1. Field of the Invention
The invention relates to a construction of mounting a connector on a mounting plate such as a bracket.
2. Description of the Related Art
U.S. Pat. No. 7,435,125 discloses a connector for electrically connecting a towing car and a car to be towed. The connector for the towing car is mounted on a bracket provided vertically on a lower portion of a rear end of the body of the towing car.
The connector for the towing car has a fit-in portion with an opening and a closing lid disposed at a rear end of the fit-in portion. A mating connector of the car to be towed is fit in the fit-in portion. The fit-in portion is inserted into a mounting hole formed in the bracket from a front end of the connector. A flange is formed on the peripheral surface of the connector and is capable of contacting the edge of the mounting hole of the bracket from the rear of the bracket. A metal elastic locking piece also is mounted on the peripheral surface of the connector and can lock the edge of the mounting hole from the front of the bracket. The elastic locking piece extends rearward from the front end thereof.
The front end of the connector for the towing car is inserted into the mounting hole of the bracket from the rear and the bracket causes the locking piece of the connector to displace elastically. The elastic locking piece elastically returns to its original state when the flange contacts the rear of the bracket at the edge of the mounting hole. The front end of the elastic locking piece locks the edge of the mounting hole from the front. Thus, the connector for the towing car is mounted on the vertically disposed bracket.
The lower end of the elastic locking piece on the connector of the conventional connector-mounting construction forms a short cantilevered insertion portion facing the front of the elastic locking piece. An insertion groove faces rearward on the periphery of the connector. The insertion portion is press fit into the insertion groove so that the elastic locking piece is cantilevered rearward on the connector.
A pull force directed rearward toward the car to be towed may act on the above-described connector for the towing car. As noted above, the connector for the towing car is mounted on the bracket with the elastic locking piece locking the front of the bracket at edge of the mounting hole. The pull force applies a load to the elastic locking piece in a direction to remove the insertion portion from the insertion groove. The insertion portion is press-fit into the insertion groove with a wedge at the side edge of the insertion portion cutting into the wall of the insertion groove. However, there is a fear that the elastic locking piece will be removed from the insertion groove if the connector is pulled with a great force.
The present invention has been completed in view of the above-described situation. It is an object of the invention to allow a locking piece to hold a connector with a great force and the connector to be mounted on a bracket at a high mounting strength.
The invention relates to a connector-mounting construction including a mounting plate and a connector. The mounting plate has a bracket with a mounting hole. The connector has opposite first and second ends. The first end of the connector has a fit-in portion to be fit on a mating connector. The second end of the connector is configured to be inserted into the mounting hole of the mounting plate from front side of the mounting plate. A flange is provided on a periphery of the connector and can contact the front surface of the mounting plate at an edge adjacent the mounting hole in an insertion direction of the connector. At least one metal locking piece is disposed on the periphery of the connector and extends along the insertion direction. The locking piece is elastically displaceable and is capable of locking a rear part of the mounting plate adjacent the mounting hole. The second end of the connector is inserted into the mounting hole of the mounting plate, thereby causing the locking piece to deform elastically. The locking piece elastically returns to an original state thereof when the flange contacts the front of the mounting plate and locks to the rear of the mounting plate for mounting the connector on the mounting plate. An insertion portion is formed at a proximal end (lower end) of the locking piece by perpendicularly bending the locking piece. An insertion groove is formed on the periphery of the connector and faces in a radial direction approximately orthogonal to the insertion direction of the connector. The locking piece is disposed on the periphery of the connector in the posture along the insertion direction of the connector with the insertion portion being held inside the insertion groove after the insertion portion is inserted therein.
In the above-described construction, the insertion portion of the locking piece is inserted into the insertion groove in the direction orthogonal to the insertion and removal directions of the connector. Therefore, the insertion portion is received by the insertion groove and is in contact with the bottom of the insertion groove even though a large force acts on the connector. Accordingly, the locking piece hardly slips off the insertion groove and the connector can be mounted on the bracket at a high mounting strength.
The insertion groove may be formed on the flange of the connector. Thus, the insertion groove may be formed deeply by utilizing a dead space of the flange, thereby preventing more strongly preventing the locking piece from slipping off the insertion groove.
The insertion portion of the locking piece preferably is press fit into the insertion groove to simplify mounting the locking piece on the connector.
The at least one locking piece preferably comprises two locking pieces provided at both sides of an axial line of the connector. The connector is inserted into the mounting hole of the mounting plate with the connector elastically displacing both locking pieces. Both locking pieces elastically return to the original state when the flange contacts front of the mounting plate at the edge of the mounting hole, thus locking to the rear of the mounting plate. Hence, the connector can be mounted on the bracket in one movement.
The locking piece may be provided at only one position. A projection may be provided on the periphery of the connector at a position opposite to the position where the locking piece is disposed with respect to an axial line of the connector. Thus, the mounting plate may be sandwiched between the projection and the flange
The connector is mounted on the bracket by inserting one side of the connector into the mounting hole of the mounting plate with the connector taking an oblique posture to sandwich a predetermined position of the edge of the mounting hole between the flange and the projection. The connector then is pivoted about a sandwiching portion and into a vertical posture. Thus, the connector is inserted deep into the mounting hole while elastically displacing the locking piece and turning the oblique posture to the vertical posture. The locking piece elastically returns to its original state when the flange aligns vertically and contacts the front of the mounting plate. Thus, the locking piece engages the edge of the mounting plate opposite to the edge that has been sandwiched between the flange and the projection. In this manner, the connector is mounted on the bracket. This construction is convenient in mounting a connector having a form in which an electric wire is drawn from the other end by bending the electric wire sideways on the bracket.
A guide preferably is provided at the side of the periphery of the connector that has the locking piece. The guide slides in contact with the edge of the mounting hole of the mounting plate when the connector is pivoted about a sandwiching portion between the flange and the projection to guide a pivotal motion of the connector. Thus, the connector can be pivoted smoothly about the sandwiching portion and mounted promptly on the bracket.
The insertion portion of the locking piece is not likely to slip off the insertion groove of the connector. Thus the connector can be mounted on the bracket at a high mounting strength.
A connector in accordance with the invention is identified by the numeral 20 in
The bracket 10 is formed by press-molding a metal plate to define an inverted L-shape. More particularly, the bracket 10 has a vertically aligned body plate 11 and a mounting portion 11A that is bent to extend perpendicularly forward from the upper end of the body plate 11. The mounting portion 11A of the bracket 10 is mounted on a lower surface of a rear end of the car body Va at a position near and below the rear bumper Vb so that the body plate 11 extends vertically and along a width direction of the car body Va.
A generally rectangular mounting hole 12 is formed through the body plate 11, as shown in
The connector 20 has a housing 21 made of a synthetic resin. The housing 21 has a front end at the top in
A rear fit-in portion 23 is formed at a rear end of the housing 21. A mating connector (not shown) connected with a terminal of a wire harness drawn from the trailer can be fit in and connected to the rear fit-in portion 23. As shown in
A front fit-in portion 25 is formed at the front end of the housing 21 and extends perpendicularly to the left, as viewed from the rear. A connector connected with a wire harness drawn from the car V is fit in and connected to the front fit-in portion 25.
A terminal fitting (not shown) is mounted inside the housing 21 between the front fit-in portion 25 and the rear fit-in portion 23.
A flange 27 projects out from a peripheral surface of the housing 21 at a position near the rear end of the housing 21 and is more than twice as thick as the bracket 10. As shown in
As shown in
An outwardly flared inviting portion 30A is defined at an entrance to the sandwiching portion 30 by forming chamfers at a corner of the projection 28 and at a corner of a front surface of the flange 27 opposed to the projection 28.
A locking member 50 is mounted on a front surface of a right edge of the flange 27 as viewed from the rear. The locking member 50 is formed by press-molding a metal plate, such as spring steel. As shown in
An insertion plate 60 joins the arms 52 and is bent perpendicularly down from the lower ends of the arms 52 so that an upper edge of the insertion plate 60 is continuous with an end of each arm 52. The insertion plate 60 is a rectangle that is slightly wider than the locking piece 51. A seat 61 projects from a central portion of the upper edge of the insertion plate 60 between the arms 52 and is flush with the insertion plate 60.
As shown in
A mounting surface 32 for the locking member 50 is formed at the front side of the flange 27 and at the right side of the housing 21. The mounting surface 32 is at a central portion of the flange 27 in a width direction (vertical direction in
An insertion groove 35 is formed at a bottom portion of the mounting concavity 33 for receiving the insertion portion 60 of the locking member 50. The insertion groove 35 extends from left and right side walls thereof to a rear wall thereof. Additionally, the insertion groove 35 has a height slightly larger than the thickness of the insertion portion 60, as shown in
A wide portion 36 is formed at approximately a front half of the insertion groove 35 for almost tightly receiving the cut-into portion 64 of the insertion portion 60. A narrow portion 37 is formed at the rear of the insertion groove 35 for almost tightly receiving the front of the insertion portion 60 therein. A tapered portion 38 is formed between the wide portion 36 and the narrow portion 37 and becomes gradually narrower toward the rear end of the insertion groove 35.
Two guide walls 40 are formed on a front side of a portion of the flange 27 that projects on a right peripheral surface of the housing 21. The guide walls 40 align with side edges of the mounting concavity 33 and function to guide a pivotal motion of the connector 20 when inserting the connector 20 into the mounting hole 12, as explained below.
A circular arc-shaped portion 41 is defined on approximately one half of each guide wall 40 near the flange 27, as shown in
The locking member 50 initially is mounted on the connector 20. More particularly, the insertion portion 60 of the locking member 50 is inserted into the insertion groove 35 on the flange 27 of the housing 21, as shown with arrow lines in
At this time, as shown in
The connector 20 with the locking member 50 mounted thereon is positioned so that the front fit-in portion 25 is in an oblique posture and facing sideways, as shown in
The circular arc-shaped portions 41 of the guide walls 40 strike and slide on the upper and lower ends of the to-be-locked plate 13 at the right side of the mounting hole 12, as the connector 20 pivots farther. As shown in
The right side edge of the flange 27 strikes a surface forward of the right edge of the mounting hole 12 when the connector 20 is pivoted into a vertical posture, as shown in
The connector drawn out of the car V is fit in the forwardly facing front fit-in portion 25 of the connector 20. The connector at the trailer side then is fit in and connected to the rear fit-in portion 23 with the opening and closing lid 24 opened.
The embodiment provides the following advantages.
A rearward directed pull force acts on the connector 20 when the wire harness drawn out of the trailer is pulled while the connector at the end of the wire harness is fit in the rear fit-in portion 23 of the connector 20, as shown with the arrow line of
The insertion groove 35 is formed by utilizing the flange 27, namely, a dead space, and hence the insertion groove 35 can be deep for securely preventing the locking piece 51 from slipping off the insertion groove 35.
The locking piece 51 is formed at only one side of the connector 20 and the sandwiching portion 30 is formed at the opposite side for retaining the edge of the mounting hole 12. The connector 20 is inserted into the mounting hole 12 in an oblique posture so that one side edge of the mounting hole 12 is retained by the sandwiching portion 30. The connector 20 then is pivoted about the sandwiching portion 30 and into a vertical posture. Thus, the locking piece 51 is locked elastically to the to-be-locked plate 13 at the edge of the mounting hole 12 to mount the connector 20 on the bracket 10. The connector 20 is useful for a construction that has the front fit-in portion 25 projected sideways and makes it impossible to insert the connector 20 into the mounting hole 12 with a vertical posture.
The guide wall 40 is provided at the side of the connector 20 with the lock 51 for guiding the pivotal motion of the connector 20 so that the guide wall 40 contacts the to-be-locked plate 13 at the edge of the mounting hole 12 as the connector 20 is pivoted about the sandwiching portion 30. Therefore the connector 20 can be mounted smoothly and quickly on the bracket 10.
The invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.
The locking piece may be constructed in a direction reverse to the direction in which the locking piece is constructed in the above-described embodiment. Specifically it is possible to adopt a construction in which the locking piece is extended rearward on the periphery of the connector in the shape of a cantilever from the front end of the connector in the insertion direction of the locking piece, and the extended end of the locking piece elastically locks the edge of the mounting hole at the front side (back side) thereof, with the extended end of the locking piece applied thereto.
The insertion groove into which the insertion portion of the locking piece is inserted is not limited to the flange exemplified in the above-described embodiment, but may be formed at other positions of the peripheral surface of the connector.
To unremovably insert the insertion portion of the locking piece, in addition to press fit, it is possible to use a locking construction of elastically locking the insertion portion of the locking piece with a locking piece.
In the above-described embodiment, only one side of the connector is elastically locked. But when the connector is so configured as to be inserted into the mounting hole of the bracket with the connector having a vertical posture, both sides of the connector may be locked to the locking piece. In this case, it is possible to mount the connector on the bracket in one touch.
The invention is applicable to connectors for uses other than a connector for towing a car.
The invention is applicable to a connector mounted on a panel other than a mounting plate at a lower rear end of a car.
Number | Date | Country | Kind |
---|---|---|---|
2009-116732 | May 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6695621 | Wang | Feb 2004 | B1 |
6749438 | Scheller et al. | Jun 2004 | B1 |
7331792 | Cummings et al. | Feb 2008 | B2 |
7347725 | Sakamoto | Mar 2008 | B2 |
7435125 | Cummings et al. | Oct 2008 | B2 |
20100291797 | Fujisaki | Nov 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100291789 A1 | Nov 2010 | US |