
20090161234 Sasamoto Jun 2009 A1
20090163769 Robertson Jun 2009 A1
20090209811 Higuchi Aug 2009 A1
20090216084 Yamane Aug 2009 A1
20090231419 Bayer Sep 2009 A1
20090247831 Miyamoto Oct 2009 A1
20090253966 Ichimura Oct 2009 A1
20090259097 Thompson Oct 2009 A1
20090259102 Koninckx Oct 2009 A1
20090268011 Scott Oct 2009 A1
20090284649 Pease Nov 2009 A1
20090287047 Onoda Nov 2009 A1
20090287192 Vivenzio Nov 2009 A1
20090290236 Wang Nov 2009 A1
20090299144 Shigemori Dec 2009 A1
20090306474 Wilson Dec 2009 A1
20090306476 Banik Dec 2009 A1
20090318757 Singh Dec 2009 A1
20100010301 Hale Jan 2010 A1
20100010302 Hadani Jan 2010 A1
20100013914 Bettesh Jan 2010 A1
20100016673 Bandy Jan 2010 A1
20100030020 Sanders Feb 2010 A1
20100042097 Newton Feb 2010 A1
20100047733 Nahlieli Feb 2010 A1
20100053312 Watanabe Mar 2010 A1
20100073470 Takasaki Mar 2010 A1
20100076268 Takasugi Mar 2010 A1
20100081874 Miyamoto Apr 2010 A1
20100081875 Fowler Apr 2010 A1
20100087706 Syed Apr 2010 A1
20100121142 Ouyang May 2010 A1
20100123950 Fujiwara May 2010 A1
20100130822 Katayama May 2010 A1
20100137682 Doguchi Jun 2010 A1
20100137687 Schwartz Jun 2010 A1
20100141746 Ikeda Jun 2010 A1
20100152612 Headley Jun 2010 A1
20100160729 Smith Jun 2010 A1
20100174144 Hsu Jul 2010 A1
20100185056 Gordon Jul 2010 A1
20100187408 Klem Jul 2010 A1
20100201985 Wang Aug 2010 A1
20100204609 Worth Aug 2010 A1
20100217076 Ratnakar Aug 2010 A1
20100217081 Deppmeier Aug 2010 A1
20100228086 Ohki Sep 2010 A1
20100245653 Bodor Sep 2010 A1
20100249496 Cardenas Sep 2010 A1
20100249513 Tydlaska Sep 2010 A1
20100256447 Dubi Oct 2010 A1
20100286475 Robertson Nov 2010 A1
20100296178 Genet Nov 2010 A1
20100298640 Oneda Nov 2010 A1
20100298773 Nitsan Nov 2010 A1
20100305503 Fang Dec 2010 A1
20100317919 Takaoka Dec 2010 A1
20100317921 Marple Dec 2010 A1
20100318061 Derrick Dec 2010 A1
20110028790 Farr Feb 2011 A1
20110054256 Cushner et al. Mar 2011 A1
20110112363 Koga May 2011 A1
20110160530 Ratnakar Jun 2011 A1
20110169931 Pascal Jul 2011 A1
20110184243 Wright Jul 2011 A1
20110196200 Glozman Aug 2011 A1
20110196204 Setty Aug 2011 A1
20110211267 Takato Sep 2011 A1
20110224487 Ogawa Sep 2011 A1
20110245600 Ishii Oct 2011 A1
20110245609 Laser Oct 2011 A1
20110257478 Kleiner Oct 2011 A1
20110263938 Levy Oct 2011 A1
20110282144 Gettman Nov 2011 A1
20110282148 Kase Nov 2011 A1
20110288374 Hadani Nov 2011 A1
20110295061 Haramaty Dec 2011 A1
20110295062 GratacosSolsona Dec 2011 A1
20110295064 Kagawa Dec 2011 A1
20110306832 Bassan Dec 2011 A1
20110313249 Viola Dec 2011 A1
20120010465 Erikawa Jan 2012 A1
20120029291 Wallace Feb 2012 A1
20120040305 Karazivan Feb 2012 A1
20120041534 Clerc Feb 2012 A1
20120046524 Miyamoto Feb 2012 A1
20120053407 Levy Mar 2012 A1
20120057251 Takato Mar 2012 A1
20120065468 Levy Mar 2012 A1
20120071748 Mark Mar 2012 A1
20120078042 Uram Mar 2012 A1
20120088965 Stokes Apr 2012 A1
20120095391 Bendele et al. Apr 2012 A1
20120104230 Eismann May 2012 A1
20120178995 Newton Jul 2012 A1
20120209062 Qiao Aug 2012 A1
20120229615 Kirma Sep 2012 A1
20120232340 Levy Sep 2012 A1
20120232342 Reydel Sep 2012 A1
20120232343 Levy Sep 2012 A1
20120253121 Kitano Oct 2012 A1
20120253284 Nitsan Oct 2012 A1
20120259175 Reydel Oct 2012 A1
20120265094 Goldfarb Oct 2012 A1
20130012778 Bayer Jan 2013 A1
20130012794 Zeng Jan 2013 A1
20130060086 Talbert Mar 2013 A1
20130109916 Levy May 2013 A1
20130109918 Pagan May 2013 A1
20130110003 Surti May 2013 A1
20130131445 Zerfas May 2013 A1
20130131447 Benning May 2013 A1
20130131454 McCormack May 2013 A1
20130137930 Menabde May 2013 A1
20130172670 Levy Jul 2013 A1
20130172673 Kennedy Jul 2013 A1
20130172674 Kennedy Jul 2013 A1
20130172677 Kennedy Jul 2013 A1
20130172678 Kennedy Jul 2013 A1
20130190561 Oskin Jul 2013 A1
20130194404 Christiansen Aug 2013 A1
20130204088 Miyamoto Aug 2013 A1
20130253272 Takahashi Sep 2013 A1
20130267778 Rehe Oct 2013 A1
20130296649 Kirma Nov 2013 A1
20130314521 Satake Nov 2013 A1
20130317295 Morse Nov 2013 A1
20140364691 Krivopisk Dec 2014 A1
Foreign Referenced Citations (155)
Number Date Country
1376443 Oct 2002 CN
2829646 Oct 2006 CN
1988841 Jun 2007 CN
2936129 Aug 2007 CN
101061940 Oct 2007 CN
201108422 Sep 2008 CN
101385633 Mar 2009 CN
101396258 Apr 2009 CN
101926171 Dec 2010 CN
102058375 May 2011 CN
102058380 May 2011 CN
101061940 Jun 2011 CN
201870615 Jun 2011 CN
102469924 May 2012 CN
102005008153 Nov 2005 DE
0029555 Jun 1981 EP
543738 May 1993 EP
730844 Sep 1996 EP
1195630 Apr 2002 EP
1325458 Jul 2003 EP
1347702 Oct 2003 EP
948283 Apr 2004 EP
1535565 Jun 2005 EP
1073365 Jul 2005 EP
1627595 Feb 2006 EP
668738 Jun 2006 EP
1685790 Aug 2006 EP
1472972 Oct 2006 EP
1790280 May 2007 EP
1834572 Sep 2007 EP
1952750 Aug 2008 EP
1977675 Oct 2008 EP
1977682 Oct 2008 EP
1974000653 Oct 2008 EP
1992292 Nov 2008 EP
2022389 Feb 2009 EP
2144571 Jan 2010 EP
2276389 Jan 2011 EP
1835847 May 2011 EP
1870014 Jan 2012 EP
2501271 Sep 2012 EP
2503933 Oct 2012 EP
2512577 Oct 2012 EP
2529660 Dec 2012 EP
2596756 May 2013 EP
2623019 Aug 2013 EP
2321132 Jul 1998 GB
2352922 Feb 2001 GB
55078932 Jun 1980 JP
61055657 Nov 1986 JP
6359332 Nov 1988 JP
H02188709 Jul 1990 JP
5049000594 Mar 1993 JP
H05309069 Nov 1993 JP
6105000800 Apr 1994 JP
7000000352 Jan 1995 JP
8122000657 May 1996 JP
1013007179 Apr 1998 JP
1015001113 Jun 1998 JP
11125773 May 1999 JP
11137512 May 1999 JP
H11125773 May 1999 JP
1116009340 Jun 1999 JP
1116009341 Jun 1999 JP
H11253401 Sep 1999 JP
2000171727 Jun 2000 JP
2000330015 Nov 2000 JP
2001061762 Mar 2001 JP
2001198086 Jul 2001 JP
2002000559 Jan 2002 JP
2002017667 Jan 2002 JP
2002058636 Feb 2002 JP
200265589 Mar 2002 JP
2002065575 Mar 2002 JP
2002078675 Mar 2002 JP
2002216902 Aug 2002 JP
2002291693 Oct 2002 JP
2003038431 Feb 2003 JP
2003061900 Mar 2003 JP
2003111724 Apr 2003 JP
2003190082 Jul 2003 JP
2003220017 Aug 2003 JP
2003245247 Sep 2003 JP
2004022391 Jan 2004 JP
2004049754 Feb 2004 JP
2004049756 Feb 2004 JP
2004129834 Apr 2004 JP
2004205779 Jul 2004 JP
2005013557 Jan 2005 JP
2005058547 Mar 2005 JP
2005253543 Sep 2005 JP
2005323874 Nov 2005 JP
3765500 Feb 2006 JP
2006068109 Mar 2006 JP
2006068109 Mar 2006 JP
2006218155 Aug 2006 JP
2006280954 Oct 2006 JP
2006288758 Oct 2006 JP
2007020866 Feb 2007 JP
2007185276 Jul 2007 JP
2008068025 Mar 2008 JP
2008118568 May 2008 JP
2008161569 Jul 2008 JP
2008229204 Oct 2008 JP
2008257108 Oct 2008 JP
2009233186 Oct 2009 JP
4445647 Apr 2010 JP
2010178766 Aug 2010 JP
2010279539 Dec 2010 JP
9219148 Nov 1992 WO
0052643 Sep 2000 WO
0245595 Jun 2002 WO
2004026125 Apr 2004 WO
2005082228 Sep 2005 WO
2006073581 Jul 2006 WO
2006105932 Oct 2006 WO
2007113801 Oct 2007 WO
2007087421 Nov 2007 WO
2007136859 Nov 2007 WO
2008012813 Jan 2008 WO
2008073243 Jun 2008 WO
2008093288 Aug 2008 WO
2008139770 Nov 2008 WO
2008155776 Dec 2008 WO
2008156623 Dec 2008 WO
2009009414 Jan 2009 WO
2009025843 Feb 2009 WO
2009040744 Apr 2009 WO
2009095915 Aug 2009 WO
2010021342 Feb 2010 WO
2010028612 Mar 2010 WO
2010045406 Apr 2010 WO
2010064506 Jun 2010 WO
2010066788 Jun 2010 WO
2010146587 Dec 2010 WO
2010146587 Dec 2010 WO
2011008922 Jan 2011 WO
2011041724 Apr 2011 WO
2011083451 Jul 2011 WO
2011126812 Oct 2011 WO
2012038958 Mar 2012 WO
2012056453 May 2012 WO
2012077116 Jun 2012 WO
2012077117 Jun 2012 WO
2012088201 Jun 2012 WO
2012103266 Aug 2012 WO
2012120507 Sep 2012 WO
2012153324 Nov 2012 WO
2013014673 Jan 2013 WO
2013024476 Feb 2013 WO
2013043704 Mar 2013 WO
2013128136 Sep 2013 WO
2013131578 Sep 2013 WO
2013144944 Oct 2013 WO
2014061023 Apr 2014 WO
Non-Patent Literature Citations (62)
Entry
First Image of an Endo Smart Cap, made by Medivators, and obtained from http://www.byrnemedical.com/prod/145L.jpg and advertised at http://www.medivators.com/products/endoscopy-procedure-products/irrigation-tubing/endo-smartcap%C2%AE.
Second mage of an Endo Smart Cap, made by Medivators, and obtained from http://www.byrnemedical.com/prod/150L.jpg and advertised at http://www.medivators.com/products/endoscopy-procedure-products/irrigation-tubing/endo-smartcap%C2%AE.
Brochure for US Endoscopy's AquaShield Water Bottle System, 2010.
Office Action dated Mar. 23, 2016 for U.S. Appl. No. 13/713,449.
Office Action dated Mar. 24, 2016 for U.S. Appl. No. 13/212,627.
Office Action dated Mar. 28, 2016 for U.S. Appl. No. 13/119,032.
International Search Report for PCT/EP2009/066726, Aug. 16, 2010.
International Search Report for PCT/IL2011/000832, May 16, 2012.
International Search Report for PCT/IL2011/050049, May 15, 2012.
International Search Report for PCT/IL2011/050050, May 16, 2012.
International Search Report for PCT/IL2012/050037, Jun. 1, 2012.
International Search Report for PCT/IL2012/050274, Nov. 15, 2012.
International Search Report for PCT/IL2012/050299, Nov. 15, 2012.
International Search Report for PCT/IL2013/050840, Feb. 2, 2014.
International Search Report of PCT/IL10/00476 mailed Sep. 27, 2010, 2 pages.
International Search Report of PCT/IL2011/000745, dated May 8, 2012.
Office Action dated May 1, 2015 for U.S. Appl. No. 13/992,021.
First Office Action for CN 2012800171292, dated Feb. 28, 2015.
Office Action dated Mar. 12, 2015 for U.S. Appl. No. 13/822,908.
Office Action dated Feb. 13, 2015 for U.S. Appl. No. 13/713,449.
Office Action dated Feb. 17, 2015 for U.S. Appl. No. 13/882,004.
Office Action dated Mar. 6, 2015 for U.S. Appl. No. 13/413,059.
Office Action dated Nov. 26, 2014 for U.S. Appl. No. 13/713,466.
Office Action dated Jun. 3, 2015 for U.S. Appl. No. 13/992,014.
Office Action dated Jan. 15, 2015 for U.S. Appl. No. 13/190,968.
Notice of Allowance dated Jun. 8, 2015 for U.S. Appl. No. 13/984,028.
Notice of Allowance dated Jun. 8, 2015 for U.S. Appl. No. 13/413,252.
Prosecution File History for U.S. Appl. No. 13/190,968; Jul. 26, 2011 through Jun. 17, 2015.
Notice of Allowance dated Jun. 17, 2015 for U.S. Appl. No. 13/190,968.
Office Action dated Jul. 21, 2015 for U.S. Appl. No. 13/992,021.
Notice of Allowance dated Dec. 23, 2015 for U.S. Appl. No. 13/992,021.
Office Action for Japanese Patent Application No. JP2014-525562, dated Apr. 26, 2016.
Office Action for Japanese Patent Application No. JP2014-522214, dated Apr. 26, 2016.
Office Action dated Aug. 27, 2015 for U.S. Appl. No. 13/655,120.
Supplementary European Search Report for EP118471911, Jan. 16, 2015.
Examination Search Report for Canadian Patent Application No. CA2765559, Jan. 18, 2016.
Office Action for Chinese Patent Application No. 201280038808.8, May 20, 2015.
Second Office Action for Chinese Patent Applicatio No. CN201280038808.8, Feb. 25, 2016.
Office Action dated Aug. 6, 2015 for U.S. Appl. No. 13/119,032.
First Office Action for CN 2012800368972, Jun. 1, 2015.
Examination Report for Canadian Patent Application No. CA2765559, Jan. 18, 2016.
Corrected European Search Opinion for EP14186113.8, Apr. 29, 2015.
Extended European Search Report for EP12817452.1, Mar. 9, 2015.
Office Action dated Aug. 19, 2015 for U.S. Appl. No. 13/713,466.
Office Action dated Aug. 5, 2015 for U.S. Appl. No. 13/212,627.
Office Action for Chinese Patent Application No. 201180067259.2, May 29, 2015.
Office Action dated Aug. 18, 2015 for U.S. Appl. No. 13/713,449.
First office action for CN2011800627366, Feb. 25, 2015.
Supplementary European Search Report for European Application No. EP12823972, May 13, 2015.
Extended European Search Report for EP14186113.8, Apr. 1, 2015.
Notice of Allowance dated Dec. 15, 2014 for U.S. Appl. No. 13/713,466.
Notice of Allowance dated Dec. 15, 2015 for U.S. Appl. No. 13/713,466.
Office Action dated Jan. 12, 2016 for U.S. Appl. No. 13/713,466.
Office Action for Japanese Patent Application No. 2013-542668, Oct. 1, 2015.
Office Action for Japanese Patent Application No. 2013-535586, Sep. 24, 2015.
Second office action for Chinese Patent Application No. 201180062736.6, Oct. 12, 2015.
Office Action dated Dec. 4, 2015 for U.S. Appl. No. 13/822,908.
Office Action dated Nov. 24, 2015 for U.S. Appl. No. 13/413,059.
Office Action dated Nov. 3, 2015 for U.S. Appl. No. 13/992,014.
Office Action dated Oct. 7, 2015 for U.S. Appl. No. 13/882,004.
Extended European Search Report for EP11846069.0, Apr. 24, 2014.
First Office Action for Chinese Patent Applicatio No. CN201380053351.2, Mar. 2, 2016.
Related Publications (1)
Number Date Country
20140031627 A1 Jan 2014 US