The present invention relates to telecommunication systems and, in particular, patch panels for use in such systems. The invention is concerned more especially, but not exclusively, with fibre-optic telecommunication systems.
Patch panels are employed in telecommunication systems to enable the interconnections provided by a system to be changed as required. A patch panel typically has connector ports on the front side into which so-called patch cords can be plugged as required, and connector ports at the rear of the panel into which longer and more permanent cables are usually connected. Patch panels are often arranged on racks so that the connector ports on the front side of the panel are exposed and readily accessible. The connector ports at the rear of the panel may be accessible from the rear of the rack but, if that is difficult or impossible, provision must be made for access from the front of the panel.
Communication systems employing fibre-optic connectivity in the form of fibre-optic cables and connection devices are found, for example, in data centres where they are used to transport traffic between various components of the computer equipment in the data centre and between the data centre and the outside world. They are also used in so-called FTTx applications, in which optical signals are routed from a central office to locations such as the premises or homes of customers. A known form of patch panel for fibre-optic communication systems comprises a tray that can be pulled out, in the manner of a drawer, from the front of the rack in which the panel is installed, to provide access to the rear connector ports. In some cases, the connector ports are provided on a plurality of modules each of which can then be taken out individually from the opened tray as required. Examples of such patch panels are the “Fiber Optic Modular Patch Panel” available from RiT Technologies Ltd. of Tel Aviv, Israel, and the “Modular Sliding Tray Patch Panel” available from Hellermann Tyton Data Ltd of Brackmills, Northampton, England.
Another form of patch panel employing modules in the form of pre-terminated cassettes is described in U.S. 2008/089656 (Wagner et al).
In accessing connector ports at the rear of a patch panel with incoming fibre-optic cables and/or patch cords, care is required to ensure that those cables/patch cords are not subject to mechanical stresses that could disturb the alignment of the optical fibres and cause the data signals transmitted by those cables/patch cords to be changed or lost. It may also be desirable in some circumstances to minimize disruption to copper-wire cables and/or patch cords incoming to a patch panel. With that in mind, the present invention is concerned with the provision of connector modules for use in patch panels (more especially, but not exclusively, fibre-optic patch panels) that enable connector ports at the rear of a patch panel to be accessed without substantial risk of disturbing the connections at the rear of the panel and any already-connected patch cords at the front of the panel.
The present invention provides a connector module for use in a telecommunications patch panel, the module comprising a front connector port positioned in the housing to receive a patch cord incoming to the module from the front side of a patch panel; and a cable-attachment member to which a cable incoming to the module from the rear side of a patch panel can be secured.
The cable attachment member may extend from a housing of the connector module.
The presence of the cable attachment member in a connector module in accordance with the invention facilitates the handling of the module without disruption to any cables secured to the attachment member. Alternatively, if the module is installed in a patch panel in proximity to other connector modules, any cables secured to the attachment member are less likely to be disturbed as a result of those other modules being handled. The advantages offered by the cable attachment member are especially, but not exclusively, significant when the connector module is intended for use in a fibre-optic patch panel, or a patch panel that provides some fibre-optic connectivity.
In an embodiment of the invention, the connector module further comprises a rear connector port positioned in the housing to receive a cable incoming to the module from the rear side of the patch panel. The module may further comprise a circuit assembly within the housing to connect the front and rear connector ports. Such a module may be provided to an end user in pre-wired form. An alternative embodiment of the invention offers the end-user the possibility of selecting the circuit assembly provided within the module. The circuit assembly may, in either case, provide a direct connection between the front and rear connector ports or it may comprise a splitter, amplifier, switch, or measurement module of any suitable type known for use in telecommunication systems. In the particular case in which the connector module is a fibre-optic connector module, the circuit assembly provided within the module may connect single-fibre connector ports at the front of the module with either single-fibre or multi-fibre connector ports at the rear of the module.
A patch panel comprising a connector module in accordance with the invention is advantageously constructed to enable the module to be withdrawn from the front of the panel, together with the cable-attachment member and any cable(s) secured thereto, without disturbing any adjacent connector modules. The patch panel may, for example, be in the form of a tray on which a plurality of connector modules in accordance with the invention can be located, each module being removable from the tray, together with the cable-attachment member and any cable(s) secured thereto, without moving the tray and disturbing any of the other connector modules on the tray. Such an arrangement allows any of the connector modules to be removed from the patch panel without disruption to cables incoming to that module and secured to its cable-attachment member, and without disruption to the already-installed connections to the other connector modules on the tray and any related data transmission that is in progress.
By way of example only, embodiments of the invention will be described with reference to the accompanying drawings, in which:
In use, four connector modules (not shown in
A cable-attachment frame 23 extends rearwardly from the housing 17 of the connector module 15, providing a structure to which multi-fibre cables (not shown in
Any of the modules 15 installed in the patch panel 1 can be accessed as required by removing the fasteners 33 and pulling the module out the panel through its respective aperture 11 (followed by the attached cables 29) as illustrated in
Effective performance of the cables 29 is further ensured by the provision of a rounded rear edge 37 on the base 5 of the patch panel 1. The shape of the rounded edge 37 is selected to ensure that any cable 29 that is passed around the back of the tray 5, as illustrated in
It will be appreciated that the shape of the attachment frame 23 of the connector module can be modified to take account of the situation in which the module is used.
An alternative form of connector module 41 is shown in
The connector module 41 of
It will be appreciated that the type and quantity of connector ports provided at the front of the connector module and, where applicable, at the rear of the module would be selected having regard to the situation in which the module is to be used. The number of connector modules 15, 15′, 41 can also be varied and, correspondingly, the number of apertures 11 in the front face 7 of the patch panel 1.
It will further be appreciated that the patch panel 1 and connector modules 15, 15′, 41 described above are not restricted to use in fibre-optic communication systems but could also be used in copper wire communication systems, or systems employing both fibre-optic and copper-wire connectivity, when it is desired to reduce disruption to the already-installed connections to a patch panel during modification/installation of adjacent connections and/or to facilitate handling of any of the connector modules, especially when accessing cabling at the rear of the patch panel.
Number | Date | Country | Kind |
---|---|---|---|
0917498.8 | Oct 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/51607 | 10/6/2010 | WO | 00 | 3/15/2012 |