An applicant claims priority under 35 U.S.C. ยง119 of Japanese Patent Application No. JP2012-267025 filed Dec. 6, 2012.
This invention relates to a connector and, particularly, to a Universal Serial Bus (USB) connector.
For example, this type of connector is disclosed in JP-A 2008-251248 (Patent Document 1), content of which is incorporated herein by reference.
As shown in
The aforementioned connector 900 of Patent Document 1 has a problem that its size in the mating direction is large.
It is therefore an object of the present invention to provide a connector having a structure which can prevent the size of the connector from becoming larger in a mating direction.
In order to prevent the size of the connector from becoming larger in the mating direction while enabling a modification of the connector such as an addition of a contact, it is necessary to change an interface of the connector. In detail, the interface of the connector is required to be formed to correspond to both a standard interface of a mating connector and a special interface formed by modifying the standard interface.
The aforementioned interface of the connector is required to be compliant with a standard which defines a structure for maintaining a mated state of the connector with the mating connector. The aforementioned standard defines that, under the mated state, lock portions (lock protrusions) of the mating connector should be located within lock holes formed at a shell of the connector. This standard also defines a distance between the lock portions. Since the lock holes are required to receive the lock portions, an arrangement of the lock holes is also affected by this standard.
The interface of the connector is mainly formed by the shell. In general, the shell is formed by bending a metal plate. Accordingly, a modification of the interface is typically restricted by the position of the lock hole of the shell and a bending margin of the shell. For example, if the metal plate is bent in the vicinity of an edge of the lock hole, the shell might be deformed. Thus, it is generally difficult to largely modify the interface while the interface satisfies the aforementioned standard such as the positional condition of the lock hole.
According to the present invention, the position of the lock hole is not changed but the lock hole is enlarged to extend beyond the bending position of the shell. Accordingly, the metal plate can be bent without deformation of the shell. Moreover, the lock hole is able to receive the lock portion of the mating connector which is arranged in compliant with the standard. The present invention is made based on those studies.
One aspect (first aspect) of the present invention provides a first connector selectably mateable with a first mating connector and a second mating connector along a mating direction. The first mating connector has a first interface and two lock portions. The second mating connector has a second interface. The second interface has a shape partially different from the first interface in a plane perpendicular to the mating direction. The first connector comprises a contact, a holding member and a shell. The holding member holds the contact. The shell covers, at least in part, the holding member. The shell has a standard portion, a modified portion and two coupling portions. The standard portion corresponds to both the first interface and the second interface. The modified portion and the coupling portions correspond not to the first interface but to the second interface. The modified portion is apart from the standard portion in a predetermined direction perpendicular to the mating direction. Each of the coupling portions couples the standard portion and the modified portion. The shell is formed with two lock holes. The lock holes are formed to continuously extend from the standard portion to the coupling portions, respectively. The lock holes receive the lock portions under a mated state where the first connector is mated with the first mating connector. The lock holes which receive the lock portions maintain the mated state.
Another aspect (second aspect) of the present invention provides a second connector which is the first connector of the first aspect and further comprises features described below. The first mating connector comprises a plurality of first mating contacts. The second mating connector comprises a plurality of the first mating contacts, a plurality of second mating contacts and two lock portions. The second interface has an upper portion and a bulge. The bulge bulges from the upper portion in the predetermined direction. The bulge is located between the lock portions in a width direction perpendicular to both the mating direction and the predetermined direction. The shell is able to receive each of the first interface and the second interface. The coupling portions and the modified portion form a ditch. The ditch is recessed outward in the predetermined direction. The ditch receives the bulge when the second connector is mated with the second mating connector. The contacts include a plurality of first contacts and a plurality of second contacts. The first contacts are connectable to the first mating contacts, respectively. The second contacts are connectable to the second mating contacts, respectively. The holding member is provided with a plate-like portion. The plate-like portion has a first portion and a second portion located at a backside of the first portion. The second portion faces the ditch in the predetermined direction. The first contacts are located at the first portion. The second contacts are located at the second portion. When an end of the plate-like portion is seen along the mating direction, the second contacts are visible at the end of the plate-like portion.
Still another aspect (third aspect) of the present invention provides a second mating connector mateable with the second connector of the second aspect. The second mating connector comprises a mating end, a plurality of first mating contacts and a plurality of second mating contacts. The first mating contact has a first mating contact portion contactable with the first contact. The second mating contact has a second mating contact portion contactable with the second contact. A distance between the second mating contact portion and the mating end is larger than a distance between the first mating contact portion and the mating end.
An appreciation of the objectives of the present invention and a more complete understanding of its structure may be had by studying the following description of the preferred embodiment and by referring to the accompanying drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
Referring to
As shown in
Comparing
Referring to
The second mating holding member 330 holds the first mating contacts 220 and the second mating contacts 320. The first mating contacts 220 are arranged in the Y-direction. Similarly, the second mating contacts 320 are arranged in the Y-direction. In the present embodiment, the number of the second mating contacts 320 is six. Each of the first mating contacts 220 has a first mating contact portion 225 while each of the second mating contacts 320 has a second mating contact portion 325. The first mating contact portions 225 and the second mating contact portions 325 are contactable with respective contacts (described later) of the receptacle 100 and movable in the Z-direction. As best shown in
The second mating shell 340 covers the second mating holding member 330. The second interface 310 is mainly formed of the second mating shell 340. The second mating shell 340 has an upper portion 342. The bulge 315 bulges upward (in the positive Z-direction) from the upper portion 342. Similar to the first plug 200, the lock portions 250 protrude upward (in the positive Z-direction) from the upper portion 342. As best shown in
As shown in
The first contacts 110 are connected to the first mating contacts 220, respectively, under a mated state where the receptacle 100 is mated with the first plug 200 or the second plug 300. In detail, the first contacts 110 are brought into contact with the first mating contact portions 225 under the mated state, respectively. According to the present embodiment, the first contacts 110 are compliant with the USB 2.0 standard. The second contacts 120 are additional contacts in the present embodiment. The second contacts 120 are connected to the second mating contacts 320, respectively, under the mated state where the receptacle 100 is mated with the second plug 300. In detail, the second contacts 120 are brought into contact with the second mating contact portions 325 under the mated state, respectively.
As shown in
The plate-like portion 150 protrudes from the holding portion 140 along the X-direction. The plate-like portion 150 has a first portion 154 located at the negative Z-side (lower side) thereof and a second portion 156 located at the positive Z-side (upper side) thereof. Thus, the second portion 156 is located at a backside of the first portion 154. The first contacts 110 are located at the first portion 154 while the second contacts 120 are located at the second portion 156.
As shown in
As previously described, the second mating contact portion 325 of the second mating contact 320 is further apart from the mating end 305 in the X-direction than the first mating contact portion 225 of the first mating contact 220 (see
As shown in
As can be seen from
As shown in
The standard portion 172 corresponds to both the first interface 210 and the second interface 310. More specifically, the standard portion 172 has a shape which corresponds to both the first interface 210 and the second interface 310. The standard portion 172 according to the present embodiment is able to receive the first interface 210. Moreover, the standard portion 172 is able to receive the second interface 310 except the bulge 315. The modified portion 174 has a plate-like shape as a whole. The modified portion 174 is apart from the standard portion 172 in the Z-direction. Each of the coupling portions 176 couples the standard portion 172 and the modified portion 174. The modified portion 174 and the coupling portions 176 are thus coupled to each other to form a ditch 178. The ditch 178 is recessed outward (according to the present embodiment, recessed upward) in the Z-direction. The ditch 178 has a wide and reversed U-like shape when the receptacle 100 is seen along the mating direction. The ditch 178 is located above the plate-like portion 150. In other words, the second portion 156 of the plate-like portion 150 faces the ditch 178 in the Z-direction. As shown in
As shown in
The size of the ditch 178 affects the arrangement and the number of the second contacts 120. The size of the ditch 178 is preferred to be large for arranging the second contacts 120 as many as possible with as long intervals as possible. However, since the lock holes 190 are configured to receive the lock portions 250 which are apart from each other by the predetermined distance according to the standard, the positions of the lock holes 190 are also restricted by the standard. Moreover, the shell 170 is obtained by bending an intermediate metal plate after the intermediate metal plate is punched out from a single metal plate. If the intermediate metal plate is bent in the vicinity of an innermost edge 192 of the lock hole 190, the shell 170 might be deformed. Accordingly, it is not preferred to bend the intermediate metal plate at a part which includes the innermost edge 192 of the lock hole 190. As shown in
As shown in
As shown in
As described above, the receptacle 100 according to the present invention has an improved degree of freedom in modification of its interface. Accordingly, for example, it is possible to add nonstandard special contacts to the receptacle 100 by modifying the interface. According to the present invention, it is possible to avoid the size of the receptacle 100 in the mating direction becoming large when the receptacle 100 is provided with the special contacts.
The receptacle (connector) 100, the first plug (first mating connector) 200 and the second plug (second mating connector) 300 are not limited to the embodiment and the modifications which are already described. As described below, the present invention is able to be variously modified.
For example, according to the embodiment described above, the connector is a receptacle while the first and second mating connectors are plugs. However, the connector may be a plug while the first and second mating connectors may be receptacles. In this case, the receptacle, which is the first or second mating connector, is provided with lock portions while the connector, which is the plug, is formed with lock holes. Moreover, the lock holes are formed to continuously extend from a standard portion, which corresponds to both a first interface and a second interface, to respective coupling portions which correspond only to the second interface. Accordingly, it is possible to enlarge a size of a part which is formed of a modified portion and coupling portions.
In the embodiment described above, the first plug 200 comprises a structure compliant with the USB standard while the receptacle 100 and the second plug 300 are modifications of connectors compliant with the USB standard. However, the present invention is applicable to various connectors different from those connectors. For example, the present invention is applicable to a connector compliant with a standard other than the USB standard. Moreover, the present invention is applicable to a connector which is not compliant with any standard.
The present invention is applicable to a connector having a shell formed with two lock holes. The thus-configure connector may not be a USB connector. Especially, the present invention is effective when the special contacts are added to the connector having the standard contacts.
The present application is based on a Japanese patent application of JP2012-267025 filed before the Japan Patent Office on Dec. 6, 2012, the contents of which are incorporated herein by reference.
While there has been described what is believed to be the preferred embodiment of the invention, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the spirit of the invention, and it is intended to claim all such embodiments that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-267025 | Dec 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7427214 | Liao et al. | Sep 2008 | B2 |
7722407 | Momose | May 2010 | B2 |
7967641 | Miyoshi | Jun 2011 | B2 |
8152566 | Little et al. | Apr 2012 | B1 |
8882528 | Sasho et al. | Nov 2014 | B2 |
20080242149 | Konno et al. | Oct 2008 | A1 |
20110312200 | Wang et al. | Dec 2011 | A1 |
20110312223 | Wang et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
200983449 | Nov 2007 | CN |
101527398 | Sep 2009 | CN |
201741836 | Feb 2011 | CN |
201741958 | Feb 2011 | CN |
102290654 | Dec 2011 | CN |
102290655 | Dec 2011 | CN |
102570133 | Jul 2012 | CN |
102646896 | Aug 2012 | CN |
2002-315071 | Oct 2002 | JP |
2008-010378 | Jan 2008 | JP |
2008-251248 | Oct 2008 | JP |
2010-027374 | Feb 2010 | JP |
Entry |
---|
Korean Office Action dated Feb. 17, 2015, issued in counterpart Korean Application No. 10-2013-0137407. |
Taiwanese Office Action dated May 22, 2015, issued in counterpart Taiwanese Application No. 102140981. |
Chinese Office Action (and English translation thereof) dated Jul. 3, 2015, issued in counterpart Chinese Application No. 201310647829.6. |
Number | Date | Country | |
---|---|---|---|
20140162484 A1 | Jun 2014 | US |