The present application is based on, and claims priority from Japanese Patent Application No. 2014-259767, filed Dec. 24, 2014, the disclosure of which is hereby incorporated by reference herein in its entirety.
Technical Field
The present application relates to a connector manufacturing method and a connector in which a connector housing is insert-molded with male terminals as insert components.
Related Art
As a conventional connector, one described in JP 2011-251494A is proposed. The conventional connector includes male terminals to be connected with female terminals of a counterpart connector and a connector housing which is insert-molded with the male terminals as the insert components.
As a manufacturing method of such a connector, various methods have been proposed. As one of the connector manufacturing methods of a conventional example, there is one as illustrated in
With, the above structure, when arranging the male terminals 101 at predetermined positions relative to the metal mold 120, counterpart-terminal connecting parts 102 of the male terminals 101 are inserted into the terminal positioning part 121 of the metal mold 120, and the male terminals 101 are positioned in the metal mold 120 by abutting the entire outer peripheral surfaces of the counterpart-terminal connecting parts 102. Subsequently, after resin is filled within the cavity formed between the metal mold 120 and the male terminals 101 with the male terminals 101 as the insert components, the counterpart-terminal connecting parts 102 are drawn out from the terminal positioning part 121 and the molded item is separated from within the metal mold 120.
In the connector manufacturing method of the conventional example, the terminal positioning part 121 of the metal mold 120 abuts the entire outer peripheral surfaces of the counterpart-terminal connecting parts 102 of the male terminals 101 for positioning. Therefore, when inserting the counterpart-terminal connecting parts 102 of the male terminals 101 into the terminal positioning part 121 or when drawing out the counterpart-terminal connecting parts 102 of the male terminals 101 from the terminal positioning part 121, the terminal positioning part 121 slides on the entire outer peripheral surfaces of the male terminals 101. Therefore, there is a possibility that scratches 103 are formed on contact places of the counterpart-terminal connecting parts 102 with female terminals 130 due to the sliding of the terminal positioning part 121.
The present application considers the above circumstances and aims to provide a connector manufacturing method and a connector which can prevent a contact place of a male terminal with a counterpart female terminal from being damaged, and which can keep an electrical contact resistance between the male terminal and the counterpart female terminal within a predetermined range.
A connector manufacturing method according to a first aspect of the present application includes: a terminal setting step positioning a male terminal in a metal mold by inserting a counterpart-terminal connecting part of the male terminal into a terminal positioning part of the metal mold, the metal mold including a cavity for a connector housing and the terminal positioning part that positions the male terminal, the terminal positioning part including a clearance part that forms an opening with a contact place with a female terminal of a counterpart connector at the time of insertion or drawing out of the male terminal; a resin filling step filling resin in the cavity with the male terminal as an insert component; and a molded item takeout step, after the resin filling step, drawing out the counterpart-terminal connecting part from the terminal positioning part and separating a molded item from within the metal mold.
A connector according to a second aspect of the present application includes a male terminal including a counterpart-terminal connecting part which is to be connected with a female terminal of a counterpart connector, and a connector housing that is insert-molded with the male terminal as an insert component. A metal mold for molding the connector housing includes a cavity for the connector housing and a terminal positioning part that positions the male terminal. The terminal positioning part includes a clearance part that forms an opening with a contact place with the female terminal at the time of insertion or drawing out of the male terminal. The connector is manufactured by a terminal setting step positioning the male terminal in the metal mold by inserting the counterpart-terminal connecting part into the terminal positioning part; a resin filling step filling resin in the cavity with the male terminal as an insert component; and a molded item takeout step, after the resin filling step, drawing out the counterpart-terminal connecting part from the terminal positioning part and separating a molded item from within the metal mold.
According to the present application, since the terminal positioning part includes the clearance part that forms an opening with a contact place with the female terminal at the time of insertion or drawing out of the male terminal, the contact place of the male terminal which comes into contact with the female terminal does not become damaged due to the sliding in the process of insertion of the male terminal into the terminal positioning part or drawing out of the male terminal from the terminal positioning part. Therefore, it is possible to keep the electrical contact resistance between the male terminal and the counterpart female terminal within a predetermined range.
A connector according to an embodiment will be explained by referring to
A connector 1 according to the embodiment is provided to extend in the direction from front to rear (horizontal direction of
Each of the male terminals 2 is formed of a long narrow metal plate. Each of the male terminals 2 includes a counterpart-terminal connecting part 3 that passes through the rear wall part 12 and protrudes forward from the rear wall part 12. The counterpart-terminal connecting part 3 is connected with a corresponding female terminal 20 of a counterpart connector.
When a connector housing (not illustrated) of the counterpart connector is inserted into the connector housing 10 from the front side, and the female terminals 20 of the counterpart connector are fitted with the male terminals 2 as illustrated in
At the time of manufacturing the connector 1 according to the embodiment, a metal mold 30 as illustrated in
With the above structure, when manufacturing the connector 1, first as a terminal setting process, as illustrated in
As described above, according to the embodiment, at the terminal positioning part 31 of the metal mold 30, by the clearance parts 32 the openings G are formed with the contact place P1 of the male terminal 2 which comes into contact with the female terminal 20. Therefore, the contact place P1 of the male terminal 2 which comes into contact with the female terminal 20 does not become damaged due to the sliding in the process of insertion of the male terminal 2 into the terminal positioning part 31 or in the process of drawing out of the male terminal 2 from the terminal positioning part 31. Accordingly, since a flat contact surface is formed at the contact place P1 of the male terminal 7, it is possible to keep the electrical contact resistance between the male terminal 2 and the counterpart female terminal 20 within a predetermined range. Further, since the terminal positioning part 31 of the metal mold 30 comes into contact with the other place P2 of the male terminal 2 which does not come into contact with the contact part 21 of the female terminal 20, there is a possibility that scratches 4 that extend in the sliding direction (the direction from front to rear) are formed on the other place P2 due to the sliding of the terminal positioning part 31.
Number | Date | Country | Kind |
---|---|---|---|
2014-259767 | Dec 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2770011 | Kelly | Nov 1956 | A |
4588912 | Shinmura | May 1986 | A |
5777851 | Yamamoto | Jul 1998 | A |
20090186270 | Harada | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2011-251494 | Dec 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20160190760 A1 | Jun 2016 | US |