Connector having a constant contact nut

Information

  • Patent Grant
  • 8323053
  • Patent Number
    8,323,053
  • Date Filed
    Monday, October 18, 2010
    14 years ago
  • Date Issued
    Tuesday, December 4, 2012
    12 years ago
Abstract
A connector comprising a connector body attached to a post, the post including a first end portion and an opposing second end portion, and a flange proximate the second end portion, a port coupling element rotatably attached to the post, wherein the port coupling element has a first end and a second end, and a plurality of openings on the port coupling element, the plurality of openings extending a distance toward the first end from the second end of the port coupling element. Furthermore, a method of maintaining ground continuity in a connector comprising the steps providing a connector body attached to a post, the post having a first end, an opposing second end, and port coupling element having a plurality of openings positioned thereon, and biasing the port coupling element in a position of interference with the post is also provided.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 12/906,503, filed on Oct. 18, 2010, now U.S. Pat. No. 8,075,338 entitled “Connector Having a Constant Contact Post,” the contents of which are incorporated in its entirety.


FIELD OF THE INVENTION

The present invention relates to connectors used in coaxial cable communication applications, and more specifically to embodiments of a coaxial cable connector having a constant contact nut that extends electrical continuity through the connector.


BACKGROUND OF THE INVENTION

Broadband communications have become an increasingly prevalent form of electromagnetic information exchange and coaxial cables are common conduits for transmission of broadband communications. Coaxial cables are typically designed so that an electromagnetic field carrying communications signals exists only in the space between inner and outer coaxial conductors of the cables. This allows coaxial cable runs to be installed next to metal objects without the power losses that occur in other transmission lines, and provides protection of the communications signals from external electromagnetic interference. Connectors for coaxial cables are typically connected onto complementary interface ports to electrically integrate coaxial cables to various electronic devices and cable communication equipment. Connection is often made through rotating an internally threaded nut of the connector about a corresponding externally threaded interface port. Fully tightening the threaded connection of the coaxial cable connector to the interface port helps to ensure a ground connection between the connector and the corresponding interface port. However, connectors are often times not properly tightened or otherwise installed. Moreover, the structure of common connectors may permit loss of ground and discontinuity of the electromagnetic shielding that is intended to be extended from the cable, through the connector, and to the corresponding coaxial cable interface port.


Hence, a need exists for an improved connector having a constant contact nut for ensuring ground continuity through the connector, and establishing and maintaining electrical and physical communication between the post and a port coupling element, such as a nut.


SUMMARY OF THE INVENTION

A first general aspect of the invention provides a connector comprising a connector body attached to a post, the post including a first end portion and an opposing second end portion, and a flange proximate the second end portion, a port coupling element attached to the post, the port coupling element being rotatable about the post, wherein the port coupling element has a first end and a second end, and a plurality of openings on the port coupling element, the plurality of openings extending a distance toward the first end from the second end of the port coupling element.


A second general aspect of the invention provides a coaxial cable connector comprising a connector body attached to a post, the post having a first end portion, an opposing second end portion, and a flange proximate the second end portion, the flange having an outer edge, a port coupling element rotatable about the post, wherein the port coupling element includes a first end and a second end, and a plurality of engagement fingers proximate the second end, wherein the plurality of engagement fingers are biased into a position of interference with the post.


A third general aspect of the invention provides a connector comprising a slotted port coupling element attached to a post, the slotted port coupling element having a first end, an opposing second end, wherein the slotted port coupling element is resilient in the radial direction, and a connector body attached to the post, the post having a first end portion, an opposing second end portion, wherein a positioning of the post radially expands the slotted port coupling element, further wherein the slotted port coupling element exerts an opposing radial contact force against an outer surface of the post, wherein the opposing radial contact force establishes and maintains physical and electrical contact between the slotted port coupling element and the post regardless of the axial position of the post and the slotted port coupling element.


A fourth general aspect of the invention provides a method of maintaining ground continuity in a connector providing a connector body attached to a post, the post having a first end, an opposing second end, and port coupling element having a plurality of openings positioned thereon, and biasing the port coupling element in a position of interference with the post.


A fifth general aspect of the invention provides a method of maintaining electrical continuity with a port comprising providing a connector body attached to a post, the post having a first end portion and an opposing second end portion, a port coupling element rotatable about the post, wherein the port coupling element has a first end and a second end, and a plurality of engagement fingers proximate the second end, the plurality of engagement fingers being resilient in a radial direction, and expanding the plurality of engagement fingers in a radially outward direction, wherein the expansion of the plurality of engagement fingers by a positioning of the post results in the plurality of engagement fingers exerting a radially inward force against the port coupling element, wherein the radially inward force against the port coupling element establishes and maintains physical and electrical continuity between the post and the port coupling element regardless of the relative axial position between the post and the port coupling element.


The foregoing and other features of construction and operation of the invention will be more readily understood and fully appreciated from the following detailed disclosure, taken in conjunction with accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Some of the embodiments of this invention will be described in detail, with reference to the following figures, wherein like designations denote like members, wherein:



FIG. 1 depicts an exploded perspective cut-away view of an embodiment of the elements of an embodiment of a coaxial cable connector, in accordance with the present invention;



FIG. 2 depicts a perspective cut-away view of an embodiment of a connector, in accordance with the present invention;



FIG. 3 depicts a perspective view of an embodiment of a port coupling element, in accordance with the present invention; and



FIG. 4 depicts a perspective view of a connector having a constant contact nut, in accordance with the present invention.





DETAILED DESCRIPTION OF THE DRAWINGS

Although certain embodiments of the present invention are shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present invention will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of embodiments of the present invention.


As a preface to the detailed description, it should be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.


Referring to the drawings, FIG. 1 depicts one embodiment of a coaxial cable connector. The coaxial cable connector 100 may accept a prepared coaxial cable 10, and may be operably affixed to a coaxial cable 10 so that the cable 10 is securely attached to the connector 100. The coaxial cable 10 may include a protective outer jacket 12, a conductive grounding shield 14, a dielectric foil layer 15, an interior dielectric 16 and a center conductor 18. The coaxial cable 10 may be prepared as embodied in FIG. 1 by removing the protective outer jacket 12 and drawing back the conductive grounding shield 14 to expose a portion of the dielectric foil layer 15 surrounding the interior dielectric 16. Further preparation of the embodied coaxial cable 10 may include stripping the dielectric foil layer 15 and the dielectric 16 to expose a portion of the center conductor 18. The protective outer jacket 12 is intended to protect the various components of the coaxial cable 10 from damage which may result from exposure to dirt or moisture and from corrosion. Moreover, the protective outer jacket 12 may serve in some measure to secure the various components of the coaxial cable 10 in a contained cable design that protects the cable 10 from damage related to movement during cable installation. The conductive grounding shield 14 can be comprised of conductive materials suitable for providing an electrical ground connection.


Various embodiments of the shield 14 may be employed to screen unwanted noise. For instance, the shield 14 may comprise a metal foil wrapped around the dielectric 16, or several conductive strands formed in a continuous braid around the dielectric 16. Combinations of foil and/or braided strands may be utilized wherein the conductive shield 14 may comprise a foil layer, then a braided layer, and then a foil layer. Those in the art will appreciate that various layer combinations may be implemented in order for the conductive grounding shield 14 to effectuate an electromagnetic buffer helping to prevent ingress of environmental noise that may disrupt broadband communications. The dielectric 16 can be comprised of materials suitable for electrical insulation. It should be noted that the various materials of which all the various components of the coaxial cable 10 are comprised should have some degree of elasticity allowing the cable 10 to flex or bend in accordance with traditional broadband communications standards, installation methods and/or equipment. It should further be recognized that the radial thickness of the coaxial cable 10, protective outer jacket 12, conductive grounding shield 14, dielectric foil layer 15, interior dielectric 16 and/or center conductor 18 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment.


Referring further to FIG. 1, the connector 100 is configured to attach to a coaxial cable interface port, such as, for example, interface port 20. The coaxial cable interface port 20 includes a conductive receptacle for receiving a portion of a coaxial cable center conductor 18 sufficient to make adequate electrical contact. The coaxial cable interface port 20 may further comprise a threaded exterior surface 23. It should be recognized that the radial thickness and/or the length of the coaxial cable interface port 20 and/or the conductive receptacle of the port 20 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. Moreover, the pitch and height of threads which may be formed upon the threaded exterior surface 23 of the coaxial cable interface port 20 may also vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. Furthermore, it should be noted that the interface port 20 may be formed of a single conductive material, multiple conductive materials, or may be configured with both conductive and non-conductive materials corresponding to the port's 20 operable electrical interface with a connector 100. However, the receptacle of the interface port 20 should be formed of a conductive material. Further still, it will be understood by those of ordinary skill that the interface port 20 may be embodied by a connective interface component of a coaxial cable communications device, a television, a modem, a computer port, a network receiver, or other communications modifying devices such as a signal splitter, a cable line extender, a cable network module and/or the like.


With continued reference to FIG. 1, an embodiment of a coaxial cable connector 100 may comprise a port coupling element 30, a post 40 having a flange 44, a connector body 50, and a fastener member 60. In another embodiment, connector 100 may comprise a connector body attached to a post, the post including a first end portion and an opposing second end portion, and a flange proximate the second end portion, a port coupling element attached to the post, the port coupling element being rotatable about the post, wherein the port coupling element has a first end and a second end, and a plurality of openings on the port coupling element, the plurality of openings extending a distance toward the first end from the second end of the port coupling element. In another exemplary embodiment, the connector 100 may comprise a connector body attached to a post, the post having a first end portion, an opposing second end portion, and a flange proximate the second end portion, the flange having an outer edge, a port coupling element rotatable about the post, wherein the port coupling element includes a first end and a second end, and a plurality of engagement fingers proximate the second end, wherein the plurality of engagement fingers are biased into a position of interference with the outer edge of the flange. In yet another embodiment, connector 100 may comprise a port coupling element attached to a post, the port coupling element having a first end, an opposing second end, and a plurality of slots axially extending through the port coupling element, wherein the port coupling element is resilient in the radial direction, and a connector body attached to the post, the post having a first end portion, an opposing second end portion, wherein a positioning of the post radially expands the port coupling element, further wherein the port coupling element exerts an opposing radial contact force against an outer edge of the post, wherein the opposing radial contact force establishes and maintains physical and electrical contact between the port coupling element and the post regardless of the axial position of the post and the port coupling element.


Furthermore, the port coupling element 30, or nut 30, or threaded nut, of embodiments of a coaxial cable connector 100 has a first end 31 and opposing second end 32. The nut 30 may be rotatably secured to the post 40 to allow for rotational movement about the post 40. For example, the nut 30 may freely rotate, or spin, about the stationary post 40. The nut 30 may comprise an internal lip 34 located proximate, or otherwise near to the second end 32 and configured to hinder axial movement of the post 40. The nut 30 may also comprise internal threading 33 extending axially from the edge of first end 31 a distance sufficient to provide operably effective threadable contact with the external threads 23 of a standard coaxial cable interface port 20. The structural configuration of the nut 30 may vary according to accommodate different functionality of a coaxial cable connector 100. For instance, the first end 31 of the nut 30 may include internal and/or external structures such as ridges grooves, curves, detents, slots, openings, chamfers, or other structural features, etc., which may facilitate the operable joining of an environmental sealing member, such as an water-tight seal, that may help prevent ingress of environmental contaminants at the first end 31 of a nut 30, when mated with an interface port 20. Moreover, the second end 32, of the nut 30 may extend a significant axial distance to reside radially extent of the connector body 50, although the extended portion of the nut 30 need not contact the connector body 50. The nut 30, or port coupling element, includes a generally axial opening, as shown in FIG. 1, and has an inner surface 35 which may include inner surfaces with internal threading 33 positioned thereon. The inner surface 35 of nut 30 may also be an inner wall, inside surface, internal surface/wall, and the like, surrounding the generally axially opening through the nut 30. In one embodiment of the inner surface 35, the inside diameter of the nut 30 at any point along the surface may be considered the inner surface 35 of the nut. In other embodiments of connector 100, the post 40 contacts the inner surface 35 of the nut 30 proximate the internal lip 34.


The nut 30 may be formed of conductive materials facilitating grounding through the nut 30. Accordingly the nut 30 may be configured to extend an electromagnetic buffer by electrically contacting conductive surfaces of an interface port 20 when a connector 100 is advanced onto the port 20. In addition, the nut 30 may be formed of both conductive and non-conductive materials. For example the external surface of the nut 30 may be formed of a polymer, while the remainder of the nut 30 may be comprised of a metal or other conductive material. Manufacture of the nut 30 may include casting, extruding, cutting, knurling, turning, tapping, drilling, injection molding, blow molding, or other fabrication methods that may provide efficient production of the component. Those in the art should appreciate the various embodiments of the nut 30 may also comprise a coupler member having no threads, but being dimensioned for operable connection to a corresponding to an interface port, such as interface port 20.


With continued reference to FIG. 1, nut 30 includes a plurality of slots 130 positioned somewhere on or around the nut 30 proximate or otherwise near the second end 32. A plurality of slots 130 may be a plurality of openings, spaces, voids, apertures, holes, cuts, channels, grooves, and the like, positioned on the nut 30 proximate or otherwise near the second end 32. For instance, the slots 130 can be axially aligned with the nut 30, and, generally, with the connector 100. Moreover, the slots 130 can axially extend through the nut 30 a distance suitable to form a biasing relationship with the underlying post 40 from the second end 32 towards the first end 31. In one embodiment, the slots 130 extend from the second end 32 to proximate or otherwise near two-thirds of the length of the nut 30. In many embodiments, the distance the slots 130 axially extend through the nut 30 may vary, depending on the amount of deflection sought when expanded and/or the amount of any reactive radially inward force needed to establish and maintain physical and electrical continuity with the post 40. A nut 30 having slots 130 axially extending too far along the nut 30 toward the first end 31 may risk a partial or significant loss in the structural integrity of the nut 30, and may not achieve the suitable amount of radial force and resiliency to bias it into a position of interference with the post 40. Those skilled in the art should appreciate that the slots 130 can be used to make the nut 30 resilient in the radial direction; therefore, slots 130 may vary in size, shape, appearance, and the like. The nut 30 may be made resilient without introducing voids between portions of the nut 30. For example, instead of voids, such as slots 130, nut 30 may have portions separated by webbing, spacers, meshing, flexible material, netting, and the like.


Moreover, the nut 30 may be made up of more than one component. For instance, the nut 30 may have a cylindrical metal threaded portion capable of mating with an interface port 20, and a polymer-based portion molded to the metal threaded portion of the nut 30, wherein the polymer-based portion may form the rest of the nut 30. The polymer-based portion may contain a plurality of slots 130 proximate the second end 32 of the nut to allow for expansion and contraction. To avoid exposure presentation of slots, a cover or sleeve may be placed over the nut 30. The sleeve may conform to the external surface of the nut, or the sleeve may be a rigid cover having its own shape and/or structure. The plurality of slots 130 can still expand and contract while the sleeve is placed over the nut 30, for example, a slight tolerance may exist between the sleeve placed over the nut 30 and the external surface of the nut 30.


Furthermore, the width of the slots 130 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. A decrease in the width of the slots 130 can lead to increase in surface area of the inner surface 35 of the nut 30, and vice versa. The inner surface 35 of the nut 30 can make physical contact with the post 40, such as outer edge 45 of flange 44, the outer surface of the post 40, the angled/tapered surface of the post; therefore, the width of the slots 130 should be balanced with the amount of desired surface area of the inner surface 35 of the nut 30. One having ordinary skill in the art should also consider the structural properties of the materials used to manufacture the nut 30, and other connector 100 components, such as the modulus of elasticity of the material, ductility, yield strength, and the like, to determine the dimensions (i.e. length, width, depth) and the number of slots 130 positioned on the nut 30. Ostensibly, the slots 130 have a depth equal to the thickness of the nut 30 (i.e. from the inner surface of the nut 30 to outer surface of the nut 30). In other words, the slots 130 can be spaces where portions of the nut 30 have been removed, extruded, cut, extracted, etc. Moreover, the number of slots 130 and the axial length of the slots 130 should be optimized to provide the best balance of reliable interference, or contact, with the post 40. Other factors to consider may be achieving reduced drag, and keeping down any costs associated with the manufacture, production, and operation of the connector 100.


In an alternative embodiment, the nut 30 may include two slots 130, positioned relatively near each other, creating a single flexible finger. The reduction of slots 130 to include only two, generally narrow slots would increase the overall strength of the component. However, the single flexible finger created by the two slots 130 may still be resilient such that it radially expands outward due to interference with a post 40, constantly exerting a radially inward force against the post 40. Those skilled in the art should appreciate that the same effect may be achieved with more than two slots 130, keeping to an overall low number of total slots 130.


Referring still to FIG. 1, slotting the nut 30 makes it resilient in the radial direction. For example, the nut 30, or a portion of the nut 30, may flex, deflect, move, bend, etc., in a radially outward direction and a radially inward direction. The slots 130 allow the nut 30 to radially expand (i.e. radially outward direction) from an initial position when subjected to an external force, such as an outer surface of the post 40, including the outer edge 45 of the post 40 (while operably configured). One example of an initial position of the nut 30 may be a slightly compressed position, wherein the attachment of the nut 30 to the post 40 may require or result in a slight expansion of the nut 30. Because the nut 30 having a plurality of slots 130 is resilient, flexible, capable of deflection, etc. in the radial directions (e.g. radially inward and outward), the nut 30 may be biased into a position of interference with the post 40. For instance, the operable attachment of the nut 30 to the post 40 may slightly expand the nut 30 from a compressed or squeezed, initial position, or rest position, in a radially outward direction via the contact being made between an outer surface of the post 40 and the inner surface 35 of the nut 30. Accordingly, the resilient nut 30 may flex back, or “spring” back, exerting a constant inward radial force (i.e. a biasing force, reactive force, etc.) against an outer surface of the post, including the edge 45 of the post 40 to return to its initial position of rest, prior to the slight expansion. The constant outward radial force exerted by the nut 30 against the outer surface of the post (e.g. base of post 40, tapered surface of post 40, outer edge 45, etc.) establishes and maintains electrical continuity between the post 40 and nut 30, regardless of their axial position. The deflection, or movement, of the nut 30 in a radially outward direction based on any expansion from the post 40 need not be significant or readily apparent; a slight deflection of the nut 30 in a radially outward direction is sufficient to prompt a constant radially inward force due to the biasing relationship between the nut 30 and the post 40.


In one embodiment of connector 100, the outer diameter of the flange 44 may be slightly larger than the inner diameter of the nut 30 proximate or otherwise near the second end 32, which may require, or result in, a slight expansion of the nut 30 when the nut 30 is attached to the post 40. While operably configured, the constant biasing force of the inner surface 35 of the nut 30 against the outer surfaces of the flange 44 and post 40 (e.g. outer edge 45, tapered surface of the flange 44, outer surface of post 40, etc.) can establish and maintain physical and electrical contact between the post 40 and the nut 30, as depicted in FIGS. 2-3. The constant biasing force against the flange 44 of the post 40 helps establish and maintain physical and electrical continuity between the post 40 and the nut 30 in installation situations where it may be undesirable to fully tighten the connector 100 to a port, similar to interface port 20, for example, a consumer device where there may be a concern of the port 20 fracturing or breaking. Additionally, the constant biasing force of the slotted nut 30 helps establish and maintain physical and electrical continuity in situations where a connector 100 is unintentionally not fully tightened to a port 20. Those skilled in the art should appreciate that physical and electrical continuity between the post 40 and the nut 30 is desirable in situations involving connector 100 other than those described herein.


With reference to FIG. 4, and continued reference to FIG. 1, another embodiment of connector 100 includes a nut 30 having a first end 31, a second end 32, and a plurality of engagement fingers 135 proximate or otherwise near the second end 32 of the nut 30. Engagement fingers 135 can be portions of the nut 30 proximate or otherwise near the second end 32 that are separated, or spaced apart, by slots 1300 running axially through the nut 30 proximate or otherwise near the second end 32. Engagement fingers 135 may also be resilient members, biasing members, fingers, biasing fingers, post fingers, teeth, engagement teeth, nut teeth, expanding members, flexible members, and the like. The number of engagement fingers 135 depends on the number of slots 130 positioned on the nut 30. For example, if the nut has six slots 130 axially extending from the second end 32, six engagement fingers 135 would be formed. Moreover, the engagement fingers 135 spaced apart by slots 130, or openings, are resilient in the radial directions (e.g. radially inward and outward). In one non-limiting example, as the nut 30 is operably attached to the post 40, the engagement fingers 135 may slightly expand radially outward to accommodate the attachment of the nut 30. When the nut 30 is attached to the post 40 (i.e. while operably configured), the resilient engagement fingers 135 should flex, compress, squeeze, contract, or “spring” back in a radially inward direction, applying a constant radial contact force against the post 40, in particular, the flange 44 or an outer surface of the post 40. The constant radial contact force applied by the engagement fingers 135 against the flange 44 may establish and maintain physical and electrical continuity between the post 40 and the nut 30. In many embodiments, the inner surface 35 of the engagement fingers 135 contact the flange 44 of the post 40. In another embodiment, the engagement fingers 135 have a biasing relationship with the post 40 to establish and maintain ground continuity throughout the connector 100.


Referring still to FIG. 1, an embodiment of a connector 100 may include a post 40. The post 40 comprises a first end 41 and opposing second end 42. Furthermore, the post 40 comprises a flange 44, such as an externally extending annular protrusion, located at the second end 42 of the post 40. The flange 44 may include a tapered surface facing the first end 41 of the post 40. Further still, an embodiment of the post 40 may include a surface feature 47 such as a lip or protrusion that may engage a portion of a connector body 50 to secure axial movement of the post 40 relative to the connector body 50. However, the post may not include such a surface feature 47, and the coaxial cable connector 100 may rely on press-fitting and friction-fitting forces and/or other component structures to help retain the post 40 in secure location both axially and rotationally relative to the connector body 50. The location proximate or otherwise near where the connector body is secured relative to the post 40 may include surface features 43, such as ridges, grooves, protrusions, or knurling, which may enhance the secure location of the post 40 with respect to the connector body 50. Additionally, the post 40 includes a mating edge 46, which may be configured to make physical and electrical contact with a corresponding mating edge of an interface port 20. The post 40 should be formed such that portions of a prepared coaxial cable 10 including the dielectric foil layer 15, the dielectric 16 and center conductor 18 can pass axially into the second end 42 and/or through a portion of the tube-like body of the post 40. Moreover, the post 40 should be dimensioned such that the post 40 may be inserted into an end of the prepared coaxial cable 10, around the dielectric foil layer 15 surrounding the dielectric 16 and under the protective outer jacket 12 and conductive grounding shield 14. Accordingly, where an embodiment of the post 40 may be inserted into an end of the prepared coaxial cable 10 under the drawn back conductive grounding shield 14, substantial physical and/or electrical contact with the shield 14 may be accomplished thereby facilitating grounding through the post 40. The post 40 may be formed of metals or other conductive materials that would facilitate a rigidly formed post body. In addition, the post 40 may be formed of a combination of both conductive and non-conductive materials. For example, a metal coating or layer may be applied to a polymer of other non-conductive material. Manufacture of the post 40 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, or other fabrication methods that may provide efficient production of the component.


Referring again to FIG. 1, embodiments of a coaxial cable connector, such as connector 100, may include a connector body 50. The connector body 50 may comprise a first end 51 and opposing second end 52. Moreover, the connector body may include a post mounting portion 57 proximate or otherwise near the first end 51 of the body 50, the post mounting portion 57 configured to securely locate the body 50 relative to a portion of the outer surface of post 40, so that the connector body 50 is axially secured with respect to the post 40, in a manner that prevents the two components from moving with respect to each other in a direction parallel to the axis of the connector 100. In addition, the connector body 50 may include an outer annular recess 58 located proximate or near the first end 51 of the connector body 50. Furthermore, the connector body 50 may include a semi-rigid, yet compliant outer surface 55, wherein the outer surface 55 may be configured to form an annular seal when the second end 52 is deformably compressed against a received coaxial cable 10 by operation of a fastener member 60. The connector body 50 may include an external annular detent 53 located proximate or close to the second end 52 of the connector body 50. Further still, the connector body 50 may include internal surface features, such as annular serrations formed near or proximate the internal surface of the second end 52 of the connector body 50 and configured to enhance frictional restraint and gripping of an inserted and received coaxial cable 10, through tooth-like interaction with the cable. The connector body 50 may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a semi-rigid, yet compliant outer surface 55. Further, the connector body 50 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the connector body 50 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


With further reference to FIG. 1, embodiments of a coaxial cable connector 100 may include a fastener member 60. The fastener member 60 may have a first end 61 and opposing second end 62. In addition, the fastener member 60 may include an internal annular protrusion located proximate the first end 61 of the fastener member 60 and configured to mate and achieve purchase with the annular detent 53 on the outer surface 55 of connector body 50. Moreover, the fastener member 60 may comprise a central passageway 65 defined between the first end 61 and second end 62 and extending axially through the fastener member 60. The central passageway 65 may comprise a ramped surface which may be positioned between a first opening or inner bore having a first diameter positioned proximate with the first end 61 of the fastener member 60 and a second opening or inner bore having a second diameter positioned proximate with the second end 62 of the fastener member 60. The ramped surface may act to deformably compress the outer surface 55 of a connector body 50 when the fastener member 60 is operated to secure a coaxial cable 10. For example, the narrowing geometry will compress squeeze against the cable, when the fastener member is compressed into a tight and secured position on the connector body. Additionally, the fastener member 60 may comprise an exterior surface feature 69 positioned proximate with or close to the second end 62 of the fastener member 60. The surface feature 69 may facilitate gripping of the fastener member 60 during operation of the connector 100. Although the surface feature 69 is shown as an annular detent, it may have various shapes and sizes such as a ridge, notch, protrusion, knurling, or other friction or gripping type arrangements. The first end 61 of the fastener member 60 may extend an axial distance so that, when the fastener member 60 is compressed into sealing position on the coaxial cable 100, the fastener member 60 touches or resides substantially proximate significantly close to the nut 30. It should be recognized, by those skilled in the requisite art, that the fastener member 60 may be formed of rigid materials such as metals, hard plastics, polymers, composites and the like, and/or combinations thereof. Furthermore, the fastener member 60 may be manufactured via casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Another manner in which the coaxial cable connector 100 may be fastened to a received coaxial cable 10 may also be similar to the way a cable is fastened to a connector having an insertable compression sleeve that is pushed into the connector body 50 to squeeze against and secure the cable 10. The coaxial cable connector 100 includes an outer connector body 50 having a first end 51 and a second end 52. The body 50 at least partially surrounds a tubular inner post 40. The tubular inner post 40 has a first end 41 including a flange 44 and a second end 42 configured to mate with a coaxial cable 10 and contact a portion of the outer conductive grounding shield or sheath 14 of the cable 10. The connector body 50 is secured relative to a portion of the tubular post 40 proximate or close to the first end 41 of the tubular post 40 and cooperates, or otherwise is functionally located in a radially spaced relationship with the inner post 40 to define an annular chamber with a rear opening. A tubular locking compression member may protrude axially into the annular chamber through its rear opening. The tubular locking compression member may be slidably coupled or otherwise movably affixed to the connector body 50 to compress into the connector body and retain the cable 10 and may be displaceable or movable axially or in the general direction of the axis of the connector 100 between a first open position (accommodating insertion of the tubular inner post 40 into a prepared cable 10 end to contact the grounding shield 14), and a second clamped position compressibly fixing the cable 10 within the chamber of the connector 100, because the compression sleeve is squeezed into retraining contact with the cable 10 within the connector body 50. A port coupling element, or nut 30, at the front end of the inner post 40 serves to attach the connector 100 to an interface port.


Referring now to FIGS. 1-4, a first embodiment of a method for maintaining ground continuity between the free-spinning nut 30 and the stationary post 40 of a connector 100 may comprise the steps of providing a connector body 50 attached to a post 40, the post 40 having a first end 41, an opposing second end 42, and port coupling element 30 having a plurality of openings 130 positioned thereon, and biasing the port coupling element 30 in a position of interference with the post 40. The method may also include inner surface 35 of the port coupling element 30 exerts a constant radial contact force against a flange 44, wherein the flange 44 is attached to the post 40, and a fastener member 60, wherein the fastener member 60 is configured to operate on and deform the connector body 50 sealingly compressing it against and affixing it to a coaxial cable 10. The method may include steps with reference to the multiple embodiments described herein.


A second embodiment of a method of maintaining electrical continuity with a port may comprise the steps of providing a connector body 50 attached to a post 40, the post 40 having a first end portion 41 and an opposing second end portion 42, a port coupling element 30 rotatable about the post 40, wherein the port coupling element 30 has a first end 31 and a second end 32, and a plurality of engagement fingers 135 proximate the second end 32, the plurality of engagement fingers 135 being resilient in a radial direction, and expanding the plurality of engagement fingers 135 in a radially outward direction, wherein the expansion of the plurality of engagement fingers 135 by a positioning of the post 40 results in the plurality of engagement fingers 135 exerting a radially inward force against the post 40, wherein the radially inward force against the post 40 establishes and maintains physical and electrical continuity between the post 40 and the port coupling element 30 regardless of the relative axial position between the post 40 and the port coupling element 30. The method may also include wherein the inner surface 35 of each of the plurality of engagement fingers 135 constantly contact the outer surface of the post 40 when the plurality of engagement fingers 135 exert the radially inward force against the post 40, and a fastener member 60, wherein the fastener member 60 is configured to operate on and deform the connector body 50 sealingly compressing it against and affixing it to a coaxial cable 10, and spacing the plurality of engagement fingers 135 apart by axially aligned slots 130 positioned on the nut 30 proximate the second end 32.


While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims. The claims provide the scope of the coverage of the invention and should not be limited to the specific examples provided herein.

Claims
  • 1. A coaxial cable connector comprising: a connector body attached to a post, the post including a first end portion and an opposing second end portion, and a flange proximate the second end portion;a port coupling element rotatably attached to the post, the port coupling element has a first end and a second end, wherein the port coupling element includes internal threads configured to threadably mate with a port; anda plurality of openings on the port coupling element, the plurality of openings extending a distance toward the first end from the second end of the port coupling element.
  • 2. The connector of claim 1, wherein an inner surface of the port coupling element exerts a constant radial force against an outer edge of the post to establish and maintain physical and electrical continuity between the post and the port coupling element.
  • 3. The connector of claim 1, wherein the plurality of openings are axially extending slots across the port coupling element which allow radial movement of the port coupling element proximate the second end.
  • 4. The connector of claim 1, further comprising: a fastener member, wherein the fastener member is configured to operate on and deform the connector body sealingly compressing it against and affixing it to a coaxial cable.
  • 5. A coaxial cable connector comprising: a connector body attached to a post, the post having a first end portion, an opposing second end portion, and a flange proximate the second end portion, the flange having an outer edge;a port coupling element rotatable about the post, wherein the port coupling element includes a first end and an opposing second end, the first end of the port coupling element configured to threadably mate with a port; anda plurality of engagement fingers proximate the second end, wherein the plurality of engagement fingers are biased into a position of interference with the post.
  • 6. The connector of claim 5, wherein an inner surface of each of the plurality of engagement fingers exerts a constant radial force against the outer edge of the flange to establish and maintain physical and electrical continuity between the post and the port coupling element.
  • 7. The connector of claim 5, further comprising: a fastener member, wherein the fastener member is configured to operate on and deform the connector body sealingly compressing it against and affixing it to a coaxial cable.
  • 8. The connector of claim 5, wherein the plurality of engagement fingers are spaced apart by axially aligned slots positioned on the port coupling element proximate the second end.
  • 9. A coaxial cable connector comprising: a slotted port coupling element attached to a post, the slotted port coupling element having a first end, an opposing second end, wherein the slotted port coupling element is resilient in the radial direction and includes internal threads configured to threadably mate with a port; anda connector body attached to the post, the post having a first end portion, an opposing second end portion, wherein a positioning of the post radially expands the slotted port coupling element, further wherein the slotted port coupling element exerts an opposing radial contact force against an outer surface of the post; andwherein the opposing radial contact force establishes and maintains physical and electrical contact between the slotted port coupling element and the post regardless of the axial position of the post and the slotted port coupling element.
  • 10. The connector of claim 9, wherein a plurality of slots are axially aligned openings that space apart portions of the slotted port coupling element.
  • 11. The connector of claim 9, further comprising: a fastener member, wherein the fastener member is configured to operate on and deform the connector body sealingly compressing it against and affixing it to a coaxial cable.
  • 12. The connector of claim 9, wherein the opposing radial contact force is constant.
  • 13. A method for establishing and maintaining electrical continuity in a connector comprising: providing a connector body attached to a post, the post having a first end and an opposing second end; and a port coupling element having a plurality of openings positioned thereon, wherein the port coupling element includes internal threads configured to threadably mate with a port; andbiasing the port coupling element in a position of interference with the post to establish and maintain electrical continuity.
  • 14. The method of claim 13, wherein an inner surface of the port coupling element exerts a constant radial contact force against an outer edge of a flange, wherein the flange is attached to the post.
  • 15. The method of claim 13, further comprising: a fastener member, wherein the fastener member is configured to operate on and deform the connector body sealingly compressing it against and affixing it to a coaxial cable.
  • 16. The method of claim 13, wherein the port coupling element is resilient.
  • 17. The method of claim 13, wherein the plurality of openings are axially aligned slots, that space apart portions of the port coupling elements.
  • 18. A method for maintaining electrical continuity with a port comprising: providing a connector body attached to a post, the post having a first end portion and an opposing second end portion; and a port coupling element rotatable about the post, wherein the port coupling element has a first end, a second end, internal threads configured to threadably mate with a port, and a plurality of engagement fingers proximate the second end, the plurality of engagement fingers being resilient in a radial direction; andexpanding the plurality of engagement fingers in a radially outward direction, wherein the expansion of the plurality of engagement fingers by a positioning of the post results in the plurality of engagement fingers exerting a radially inward force against the post; andwherein the radially inward force against the post establishes and maintains physical and electrical continuity between the post and the port coupling element regardless of the relative axial position between the post and the port coupling element.
  • 19. The method of claim 18, wherein the inner surface of each of the plurality of engagement fingers constantly contact the outer surface of the post when the plurality of engagement fingers exert the radially inward force against the post.
  • 20. The method of claim 18, further comprising: a fastener member, wherein the fastener member is configured to operate on and deform the connector body sealingly compressing it against and affixing it to a coaxial cable.
  • 21. The method of claim 18, wherein the plurality of engagement fingers are spaced apart by axially aligned slots positioned on the port coupling element proximate the second end.
US Referenced Citations (567)
Number Name Date Kind
331169 Thomas Nov 1885 A
1371742 Dringman Mar 1921 A
1667485 MacDonald Apr 1928 A
1766869 Austin Jun 1930 A
1801999 Bowman Apr 1931 A
1885761 Peirce, Jr. Nov 1932 A
2102495 England Dec 1937 A
2258737 Browne Oct 1941 A
2325549 Ryzowitz Jul 1943 A
2480963 Quinn Sep 1949 A
2544654 Brown Mar 1951 A
2549647 Turenne Apr 1951 A
2694187 Nash Nov 1954 A
2754487 Carr et al. Jul 1956 A
2755331 Melcher Jul 1956 A
2757351 Klostermann Jul 1956 A
2762025 Melcher Sep 1956 A
2805399 Leeper Sep 1957 A
2870420 Malek Jan 1959 A
3001169 Blonder Sep 1961 A
3015794 Kishbaugh Jan 1962 A
3091748 Takes et al. May 1963 A
3094364 Lingg Jun 1963 A
3184706 Atkins May 1965 A
3194292 Borowsky Jul 1965 A
3196382 Morello, Jr. Jul 1965 A
3245027 Ziegler, Jr. Apr 1966 A
3275913 Blanchard et al. Sep 1966 A
3278890 Cooney Oct 1966 A
3281757 Bonhomme Oct 1966 A
3292136 Somerset Dec 1966 A
3320575 Brown et al. May 1967 A
3321732 Forney, Jr. May 1967 A
3336563 Hyslop Aug 1967 A
3348186 Rosen Oct 1967 A
3350677 Daum Oct 1967 A
3355698 Keller Nov 1967 A
3373243 Janowiak et al. Mar 1968 A
3390374 Forney, Jr. Jun 1968 A
3406373 Forney, Jr. Oct 1968 A
3430184 Acord Feb 1969 A
3448430 Kelly Jun 1969 A
3453376 Ziegler, Jr. et al. Jul 1969 A
3465281 Florer Sep 1969 A
3475545 Stark et al. Oct 1969 A
3494400 McCoy et al. Feb 1970 A
3498647 Schroder Mar 1970 A
3501737 Harris et al. Mar 1970 A
3517373 Jamon Jun 1970 A
3526871 Hobart Sep 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3551882 O'Keefe Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3587033 Brorein et al. Jun 1971 A
3601776 Curl Aug 1971 A
3629792 Dorrell Dec 1971 A
3633150 Swartz Jan 1972 A
3646502 Hutter et al. Feb 1972 A
3663926 Brandt May 1972 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3669472 Nadsady Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3678444 Stevens et al. Jul 1972 A
3678445 Brancaleone Jul 1972 A
3680034 Chow et al. Jul 1972 A
3681739 Kornick Aug 1972 A
3683320 Woods et al. Aug 1972 A
3686623 Nijman Aug 1972 A
3694792 Wallo Sep 1972 A
3706958 Blanchenot Dec 1972 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3744007 Horak Jul 1973 A
3744011 Blanchenot Jul 1973 A
3778535 Forney, Jr. Dec 1973 A
3781762 Quackenbush Dec 1973 A
3781898 Holloway Dec 1973 A
3793610 Brishka Feb 1974 A
3798589 Deardurff Mar 1974 A
3808580 Johnson Apr 1974 A
3810076 Hutter May 1974 A
3835443 Arnold et al. Sep 1974 A
3836700 Niemeyer Sep 1974 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3854003 Duret Dec 1974 A
3858156 Zarro Dec 1974 A
3879102 Horak Apr 1975 A
3886301 Cronin et al. May 1975 A
3907399 Spinner Sep 1975 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3953097 Graham Apr 1976 A
3963320 Spinner Jun 1976 A
3963321 Burger et al. Jun 1976 A
3970355 Pitschi Jul 1976 A
3972013 Shapiro Jul 1976 A
3976352 Spinner Aug 1976 A
3980805 Lipari Sep 1976 A
3985418 Spinner Oct 1976 A
4017139 Nelson Apr 1977 A
4022966 Gajajiva May 1977 A
4030798 Paoli Jun 1977 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4059330 Shirey Nov 1977 A
4079343 Nijman Mar 1978 A
4082404 Flatt Apr 1978 A
4090028 Vontobel May 1978 A
4093335 Schwartz et al. Jun 1978 A
4106839 Cooper Aug 1978 A
4125308 Schilling Nov 1978 A
4126372 Hashimoto et al. Nov 1978 A
4131332 Hogendobler et al. Dec 1978 A
4150250 Lundeberg Apr 1979 A
4153320 Townshend May 1979 A
4156554 Aujla May 1979 A
4165911 Laudig Aug 1979 A
4168921 Blanchard Sep 1979 A
4173385 Fenn et al. Nov 1979 A
4174875 Wilson et al. Nov 1979 A
4187481 Boutros Feb 1980 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4229714 Yu Oct 1980 A
4250348 Kitagawa Feb 1981 A
4280749 Hemmer Jul 1981 A
4285564 Spinner Aug 1981 A
4290663 Fowler et al. Sep 1981 A
4296986 Herrmann et al. Oct 1981 A
4307926 Smith Dec 1981 A
4322121 Riches et al. Mar 1982 A
4326769 Dorsey et al. Apr 1982 A
4339166 Dayton Jul 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4358174 Dreyer Nov 1982 A
4373767 Cairns Feb 1983 A
4389081 Gallusser et al. Jun 1983 A
4400050 Hayward Aug 1983 A
4407529 Holman Oct 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4412717 Monroe Nov 1983 A
4421377 Spinner Dec 1983 A
4426127 Kubota Jan 1984 A
4444453 Kirby et al. Apr 1984 A
4452503 Forney, Jr. Jun 1984 A
4456323 Pitcher et al. Jun 1984 A
4462653 Flederbach et al. Jul 1984 A
4464000 Werth et al. Aug 1984 A
4464001 Collins Aug 1984 A
4469386 Ackerman Sep 1984 A
4470657 Deacon Sep 1984 A
4484792 Tengler et al. Nov 1984 A
4484796 Sato et al. Nov 1984 A
4490576 Bolante et al. Dec 1984 A
4506943 Drogo Mar 1985 A
4515427 Smit May 1985 A
4525017 Schildkraut et al. Jun 1985 A
4531790 Selvin Jul 1985 A
4531805 Werth Jul 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
RE31995 Ball Oct 1985 E
4545637 Bosshard et al. Oct 1985 A
4575274 Hayward Mar 1986 A
4580862 Johnson Apr 1986 A
4580865 Fryberger Apr 1986 A
4583811 McMills Apr 1986 A
4585289 Bocher Apr 1986 A
4588246 Schildkraut et al. May 1986 A
4593964 Forney, Jr. et al. Jun 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4613199 McGeary Sep 1986 A
4614390 Baker Sep 1986 A
4616900 Cairns Oct 1986 A
4632487 Wargula Dec 1986 A
4634213 Larsson et al. Jan 1987 A
4640572 Conlon Feb 1987 A
4645281 Burger Feb 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4655534 Stursa Apr 1987 A
4660921 Hauver Apr 1987 A
4668043 Saba et al. May 1987 A
4673236 Musolff et al. Jun 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4682832 Punako et al. Jul 1987 A
4684201 Hutter Aug 1987 A
4688876 Morelli Aug 1987 A
4688878 Cohen et al. Aug 1987 A
4690482 Chamberland et al. Sep 1987 A
4691976 Cowen Sep 1987 A
4703987 Gallusser et al. Nov 1987 A
4703988 Raux et al. Nov 1987 A
4717355 Mattis Jan 1988 A
4720155 Schildkraut et al. Jan 1988 A
4734050 Negre et al. Mar 1988 A
4734666 Ohya et al. Mar 1988 A
4737123 Paler et al. Apr 1988 A
4738009 Down et al. Apr 1988 A
4738628 Rees Apr 1988 A
4746305 Nomura May 1988 A
4747786 Hayashi et al. May 1988 A
4749821 Linton et al. Jun 1988 A
4755152 Elliot et al. Jul 1988 A
4757297 Frawley Jul 1988 A
4759729 Kemppainen et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4797120 Ulery Jan 1989 A
4806116 Ackerman Feb 1989 A
4807891 Neher Feb 1989 A
4808128 Werth Feb 1989 A
4813886 Roos et al. Mar 1989 A
4820185 Moulin Apr 1989 A
4834675 Samchisen May 1989 A
4835342 Guginsky May 1989 A
4836801 Ramirez Jun 1989 A
4838813 Pauza et al. Jun 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4867706 Tang Sep 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4915651 Bout Apr 1990 A
4921447 Capp et al. May 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4934960 Capp et al. Jun 1990 A
4938718 Guendel Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4973265 Heeren Nov 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
4992061 Brush, Jr. et al. Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5011422 Yeh Apr 1991 A
5011432 Sucht et al. Apr 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5030126 Hanlon Jul 1991 A
5037328 Karlovich Aug 1991 A
5046964 Welsh et al. Sep 1991 A
5052947 Brodie et al. Oct 1991 A
5055060 Down et al. Oct 1991 A
5059747 Bawa et al. Oct 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gaver, Jr. et al. Nov 1991 A
5073129 Szegda Dec 1991 A
5080600 Baker et al. Jan 1992 A
5083943 Tarrant Jan 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5137470 Doles Aug 1992 A
5137471 Verespej et al. Aug 1992 A
5141448 Mattingly et al. Aug 1992 A
5141451 Down Aug 1992 A
5149274 Gallusser et al. Sep 1992 A
5154636 Vaccaro et al. Oct 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5166477 Perin, Jr. et al. Nov 1992 A
5169323 Kawai et al. Dec 1992 A
5181161 Hirose et al. Jan 1993 A
5183417 Bools Feb 1993 A
5186501 Mano Feb 1993 A
5186655 Glenday et al. Feb 1993 A
5195905 Pesci Mar 1993 A
5195906 Szegda Mar 1993 A
5205547 Mattingly Apr 1993 A
5205761 Nilsson Apr 1993 A
5207602 McMills et al. May 1993 A
5215477 Weber et al. Jun 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5221216 Gabany et al. Jun 1993 A
5227587 Paterek Jul 1993 A
5247424 Harris et al. Sep 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5294864 Do Mar 1994 A
5295864 Birch et al. Mar 1994 A
5316494 Flanagan et al. May 1994 A
5318459 Shields Jun 1994 A
5334032 Myers et al. Aug 1994 A
5334051 Devine et al. Aug 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5354217 Gabel et al. Oct 1994 A
5362250 McMills et al. Nov 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5380211 Kawagauchi et al. Jan 1995 A
5389005 Kodama Feb 1995 A
5393244 Szegda Feb 1995 A
5397252 Wang Mar 1995 A
5413504 Kloecker et al. May 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5439386 Ellis et al. Aug 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5474478 Ballog Dec 1995 A
5490033 Cronin Feb 1996 A
5490801 Fisher, Jr. et al. Feb 1996 A
5494454 Johnsen Feb 1996 A
5499934 Jacobsen et al. Mar 1996 A
5501616 Holliday Mar 1996 A
5516303 Yohn et al. May 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5550521 Bernaud et al. Aug 1996 A
5564938 Shenkal et al. Oct 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5595499 Zander et al. Jan 1997 A
5598132 Stabile Jan 1997 A
5607325 Toma Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632637 Diener May 1997 A
5632651 Szegda May 1997 A
5644104 Porter et al. Jul 1997 A
5651698 Locati et al. Jul 1997 A
5651699 Holliday Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5667405 Holliday Sep 1997 A
5681172 Moldenhauer Oct 1997 A
5683263 Hse Nov 1997 A
5702263 Baumann et al. Dec 1997 A
5722856 Fuchs et al. Mar 1998 A
5735704 Anthony Apr 1998 A
5746617 Porter, Jr. et al. May 1998 A
5746619 Harting et al. May 1998 A
5769652 Wider Jun 1998 A
5775927 Wider Jul 1998 A
5863220 Holliday Jan 1999 A
5877452 McConnell Mar 1999 A
5879191 Burris Mar 1999 A
5882226 Bell et al. Mar 1999 A
5921793 Phillips Jul 1999 A
5938465 Fox, Sr. Aug 1999 A
5944548 Saito Aug 1999 A
5957716 Buckley et al. Sep 1999 A
5967852 Follingstad et al. Oct 1999 A
5975949 Holliday et al. Nov 1999 A
5975951 Burris et al. Nov 1999 A
5977841 Lee et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6010349 Porter, Jr. Jan 2000 A
6019635 Nelson Feb 2000 A
6022237 Esh Feb 2000 A
6032358 Wild Mar 2000 A
6042422 Youtsey Mar 2000 A
6048229 Lazaro, Jr. Apr 2000 A
6053769 Kubota et al. Apr 2000 A
6053777 Boyle Apr 2000 A
6083053 Anderson, Jr. et al. Jul 2000 A
6089903 Stafford Gray et al. Jul 2000 A
6089912 Tallis et al. Jul 2000 A
6089913 Holliday Jul 2000 A
6123567 McCarthy Sep 2000 A
6146197 Holliday et al. Nov 2000 A
6152753 Johnson et al. Nov 2000 A
6153830 Montena Nov 2000 A
6210216 Tso-Chin et al. Apr 2001 B1
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6239359 Lilienthal, II et al. May 2001 B1
6241553 Hsia Jun 2001 B1
6261126 Stirling Jul 2001 B1
6267612 Arcykiewicz et al. Jul 2001 B1
6271464 Cunningham Aug 2001 B1
6331123 Rodrigues Dec 2001 B1
6332815 Bruce Dec 2001 B1
6358077 Young Mar 2002 B1
D458904 Montena Jun 2002 S
6406330 Bruce Jun 2002 B2
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6422900 Hogan Jul 2002 B1
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6439899 Muzslay et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6468100 Meyer et al. Oct 2002 B1
6491546 Perry Dec 2002 B1
D468696 Montena Jan 2003 S
6506083 Bickford et al. Jan 2003 B1
6530807 Rodrigues et al. Mar 2003 B2
6540531 Syed et al. Apr 2003 B2
6558194 Montena May 2003 B2
6572419 Feye-Homann Jun 2003 B2
6576833 Covaro et al. Jun 2003 B2
6619876 Vaitkus et al. Sep 2003 B2
6634906 Yeh Oct 2003 B1
6676446 Montena Jan 2004 B2
6683253 Lee Jan 2004 B1
6692285 Islam Feb 2004 B2
6692286 De Cet Feb 2004 B1
6712631 Youtsey Mar 2004 B1
6716041 Ferderer et al. Apr 2004 B2
6716062 Palinkas et al. Apr 2004 B1
6733336 Montena et al. May 2004 B1
6733337 Kodaira May 2004 B2
6767248 Hung Jul 2004 B1
6769926 Montena Aug 2004 B1
6780068 Bartholoma et al. Aug 2004 B2
6786767 Fuks et al. Sep 2004 B1
6790081 Burris et al. Sep 2004 B2
6805584 Chen Oct 2004 B1
6817896 Derenthal Nov 2004 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6884113 Montena Apr 2005 B1
6884115 Malloy Apr 2005 B2
6929508 Holland Aug 2005 B1
6939169 Islam et al. Sep 2005 B2
6971912 Montena et al. Dec 2005 B2
7029326 Montena Apr 2006 B2
7070447 Montena Jul 2006 B1
7070477 Morisawa et al. Jul 2006 B2
7086897 Montena Aug 2006 B2
7097499 Purdy Aug 2006 B1
7102868 Montena Sep 2006 B2
7114990 Bence et al. Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7125283 Lin Oct 2006 B1
7131868 Montena Nov 2006 B2
7144271 Burris et al. Dec 2006 B1
7147509 Burris et al. Dec 2006 B1
7156696 Montena Jan 2007 B1
7161785 Chawgo Jan 2007 B2
7229303 Vermoesen et al. Jun 2007 B2
7252546 Holland Aug 2007 B1
7255598 Montena et al. Aug 2007 B2
7299550 Montena Nov 2007 B2
7375533 Gale May 2008 B2
7393245 Palinkas et al. Jul 2008 B2
7404737 Youtsey Jul 2008 B1
7452239 Montena Nov 2008 B2
7455550 Sykes Nov 2008 B1
7462068 Amidon Dec 2008 B2
7476127 Wei Jan 2009 B1
7479035 Bence et al. Jan 2009 B2
7488210 Burris et al. Feb 2009 B1
7494355 Hughes et al. Feb 2009 B2
7497729 Wei Mar 2009 B1
7507117 Amidon Mar 2009 B2
7544094 Paglia et al. Jun 2009 B1
7566236 Malloy et al. Jul 2009 B2
7607942 Van Swearingen Oct 2009 B1
7674132 Chen Mar 2010 B1
7682177 Berthet Mar 2010 B2
7727011 Montena et al. Jun 2010 B2
7753705 Montena Jul 2010 B2
7753727 Islam et al. Jul 2010 B1
7794275 Rodrigues Sep 2010 B2
7806714 Williams et al. Oct 2010 B2
7806725 Chen Oct 2010 B1
7811133 Gray Oct 2010 B2
7824216 Purdy Nov 2010 B2
7828595 Mathews Nov 2010 B2
7830154 Gale Nov 2010 B2
7833053 Mathews Nov 2010 B2
7845976 Mathews Dec 2010 B2
7845978 Chen Dec 2010 B1
7850487 Wei Dec 2010 B1
7857661 Islam Dec 2010 B1
7887354 Holliday Feb 2011 B2
7892004 Hertzler et al. Feb 2011 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7927135 Wlos Apr 2011 B1
7950958 Mathews May 2011 B2
7955126 Bence et al. Jun 2011 B2
7972158 Wild et al. Jul 2011 B2
8029315 Purdy et al. Oct 2011 B2
8062044 Montena et al. Nov 2011 B2
8075338 Montena Dec 2011 B1
8079860 Zraik Dec 2011 B1
8152551 Zraik Apr 2012 B2
8167635 Mathews May 2012 B1
8167636 Montena May 2012 B1
8167646 Mathews May 2012 B1
8172612 Bence et al. May 2012 B2
8192237 Purdy et al. Jun 2012 B2
20020013088 Rodrigues et al. Jan 2002 A1
20020038720 Kai et al. Apr 2002 A1
20030214370 Allison et al. Nov 2003 A1
20030224657 Malloy Dec 2003 A1
20040077215 Palinkas et al. Apr 2004 A1
20040102089 Chee May 2004 A1
20040209516 Burris et al. Oct 2004 A1
20040219833 Burris et al. Nov 2004 A1
20040229504 Liu Nov 2004 A1
20050042919 Montena Feb 2005 A1
20050208827 Burris et al. Sep 2005 A1
20050233636 Rodrigues et al. Oct 2005 A1
20060099853 Sattele et al. May 2006 A1
20060105628 Montena May 2006 A1
20060110977 Mathews May 2006 A1
20060154519 Montena Jul 2006 A1
20070026734 Bence et al. Feb 2007 A1
20070049113 Rodrigues et al. Mar 2007 A1
20070123101 Palinkas May 2007 A1
20070155232 Burris et al. Jul 2007 A1
20070175027 Khemakhem et al. Aug 2007 A1
20070243759 Rodrigues et al. Oct 2007 A1
20070243762 Burke et al. Oct 2007 A1
20080102696 Montena May 2008 A1
20080289470 Aston Nov 2008 A1
20090029590 Sykes et al. Jan 2009 A1
20090098770 Bence et al. Apr 2009 A1
20100055978 Montena Mar 2010 A1
20100081321 Malloy et al. Apr 2010 A1
20100081322 Malloy et al. Apr 2010 A1
20100105246 Burris et al. Apr 2010 A1
20100233901 Wild et al. Sep 2010 A1
20100233902 Youtsey Sep 2010 A1
20100255720 Radzik et al. Oct 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20100279548 Montena et al. Nov 2010 A1
20100297871 Haube Nov 2010 A1
20100297875 Purdy Nov 2010 A1
20110021072 Purdy Jan 2011 A1
20110027039 Blair Feb 2011 A1
20110053413 Mathews Mar 2011 A1
20110117774 Malloy et al. May 2011 A1
20110143567 Purdy et al. Jun 2011 A1
20110230089 Amidon et al. Sep 2011 A1
20110230091 Krenceski et al. Sep 2011 A1
20120021642 Zraik Jan 2012 A1
Foreign Referenced Citations (51)
Number Date Country
2096710 Nov 1994 CA
201149936 Nov 2008 CN
201149937 Nov 2008 CN
201178228 Jan 2009 CN
47931 Oct 1888 DE
102289 Apr 1899 DE
1117687 Nov 1961 DE
1191880 Apr 1965 DE
1515398 Apr 1970 DE
2225764 Dec 1972 DE
2221936 Nov 1973 DE
2261973 Jun 1974 DE
3211008 Oct 1983 DE
9001608.4 Apr 1990 DE
4439852 May 1996 DE
19957518 Sep 2001 DE
116157 Aug 1984 EP
167738 Jan 1986 EP
0072104 Feb 1986 EP
0265276 Apr 1988 EP
0428424 May 1991 EP
1191268 Mar 2002 EP
1501159 Jan 2005 EP
1548898 Jun 2005 EP
1701410 Sep 2006 EP
2232846 Jan 1975 FR
2234680 Jan 1975 FR
2312918 Dec 1976 FR
2462798 Feb 1981 FR
2494508 May 1982 FR
589697 Jun 1947 GB
1087228 Oct 1967 GB
1270846 Apr 1972 GB
1401373 Jul 1975 GB
2019665 Oct 1979 GB
2079549 Jan 1982 GB
2252677 Aug 1992 GB
2264201 Aug 1993 GB
2331634 May 1999 GB
2002075556 Mar 2002 JP
3280369 May 2002 JP
4503793 Apr 2010 JP
100622526 Sep 2006 KR
427044 Mar 2001 TW
8700351 Jan 1987 WO
0186756 Nov 2001 WO
02069457 Sep 2002 WO
2004013883 Feb 2004 WO
2006081141 Aug 2006 WO
2011128665 Oct 2011 WO
2011128666 Oct 2011 WO
Related Publications (1)
Number Date Country
20120094532 A1 Apr 2012 US