The present disclosure relates to a connector housing for enclosing an electronic/electrical device.
A connector housing often includes an enclosure and a header connector for connecting the electronic/electrical device to another device located outside the enclosure. In such a connector housing, the header connector typically includes a plurality of terminal pins mounted to a holding structure. The terminal pins include tail end portions adapted for connection to the electronic/electrical device inside the enclosure and contact end portions that are arranged inside a shroud of the enclosure to form a plug adapted for connection to a mating plug of another device.
A connector housing of the type described above is typically manufactured by mounting the header connector to the electronic/electrical device and then mounting the electronic/electrical device with the header connector inside the enclosure. This method of manufacture, however, has several drawbacks. There are difficulties in handling an electronic/electrical device with a header connector secured thereto and sealing an electronic/electrical device mounted to a header connector can be challenging.
In order to address some of these drawbacks of first mounting the header connector to the electronic/electrical device, it has been proposed to mount the header connector to the enclosure first and then mount the electronic/electrical device to the header connector. However, there are drawbacks to this method as well. It is difficult to produce a housing for the header connector that is able to support the terminal pins and maintain their spacing or pitch when the electronic/electrical device is being mounted to the header connector. This difficulty is exacerbated by the continual miniaturization of electrical connectors, which requires smaller and more fragile terminal pins and closer spacing.
Based on the foregoing, there is a need for an improved connector housing.
In accordance with the disclosure, a connector housing is provided for an electronic/electrical device. The connector housing includes an enclosure defining an interior space in which the electronic/electrical device may be disposed. The enclosure includes a wall with an opening extending therethrough and a shroud joined to and extending from the wall. A header connector is secured to the enclosure so as to extend through the opening in the wall. The header connector includes a plastic mounting block defining a plurality of slots arranged in a lateral direction. A plurality of contacts is at least partially disposed in the slots of the mounting block, respectively. The contacts each have a first section and a second section. The first section includes a connector end disposed inside the shroud, while the second section includes a plurality of retention tabs and a tail end for connection to the electronic/electrical device. The retention tabs extend in the lateral direction and engage the mounting block to help secure the contacts to the mounting block. A keeper is connected to the mounting block. The keeper has a plurality of passages through which the contacts extend, respectively, so that the tail ends of the contacts protrude from an outer surface of the keeper.
The features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
It should be noted that in the detailed description that follows, identical components have the same reference numerals, regardless of whether they are shown in different embodiments of the present disclosure. It should also be noted that for purposes of clarity and conciseness, the drawings may not necessarily be to scale and certain features of the disclosure may be shown in somewhat schematic form.
Spatially relative terms, such as “top”, “bottom”, “lower”, “above”, “upper”, and the like, are used herein merely for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as they are illustrated in (a) drawing figure(s) being referred to. It will be understood that the spatially relative terms are not meant to be limiting and are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the drawings.
The present disclosure is directed to a connector housing that includes a header connector or connector biscuit (40, 100, 250) that is mounted inside an enclosure (12) enclosing an electronic/electrical device. Inside the enclosure (12), the connector biscuit (40, 100, 250) is connected to the electronic/electrical device, which may be a printed circuit board (PCB). The connector biscuit (40, 100, 250) includes a plastic body to which a plurality of contacts (46, 116) are mounted. The body may include a guide system (70, 186) for guiding the connector biscuit (40, 100, 250) into the enclosure 12 and a latching system (72, 188) for releasably securing the connector biscuit (40, 100, 250) within the enclosure 12. The body may be monolithic or formed from multiple components. In one or more embodiments, the body comprises a mounting block (42, 102, 252) disposed adjacent to and/or engaged with a keeper (44, 104, 254). The keeper (44, 104, 254) maintains the alignment of the tail ends (76, 120) of the contacts (46,116) that are to be connected to the electrical and/or electronic device, while the mounting block (42, 102, 252) supports the contacts (46,116) and provides a reaction force against the pressure created by the connection of the electrical and/or electronic device to the contacts (46,116). The mounting block (42, 102, 252) may be monolithic or formed from multiple components. In one or more embodiments, the mounting block (42, 102, 252) may comprise a comb (110, 256) connected to a bulkhead (112, 258). In addition, the contacts (46,116) may be contained within one or more contact modules (108, 312) that are held between the comb (110, 256) and the bulkhead (112, 258).
The enclosure 12 defines an enlarged cavity within which electronic circuitry may be disposed. This electronic circuitry includes the electronic/electrical device (e.g. a PCB) connected to the connector biscuit (40, 100, 250). The enclosure 12 may have any type of construction and configuration suitable for the structure and function of the electronic circuitry. In one or more embodiments, the enclosure 12 may be box-shaped and include a bottom wall 14, opposing side walls 16, a front wall 18 and a rear wall 20. Although not shown, the enclosure 12 may further include a top lid or cover. A generally rectangular shroud 24 may be integrally joined to, and extend from, the front wall 18. The enclosure 12 may be composed of thermoplastic and at least the bottom portion thereof may be molded in one piece.
The shroud 24 has rounded corners and defines an inner cavity that adjoins an opening 26 in the front wall 18 to provide access to the interior of the enclosure 12. A pair of interior walls 28 are joined to the bottom wall 14 and extend rearwardly from the front wall 18, on opposing sides of the opening 26. A pair of spaced-apart bottom tracks 30 are secured to the bottom wall 14 and are located rearward of the interior walls 28. A pair of side tracks 32 are joined to the interior walls 28, respectively. Each side track 32 comprises a pair of ledges that define a groove therebetween. As will be described more fully below, the grooves are adapted to receive rails (70, 186), respectively, of a connector biscuit (40, 100, 250). Above each side track 32, a stop projection 34 is joined to the interior wall 28. As will be described more fully below, the stop projections 34 engage with latches (72, 188) of the connector biscuit (40, 100, 250) to retain the connector biscuit (40, 100, 250) in the enclosure 12.
Referring specifically now to
Referring now also to
The outermost sidewalls 52 each have a rail 70 disposed between a pair of spaced-apart latches 72. The latches 72 are each joined at one end to one of the braces 54. The latches 72 are resiliently deflectable inwardly, towards the sidewalls 52, respectively. The rails 70 are adapted to be received in the grooves of the side tracks 32 of the interior walls 28, while free ends of the latches 72 are adapted to engage the stop projections 34 of the interior walls 28.
Referring now also to
Four different variations of the contact 46 may be used in the connector biscuit 40 and are designated as 46a,b,c,d, with all of them having the same construction, except for the (unbent) length of their middle section. The (unbent) length of the middle section of the contact 46a is shorter than that of the contact 46b, which is substantially shorter than that of the contact 46c, which is shorter than that of the contact 46d. The contacts 46 are mounted in the slots 64 of the connector biscuit 40 such that each slot 64 may contain up to one set of the four contacts 46a,b,c,d, with the barbs 80 of the contacts 46a,b being disposed in the passages 66 of an upper one of the braces 54 and the barbs 80 of the contacts 46c,d being disposed in the passages 66 of a lower one of the braces 54. The embossed bumps on the barbs 80 engage the sloping roofs of the passages 66, respectively, which helps ensure that the lower sections of the contacts 46 are horizontally oriented. In each slot 64 containing a full set of the contacts 46a,b,c,d, the contacts 46 are arranged front to back in the order 46a, then 46b, then 46c and then 46d, with the contact 46a being the frontmost and the contact 46d being the rearmost, as shown in
The contacts 46 may be inserted into the slots 64 of the connector biscuit 40 in their L-shaped configuration, i.e., after they have been bent. Alternately, the contacts 46 may be inserted into the slots 64 before they are bent, i.e., when they are straight, and then, afterwards, they may then be bent upward.
As shown in
The keeper 44 is composed of plastic and has a rectangular panel shape, with a matrix of slotted openings 45 extending therethrough. The outline of the keeper 44 substantially corresponds to the outline of the top side of the mounting block 42 and the matrix of openings 45 in the keeper 44 corresponds to and aligns with the matrix of contact tail ends 76 protruding from the mounting block 42. The keeper 44 is connected to the mounting block 42 by aligning the matrix of keeper openings with the matrix of contact tail ends 76 and then pressing the keeper 44 downward, toward the mounting block 42, which causes the tail ends 76 of the contacts 46 to pass through the openings and the retainers 77 of the contacts 46 to be pressed into engagement with interior walls defining the openings 45 of the keeper 44. The frictional forces between the contact retainers 77 and the side walls of the keeper openings secures the keeper 44 to the mounting block 42. Although not shown, the keeper 44 may include upwardly-extending pillars (such as the pillars 206 shown in the second embodiment), which may extend through openings in the electronic/electrical device (e.g. a PCB). In this manner, the pillars would help align and secure the electronic/electrical device to the connector biscuit 40.
Referring now to
Referring now to
Referring now also to
As shown in
When the contacts 116 are ovemolded with plastic to form the housing 118, the retention tabs 130 of the contacts 116 become embedded in the plastic, i.e., are surrounded by the plastic, which helps secure the contacts 116 within the housing 118.
Four different variations of the contact wafer 108 may be used in the connector biscuit 100 and are designated as 108a,b,c,d, with all of them having the same construction, except for the (unbent) lengths of their contacts 116, designated 116a,b,c,d, respectively. More specifically, the (unbent) lengths of the middle sections of the contacts 116a,b,c,d are different. The (unbent) length of the middle section of the contact 116a is shorter than that of 116b, which is substantially shorter than that of 116c, which is shorter than that of 116d. Within the mounting block 102, the contact wafers 108 are arranged front to back in the order 108a, then 108b, then 108c and then 108d, with the contact wafer 108a being the frontmost and the contact wafer 108d being the rearmost.
It should be appreciated that additional contact wafers 108 having different (unbent) lengths of the contacts 116 may be provided. In addition, the number of contacts 116 may be changed and may not be the same among the different contact wafers 116. Moreover, in other embodiments, more than four or less than four of the contact wafers 108 may be utilized. All of the foregoing modifications may be made, dependent on the requirements of a particular application.
Referring now to
Referring now to
On each side of the bulkhead 112, a rail 186 and a pair of spaced-apart latches 188 extend rearwardly from the main body 170, with the rail 186 being disposed between the two latches 188. Each latch 188 is joined, at one end, to an end of one of the braces 174, and each rail 186 is joined, at one end, to a side of the main body 170, between the braces 174. The latches 188 and the rails 186 are all resiliently deflectable. However, the latches 188 are resiliently deflectable inwardly, while the rails 186 are resiliently deflectable outwardly, as will be described more fully below. A hook 190 is formed in each rail 186, at its free end. Inner sides of the rails 186 are adapted to be received in the grooves of the comb 110, respectively, while outer sides of the rails 186 are adapted to be received in the grooves of the side tracks 32 of the interior walls 28, respectively. Free ends of the latches 188 are adapted to engage the stop projections 34 of the interior walls 28.
Referring now to
The mounting block 102 is formed by mounting the contact wafers 108 to one of the comb 110 and the bulkhead 112 and then securing together the comb 110 and the bulkhead 112, with the contact wafers 108 disposed in-between. More preferably, the contact wafers 108 are mounted to the bulkhead 112 first and then the comb 110 is secured to the bulkhead 112.
The contact wafers 108 are mounted to the bulkhead 112, beginning with contact wafer 108a. The lower sections of the contacts 116a of the contact wafer 108a are inserted into a top row of the passages 178 of the upper brace 174 and then the housing 118 is pushed forward until it abuts the upper brace 174. The lower sections of the contacts 116b of the contact wafer 108b are then inserted into the bottom row of the passages 178 of the upper brace 174 and then the housing 118 of the contact wafer 108b is pushed forward until it abuts the housing 118 of contact wafer 108a. The contact wafer 108c and then the contact wafer 108d are mounted to the bulkhead 112 in the same manner such that the lower sections of the contacts 116c of the contact wafer 108c extend through the top row of the passages 178 of the lower brace 174 and the lower sections of the contacts 116d of the contact wafer 108d extend through the bottom row of the passages 178 of the lower brace 174.
The mounting of the contact wafers 108 to the bulkhead 112 as described above forms a nested stack of the contact wafers 108, which is disposed adjacent to the main body 170. The stacked contact wafers 108 form columns of exposed portions of the contacts 116a,b,c,d. These columns are laterally spaced apart and extend across the width of the stack. The exposed portions of the contacts 116a,b,c,d include the angled middle sections and the horizontal lower sections.
After the contact wafers 108 are mounted to the bulkhead 112, the comb 110 is aligned with the bulkhead 112 such that the slots 162 in the base 152 are aligned with the exposed portions of the contacts 116a,b,c,d, respectively, and the grooves of the base 152 are aligned with the rails 186 of the bulkhead 112, respectively. The comb 110 and the bulkhead 112 are then brought together. As the inner sides of the rails 186 move through the grooves, the free ends slide over the sloping surfaces of the catches 168 and are deflected outward to permit continued movement. Once the free ends of the rails 186 clear end edges of the catches 168, the rails 186 resiliently move inward, which causes the hooks 190 of the rails 186 to engage the end edges of the catches 168, thereby securing together the comb 110 and the bulkhead 112, with the contact wafers 108 disposed in-between.
With the mounting block 102 formed as described above, each slot 162 of the comb 110 has disposed therein the middle and lower sections of contacts 116a,b,c,d from the four different contact wafers 108a,b,c,d, respectively, wherein in each slot 162, the contacts 116 are arranged in the order 116a, then 116b, then 116c and then 116d, with the contact 116a being the frontmost and the contact 116d being the rearmost (toward the back panel 150). In addition, the contacts 116 form a matrix of evenly spaced tail ends 120 that protrude upward from the contact wafers 108 on a top side of the mounting block 102. As shown, the matrix may comprise columns of four tail ends 120 and rows of a larger number of tail ends 120. The contacts 116 also form two spaced-apart pairs of rows of connecting ends (pins) 122 protruding outward from the braces 174 on a front side of the mounting block 102. The main tongue 182 and the outer tongues 184 are disposed between the pairs of rows of pins 122 and extend farther forward.
The outline of the keeper 104 substantially corresponds to the outline of the top side of the mounting block 102 and the matrix of passages 202 in the keeper 104 corresponds to and aligns with the matrix of contact tail ends 120 protruding from the mounting block 102. The keeper 104 is connected to the mounting block 102 by aligning the matrix of keeper passages 202 with the matrix of contact tail ends 120. In addition, the openings 204 of the keeper 104 are aligned with the ears 176 of the bulkhead 112, and the snap-fit protrusions 210 of the keeper 104 are aligned with the snap-fit openings 154 of the comb 110. The keeper 104 is then pressed downward, toward the mounting block 102, which causes the tail ends 120 of the contacts 116 to pass through the passages 202 of the keeper 104 and the retainers 126 of the contacts 116 to be pressed into engagement with interior walls defining the passages 202. In addition, the ears 176 of the bulkhead 112 are pressed through the openings 204 in the keeper 104 and the snap-fit protrusions 210 of the keeper 104 are snap-fit into the snap-fit openings 154 of the comb 110. In this manner, the keeper 104 is secured to the mounting block 102.
Referring now to
The connector biscuit 100 may be removed from the enclosure 12 by manually deflecting the latches 188 inward and then pulling the connector biscuit 100 rearward so that is slides through the side tracks 32 and then the bottom tracks 30 until it is free. The connector biscuit 100 may then be lifted upward, out of the enclosure 12.
Referring now to
The comb 256 may be composed of thermoplastic and may be a unitary or monolithic structure. The comb 256 includes a rear wall 260 joined to posterior ends of a series of sidewalls 262, which extend forwardly from the rear wall 260. Each sidewall 262 includes an upper crenelated portion 264 having a plurality of channels 266, at least two of which are oppositely-directed. As shown in
The bulkhead 258 may be composed of thermoplastic and may be a unitary or monolithic structure. The bulkhead 258 comprises a generally rectangular main body 280 that includes a plurality of vertically-extending, spaced-apart ribs and a pair of laterally-extending, spaced-apart braces 282. A pair of tabs or ears 284 extend upwardly from a top edge of the main body 280 and are located toward outer sides of the main body 280, respectively. Each of the braces 282 has rows of rectangular passages 288 extending therethrough.
On each side of the bulkhead 258, a rail 290 and a pair of spaced-apart latches 292 extend rearwardly from the main body 280, with the rail 290 being disposed between the two latches 292. Each latch 292 is joined, at one end, to an end of one of the braces 282, and each rail 290 is joined, at one end, to a side of the main body 280, between the braces 282. The latches 292 and the rails 290 are all resiliently deflectable. However, the latches 292 are resiliently deflectable inwardly, while the rails 290 are resiliently deflectable outwardly, as will be described more fully below. A hook is formed in each rail 290, at its free end. Inner sides of the rails 290 are adapted to be received in the grooves 272 of the comb 256, respectively, while outer sides of the rails 290 are adapted to be received in the grooves of the side tracks 32, respectively, of the interior walls 28 of the enclosure 12. Free ends of the latches 292 are adapted to engage the stop projections 34 of the interior walls 28.
The upper and middle sections of the contacts 46 are mounted in the slots 268 of the comb 256 such that each slot 268 may contain the upper and middle sections of up to one set of the four contacts 46a,b,c,d. The three inner or lower retention tabs 84 of each contact 46 are disposed in the channels 266 of a slot 268, respectively, while the uppermost retention tab 84 rests on a top surface of a sidewall 262, as shown in
The lower sections of the contacts 46 extend through the passages 288 in the braces 282 of the bulkhead 258, with the barbs 80 of the contacts 46a,b being disposed in the passages 288 of an upper one of the braces 282 and the barbs 80 of the contacts 46c,d being disposed in the passages 288 of a lower one of the braces 282.
The mounting block 252 is formed by mounting the contacts 46 to one of the comb 256 and the bulkhead 258 and then securing together the comb 256 and the bulkhead 258, with the contacts 46 disposed in-between. The comb 256 and the bulkhead 258 are secured together by aligning the inner sides of the rails 290 of the bulkhead 258 with the grooves 272 of the comb 256 and then moving the two structures together. As the rails 290 move through the grooves 272, their free ends slide over the sloping surfaces of the catches 274 and are deflected outward to permit continued movement. Once the free ends of the rails 290 clear end edges of the catches 274, the rails 290 resiliently move inward, which causes the hooks of the rails 290 to engage the end edges of the catches 274, thereby securing together the comb 256 and the bulkhead 258, with the contacts 46 disposed in-between.
The keeper 254 is composed of plastic and may also be a unitary or monolithic structure. The keeper 254 includes a rectangular panel 300 having a matrix of rectangular passages 302 extending therethrough. A pair of spaced-apart rectangular openings 304 are formed in the panel 300, toward a front edge thereof. A pair of pillars 306 are joined to the panel 300 and extend upwardly therefrom. The pillars 306 are disposed toward side edges of the panel 300, respectively. The pillars 306 may extend through openings in the electronic/electrical device (e.g. a PCB) and, as such, may help align and secure the electronic/electrical device to the connector biscuit 250.
The outline of the keeper 254 substantially corresponds to the outline of the top side of the mounting block 252 and the matrix of passages 302 in the keeper 254 corresponds to and aligns with the matrix of contact tail ends 76 protruding from the mounting block 252. The keeper 254 is connected to the mounting block 252 by aligning the matrix of keeper passages 302 with the matrix of contact tail ends 76. In addition, the openings 304 of the keeper 254 are aligned with the ears 284 of the bulkhead 258. The keeper 254 is then pressed downward, toward the mounting block 252, which causes the tail ends 76 of the contacts 46 to pass through the passages 302 of the keeper 254 and the retainers 77 of the contacts 46 to be pressed into engagement with interior walls defining the passages 302. In addition, the ears 284 of the bulkhead 258 are pressed through the openings 304 in the keeper 104. In this manner, the keeper 254 is secured to the mounting block 252.
As shown in
In a fourth embodiment, the connector biscuit 250 may be modified by having each row of the contacts 46 overmolded with a plastic bar 310 to form a contact module 312, such as is shown in
It is to be understood that the description of the foregoing exemplary embodiment(s) is (are) intended to be only illustrative, rather than exhaustive. Those of ordinary skill will be able to make certain additions, deletions, and/or modifications to the embodiment(s) of the disclosed subject matter without departing from the spirit of the disclosure or its scope.
This patent application claims the benefit of priority under 35 U.S.C. § 119(e) to Provisional Patent Application No.: 62/619,101, filed on Jan. 18, 2018, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62619101 | Jan 2018 | US |