Information
-
Patent Grant
-
6416345
-
Patent Number
6,416,345
-
Date Filed
Wednesday, August 30, 200024 years ago
-
Date Issued
Tuesday, July 9, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 352
- 439 358
- 439 353
- 439 354
- 439 355
- 439 356
-
International Classifications
-
Abstract
A lock arm (15) is formed on an outer surface of the male connector housing (12), and extends in a connector fitting direction, and the arm engagement portion (17) is formed on an outer surface of the female connector housing (13), and when the two connector housings are completely fitted together, the arm engagement portion (17) retains an engagement projection (15b) of the lock arm (15) to lock the two connector housings together in a connected condition. The arm engagement portion (17) has a push-out guide surface (17a) for producing a disengaging force, urging the two connector housings away from each other, in a half-fitted condition of the two connector housings, and a retaining portion (17b) for retaining the engagement projection (15b) in a completely-fitted condition of the two connector housings. The engagement of the engagement projection (15b) with the retaining portion (17b) can be canceled by elastically deforming the lock arm (15) in a direction generally parallel to the outer surface of the female connector housing (13).
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a connector lock mechanism. More particularly, the present invention relates to a connector lock mechanism in which a half-fitted condition is positively prevented by a disengaging force (repelling force) produced between a pair of connector housings to be fittingly connected together so that the fitting connection to the mating connector can be positively locked.
The present application is based on Japanese Patent Application No. Hei. 11-243596, which is incorporated herein by reference.
2. Description of the Related Art
Usually, various electronic equipments are mounted on a vehicle such as an automobile, and therefore, naturally, various types of male and female connectors are provided at connection ends of various wires forming wire harnesses or the like.
Generally, male and female connectors to be fittingly connected together are provided with a lock mechanism, in which when the amount of fitting of the two connectors relative to each reaches a predetermined value, their respective connector housings are locked together in a fittingly-connected condition.
When the connector housings of the male and female connectors are connected together by the lock mechanism, each of connection terminals in the male connector housing is electrically connected to a respective one of connection terminals in the female connector housing with adequate contact pressure and contact area.
However, for example, when the operating force for fitting the two connector housings together is inadequate, and when either of the connector housings or any of the connection terminals is defective, the connector fitting operation is sometimes finished in a half-fitted condition in which the amount of fitting of the two connector housings relative to each other fails to reach the predetermined value.
When the male and female connectors are used in such a half-fitted condition, they may be disengaged from each other because of vibrations, developing during use, and the tension of a wire harness, and this can leads to a disadvantage that the feeding of electric power is interrupted. Even if the two connectors are not disengaged from each other, there is a possibility that in the half-fitted condition, the mating connection terminals are incompletely electrically connected together, in which case the necessary electrical characteristics are not obtained, and this may lead to a disadvantage that the associated electric part is subjected to a malfunction.
Therefore, in order to prevent an accident due to a failure to notice such a half-fitted condition of the two connectors, there has been proposed a lock mechanism (which locks two connector housings in a mutually-connected condition) having a half-fitting prevention function for disengaging the two connector housings from each other when a half-fitted condition is encountered.
FIG. 8
shows a related connector lock mechanism having a half-fitting prevention function.
In this connector lock mechanism, a lock arm
5
is formed on an outer surface of a male connector housing
2
(one of male and female connector housings
2
and
3
to be fitted together in a male-female manner), and extends in a connector housing-fitting direction, whereas arm engagement portions
7
are formed on the female connector housing (the other connector housing)
3
, and these arm engagement portions
7
retain engagement projections
5
b
of the lock arm
5
, respectively, to lock the two connector housings together in a connected condition when the amount of fitting of the two connector housings relative to each other reaches a predetermined amount.
Female connection terminals are received respectively in terminal receiving chambers
2
a
formed in the male connector housing
2
, and male connection terminals
9
are received respectively in terminal receiving chambers formed in the female connector housing
3
.
The lock arm
5
has a pair of elastic arms
5
a
extending from a proximal end portion of the housing toward a distal end thereof, and the engagement projection
5
b
is formed on and projects laterally from an outer side surface of each of the elastic arms
5
a
at a distal end thereof.
The arm engagement portions
7
are formed in a projected manner respectively on inner surfaces of opposite side walls
3
b
and
3
b
of a front housing portion
3
a
, defining a space into which the male connector housing
2
can be fitted. Each of the arm engagement portions
7
has a slanting surface
7
a
and a retaining surface
7
b
. When the amount of fitting of the two connector housings relative to each other is less than the predetermined value, each slanting surface
7
a
presses the corresponding engagement projection
5
b
toward a vertical median plane of the housing to elastically deform the elastic arm
5
a
toward the vertical median plane of the housing, thereby producing a disengaging force urging the two connectors away from each other. When the amount of fitting of the two connector housings reaches the predetermined value, so that the elastic deformation of each elastic arm
5
a
by the corresponding slanting surface
7
a
is canceled, each retaining surface
7
b
retains the corresponding engagement projection
5
b.
Namely, in the above connector lock mechanism, when the male and female connector housings
2
and
3
are fitted together, the elastic arms
5
a
are elastically deformed respectively by the slanting surfaces
7
a
through the engagement projections
5
b
, and as a result the disengaging force, tending to move the two connector housings
2
and
3
away from each other, is produced between each slanting surface
7
a
and the corresponding engagement projection
5
b
by the resilient force of the thus elastically-deformed elastic arm
5
a
. In this construction, any spring member (e.g. a compression coil spring), separate from the connector housings, is not used for producing the disengaging force to disengage the two connectors from each other, and therefore the half-fitting prevention function is achieved at a low cost without increasing the number of the component parts.
In the above lock mechanism, however, the arm engagement portions
7
are formed on the inner surface of the connector housing
3
, and therefore the condition of engagement of the lock arm
5
with the arm engagement portions
7
can not be confirmed with the eyes, and thus there has been a disadvantage that the fitting connection can not be confirmed with the eyes.
And besides, for canceling the locked condition, the proximal end portion of the lock arm
5
is pressed so as to turn its distal end portion downwardly, and therefore a large operating force is required when canceling the locked condition, and this has invited a problem that the cancellation of the locked condition is difficult.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to overcome the above problems, and more specifically to provide a connector lock mechanism in which a half-fitted condition is positively prevented, and a condition of engagement of a lock arm with an arm engagement portion can be confirmed with the eyes, and besides an operating force, required for canceling a locked condition of the two connector housings, can be reduced.
To achieve the above object, according to the present invention, there is provided a connector lock mechanism which comprises an elastically-deformable lock arm formed on an outer surface of one of male and female connector housings which are fittable to each other, the lock arm extending in a connector fitting direction, at least one engagement projection formed on the lock arm, at least one arm engagement portion formed on an outer surface of the other one of male and female connector housings, wherein when the male and female connector housings are completely fitted to each other, the arm engagement portion retains the engagement projection of the lock arm to lock the male and female connector housings, at least one push-out guide surface formed on the arm engagement portion, wherein when the male and female connector housings are in a half-fitted condition, the push-out guide surface deforms the lock arm elastically in a direction away from the outer surface of the one of male and female connector housings, thereby producing a disengaging force urging the male and female connector housings away from each other, and at least one retaining portion formed on the arm engagement portion, wherein when the male and female connector housings are completely fitted to each other so that elastic deformation of the lock arm by the push-out guide surface is canceled, the retaining portion retains the engagement projection, wherein engagement of the engagement projection with the retaining portion is canceled by elastic deformation of the lock arm in a direction substantially parallel to the outer surface of the other one of male and female connector housing.
In the above construction, the lock arm and the arm engagement portion are formed on the outer surfaces of the connector housings, respectively, and those portions of the lock arm and the arm engagement portion, engaged with each other, are exposed to the outsides of the two connector housings.
Therefore, the condition of engagement of the lock arm with the arm engagement portion can be easily confirmed with the eyes. When canceling the locked condition of the two connector housings, the lock arm can be elastically deformed by operating or manipulating the pivotally-movable distal end portion of this lock arm, and therefore the operating force, required for canceling the locked condition, can be reduced.
The lock arm is elastically deformed in the direction away from the outer surface of the connector housing so as to produce the disengaging force during the connector fitting operation. On the other hand, when canceling the locked condition of the two connector housings, the lock arm is elastically deformed in the direction generally parallel to the outer surface of the connector housing.
Therefore, a clearance between the outer surface of the connector housing and the lock arm can be minimized, and therefore the vertical dimension of the pair of connectors can be reduced.
For example, the cross-sectional shape or other of the lock arm is determined such that the lock arm has a high elastic coefficient (elasticity modulus) in the direction away from the outer surface of the connector housing, but has a low elastic coefficient in the direction generally parallel to the outer surface of the connector housing. With this arrangement, the disengaging force for preventing a half-fitted condition can be set to a sufficiently-large value while the operating force for canceling the locked condition can be kept to a small level.
In the above connector lock mechanism, it is preferable that the engagement projection is formed on a lateral side surface of the lock arm. In the above connector lock mechanism, it is preferable that the push-out guide surface has a smoothly slanting portion.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an exploded, perspective view of male and female connector housings provided with a first embodiment of a connector lock mechanism of the present invention;
FIG. 2
is a front-elevational view of the male and female connector housings of
FIG. 1
;
FIGS. 3A
to
3
D are a front-elevational view of the male and female connector housings, showing an operation for fitting the two connector housings together,
FIG. 3A
showing a condition immediately before the male and female connector housings begin to be fitted together,
FIG. 3B
showing an initial stage of the fitting connection between the male and female connector housings,
FIG. 3C
showing a half-fitted condition of the male and female connector housings, and
FIG. 3D
showing a completely-fitted condition of the male and female connector housings;
FIG. 4
is a plan view of the male and female connector housings of
FIG. 3D
;
FIG. 5
is a front-elevational view of the male and female connector housings, showing a condition in which a lock arm is depressed so as to cancel a locked condition;
FIG. 6
is a plan view of the male and female connector housings, showing a condition in which the lock arm is elastically deformed in a direction generally parallel to the outer surface of the connector housing so as to cancel the locked condition;
FIG. 7
is an exploded, perspective view of male and female connector housings provided with a second embodiment of a connector lock mechanism of the present invention; and
FIG. 8
is an exploded, perspective view of male and female connector housings provided with a related connector lock mechanism.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
One preferred embodiment of a connector lock mechanism of the present invention will now be describe in detail with reference to the drawings.
As shown in
FIGS. 1 and 2
, in the first embodiment of the connector lock mechanism of the present invention, a lock arm
15
is formed on an outer surface of a male connector housing
12
(one of male and female connector housings
12
and
13
to be fitted together in a male-female manner), and an arm engagement portion
17
is formed on an outer surface of the female connector housing (the other connector housing)
13
, and when the two connector housings are completely fitted together, the arm engagement portion
17
retains an engagement projection
15
b
of the lock arm
15
to lock the two connector housings together in a connected condition.
Female connection terminals (not shown) are received respectively in terminal receiving chambers
12
a
formed in the male connector housing
12
, and male connection terminals
20
are received respectively in terminal receiving chambers formed in the female connector housing
13
.
The lock arm
15
includes an elastic arm
15
a
extending in a connector housing-fitting direction (indicated by arrow A in FIG.
2
), and the engagement projection
15
b
is formed on this elastic arm
15
a
. In this embodiment, the elastic arm
15
a
extends upwardly from a distal end portion of the male connector housing
12
, and further extends toward a proximal end thereof. In this embodiment, the engagement projection
15
b
projects from one side edge of the elastic arm
15
a
toward the outer surface of the housing.
The arm engagement portion
17
has a push-out guide surface
17
a
, and a retaining portion
17
b
. When the two connector housings are in a half-fitted condition, the push-out guide surface
17
a
abuts against the engagement projection
15
b
to elastically deform the lock arm
15
in a direction (indicated by arrow B in
FIG. 2
) away from the outer surface of the male connector housing
12
, thereby producing a disengaging force urging the two connectors away from each other. When the two connector housings are completely fitted together, so that the elastic deformation of the lock arm
15
by the push-out guide surface
17
a
is canceled, the retaining portion
17
b
retains the engagement projection
15
b
. The arm engagement portion
17
is provided in an offset manner so as to be opposed to the engagement projection
15
b
formed on and projecting from the one side edge of the elastic arm
15
a.
The push-out guide surface
17
a
is defined by a smoothly-curved surface slanting upwardly from the distal end of the female connector housing
13
toward the proximal end thereof. The retaining portion
17
b
is defined by a vertical surface provided at a rear end of the push-out guide surface
17
a.
In this embodiment, the engagement of the engagement projection
15
b
with the retaining portion
17
b
can be canceled by elastically deforming the elastic arm
15
a
away from the arm engagement portion
17
in a direction generally parallel to the outer surface (upper surface) of the female connector housing
13
.
In this embodiment, an arm deformation prevention portion
18
is provided on that side of the female connector housing
13
opposite to the arm engagement portion
17
. At the time of fitting the two connector housings together, this arm deformation prevention portion
18
abuts against the other side edge of the elastic arm
15
a
to prevent this elastic arm
15
a
from being accidentally elastically deformed in a direction away from the arm engagement portion
17
.
Next, the operation for fittingly connecting the male and female connector housings
12
and
13
together will be described with reference to
FIGS. 3A
to
3
D.
First, as the front end portion of the male connector housing
12
is pushed or inserted into a front opening in the female connector housing
13
as shown in
FIGS. 3A and 3B
, the engagement projection
15
b
of the lock arm
15
slides over the push-out guide surface
17
a
of the arm engagement portion
17
, so that the elastic arm
15
a
is elastically deformed away from the outer surface of the female connector housing
13
, as shown in FIG.
3
C.
Therefore, a disengaging force, urging the two connector housings
12
and
13
away from each other, is produced between the half-fitted connector housings
12
and
13
by the resilient force of the thus-elastically deformed elastic arm
15
a.
Therefore, when this pushing operation is stopped in this half-fitted condition, the two connector housings
12
and
13
are pushed back away from each other in their respective disengaging directions (opposite to their fitting directions), so that this half-fitted condition can be easily detected.
Then, when this connector fitting operation further proceeds, the male and female connector housings
12
and
13
are completely fitted together. More specifically, the engagement projection
15
b
slides past the push-out guide surface
17
a
, so that the elastic deformation of the elastic arm
15
a
is canceled as shown in
FIG. 3D
, and as a result of cancellation of elastic deformation of this elastic arm
15
a
, the engagement projection
15
b
is returned to its proper position, and is retained by the retaining portion
17
b
of the arm engagement portion
17
, so that the male and female connector housings
12
and
13
are locked together in a fittingly-connected condition.
When the male and female connector housings
12
and
13
are locked together in a fittingly-connected condition as shown in
FIG. 3D
, the elastic arm
15
a
is held between the arm deformation prevention portion
18
and the arm engagement portion
17
as shown in
FIG. 4
, and in so far as this condition is maintained, the elastic arm
15
a
can not be elastically deformed even in the direction away from the arm engagement portion
17
in generally parallel relation to the outer surface (upper surface) of the female connector housing
13
.
Namely, even when an external force acts on the elastic arm
15
a
in a direction generally parallel to the outer surface of the housing, the elastic displacement of the elastic arm
15
a
in the direction generally parallel to the outer surface of the housing is prevented by the arm engagement portion
17
and the arm deformation prevention portion
18
, and therefore the locked condition will not be accidentally canceled.
For canceling the locked condition of the male and female connector housings
12
and
13
, the elastic arm
15
a
is pressed in a direction of arrow C to be elastically deformed into such a height or level as not to interfere with the arm deformation prevention portion
18
, as shown in
FIG. 5
, and in this condition, the elastic arm
15
a
is further elastically deformed in the direction (indicated by arrow D) away from the arm engagement portion
17
in generally parallel relation to the outer surface of the housing, as shown in FIG.
6
. As a result, the engagement of the engagement projection
15
b
with the retaining portion
17
b
is canceled, and therefore the two connectors can be disengaged from each other by pulling the male and female connector housings
12
and
13
away from each other.
As described above, in the connector lock mechanism of this embodiment, when fitting the male and female connector housings
12
and
13
together, the elastic arm
15
a
is elastically deformed by the push-out guide surface
17
a
, and the disengaging force, urging the two connector housings away from each other, is produced between the push-out guide surface
17
a
and the lock arm
15
by the resilient force of the elastically-deformed elastic arm
15
a
. Any spring member or the like, separate from the connector housings, is not used for producing the disengaging force to disengage the two connectors from each other, and therefore the connector half-fitting prevention is achieved at a low cost without increasing the number of the component parts.
The lock arm
15
and the arm engagement portion
17
are formed on the outer surfaces of the connector housings, respectively, and those portions of the lock arm
15
and the arm engagement portion
17
, engaged with each other, are exposed to the outsides of the male and female connector housings
12
and
13
.
Therefore, the condition of engagement of the lock arm
15
with the arm engagement portion
17
can be easily confirmed with the eyes. When canceling the locked condition of the male and female connector housings
12
and
13
, the lock arm
15
can be elastically deformed by operating or manipulating the pivotally-movable distal end portion of this lock arm, and therefore the operating force, required for canceling the locked condition, can be reduced.
The lock arm
15
is elastically deformed in the direction away from the outer surface of the female connector housing
13
so as to produce the disengaging force during the connector fitting operation as shown in FIG.
3
C. On the other hand, when canceling the locked condition of the male and female connector housings
12
and
13
, the lock arm
15
is elastically deformed in the direction generally parallel to the outer surface of the female connector housing
13
.
Therefore, a clearance between the outer surface of the female connector housing
13
and the lock arm
15
can be minimized, and therefore the vertical dimension of the male and female connectors can be reduced.
Namely, when canceling the locked condition of the male and female connector housings
12
and
13
, the lock arm
15
need only to be elastically deformed toward the outer surface of the female connector housing
13
, that is, into such a level as not to interfere with the arm deformation prevention portion
18
, and unlike the lock arm of the related art, this lock arm
15
does not need to be much elastically deformed toward the outer surface of the female connector housing
13
so as to be disengaged from the engagement portion.
For example, the cross-sectional shape or other of the elastic arm
15
a
is determined such that the elastic arm
15
a
has a high elastic coefficient (elasticity modulus) in the direction away from the outer surface of the female connector housing
13
, but has a low elastic coefficient in the direction generally parallel to the outer surface of the female connector housing
13
. With this arrangement, the disengaging force for preventing the half-fitted condition can be set to a sufficiently-large value while the operating force for canceling the locked condition can be kept to a small level.
The connector lock mechanism of the present invention is not limited to the first embodiment, but can be suitably modified within the scope of the present invention.
For example, a pair of male and female connectors, provided with a second embodiment of a connector lock mechanism of the present invention, are shown in
FIG. 7. A
lock arm
25
, formed on an outer surface of a male connector housing (one connector housing)
22
includes a pair of parallel elastic arms
25
a
and
25
a
spaced a predetermined distance from each other, and a pair of engagement projections
25
b
and
25
b
formed on and projecting from outer side edges of the two elastic arms
25
a
and
25
a
, respectively. A pair of arm engagement portions
27
and
27
, corresponding respectively to the pair of elastic arms, are formed on an outer surface of a female connector housing (the other connector housing)
23
.
As a front end portion of the male connector housing
22
is pushed or inserted into a front opening in the female connector housing
23
, the engagement projections
25
b
of the lock arm
15
slide over push-out guide surfaces
27
a
of the arm engagement portions
27
, so that the elastic arms
25
a
are elastically deformed away from the outer surface of the female connector housing
23
.
Therefore, a disengaging force, urging the two connector housings
22
and
23
away from each other, is produced between the half-fitted connector housings
22
and
23
by the resilient force of the thus-elastically deformed elastic arms
25
a
, as described above for the male and female connector housings
12
and
13
of the first embodiment, and therefore similar effects can be obtained.
In the connector lock mechanism of this second embodiment, however, when canceling the locked condition of the male and female connector housings
22
and
23
, the pair of elastic arms
25
a
and
25
a
are elastically deformed toward each other (as indicated by arrows E and F in
FIG. 7
) by the fingers, so that the pair of engagement projections
25
b
and
25
are disengaged from retaining portions
27
b
of the two arm engagement portions
27
.
In the above embodiments, although the pushout guide surface
17
a
(
27
a
) for elastically deforming the elastic arm
15
a
(
25
a
) during the fitting connection between the male and female connector housings is the curved surface, this push-out guide surface can be formed into a slanting (tapering) surface inclined at a suitable angle, and also can be formed into any other suitable shape so that the optimum disengaging force can be obtained in accordance with a change in the force of fitting between the male and female connection terminals mounted in the connector housings.
In the lock mechanism of the present invention, the lock arm and the arm engagement portion are formed on the outer surfaces of the connector housings, respectively, and those portions of the lock arm and the arm engagement portion, engaged with each other, are exposed to the outsides of the two connector housings.
Therefore, the condition of engagement of the lock arm with the arm engagement portion can be easily confirmed with the eyes. When canceling the locked condition of the two connector housings, the lock arm can be elastically deformed by operating or manipulating the pivotally-movable distal end portion of this lock arm, and therefore the operating force, required for canceling the locked condition, can be reduced.
The lock arm is elastically deformed in the direction away from the outer surface of the connector housing so as to produce the disengaging force during the connector fitting operation. On the other hand, when canceling the locked condition of the two connector housings, the lock arm is elastically deformed in the direction generally parallel to the outer surface of the connector housing.
Therefore, a clearance between the outer surface of the connector housing and the lock arm can be minimized, and therefore the vertical dimension of the pair of connectors can be reduced.
For example, the cross-sectional shape or other of the lock arm is determined such that the lock arm has a high elastic coefficient (elasticity modulus) in the direction away from the outer surface of the connector housing, but has a low elastic coefficient in the direction generally parallel to the outer surface of the connector housing. With this arrangement, the disengaging force for preventing a half-fitted condition can be set to a sufficiently-large value while the operating force for canceling the locked condition can be kept to a small level.
Therefore, there can be provided the connector lock mechanism in which a half-fitted condition is positively prevented, and the condition of engagement of the lock arm with the arm engagement portion can be confirmed with the eyes, and besides the operating force, required for canceling the locked condition of the two connector housings, can be reduced.
Claims
- 1. A connector lock mechanism comprising:an elastically-deformable lock arm formed on an outer surface of one of male and female connector housings which are fittable to each other, the lock arm extending in a connector fitting direction; at least one engagement projection formed on the lock arm; at least one arm engagement portion formed on an outer surface of the other one of male and female connector housings, wherein when the male and female connector housings are completely fitted to each other, the arm engagement portion retains the engagement projection of the lock arm to lock the male and female connector housings; at least one push-out guide surface formed on the arm engagement portion, wherein when the male and female connectors housings are in a half-fitted condition, the push-out guide surface deforms the lock arm elastically in a direction away from an outer surface of the one of male and female connector housings away from each other; and at least one retaining portion formed on the arm engagement portion, wherein when the male and female connector housings are completely fitted to each other so that elastic deformation of the lock arm by the push-out guide surface is canceled, the retaining portion retains the engagement projection, wherein engagement of the engagement projection with the retaining portion is canceled by elastic deformation of the lock arm in a direction substantially parallel to the outer surface of the other one of male and female connector housing; wherein cancellation of the engagement of the engagement projection with the retaining portion further comprises elastic deformation of the lock arm in a direction toward the outer surface of one of the male and female connector housing.
- 2. The connector lock mechanism of claim 1, wherein the engagement projection is formed on a lateral side surface of the lock arm.
- 3. The connector lock mechanism of claim 1, wherein the push-out guide surface has a smoothly slanting portion.
- 4. The connector lock mechanism of claim 1, wherein the elastic coefficient of the lock arm is greater in the direction away from the outer surface of one of the male and female connector housing than in a direction substantially parallel to the outer surface of one of the male and female connector housing.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-243596 |
Aug 1999 |
JP |
|
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
5830000 |
Shifflett et al. |
Nov 1998 |
A |
Foreign Referenced Citations (6)
Number |
Date |
Country |
19950954 |
May 2000 |
DE |
60-77 |
Jan 1985 |
JP |
2-57578 |
Apr 1990 |
JP |
10-112356 |
Apr 1998 |
JP |
0 949 717 |
Oct 1999 |
JP |
11-297423 |
Oct 1999 |
JP |