The invention relates to a connector systems, particularly a connector system configured to dampen vibration between mating connector bodies in the connector system and assure positional relationships between mating terminals.
Sealed connector systems include compliant seals between the mating connector bodies to stop the entry of environmental contaminants, such as, dust, dirt, water or other fluids into the connector bodies of the connector system. These compliant seals also serve to reduce the relative motion between the connector bodies, and hence the electrical terminals within the connector bodies caused by vibration within a vehicle. This relative motion between terminals can cause undesirable intermittent connections or fretting corrosion. Unsealed connection systems do not have compliant seals and typically rely on connector fit/clearances to reduce movement between the connector bodies and can typically only function in lower vibration environments, such as those associated with a vehicle passenger compartment. Sealed connectors may be used in higher vibration environments where their resistance to environmental contaminants is not required; however, sealed connector systems are typically more expensive than equivalent unsealed connector systems. Therefore, it is desirable to have an unsealed connector system that can withstand higher vibration environments.
In addition, as electrical connector systems are miniaturized, the contact surface between mating electrical terminals in the connector system is smaller making alignment, especially longitudinal alignment between the terminals, more critical. Therefore, it is desirable to have a connector system that can help to assure longitudinal location of mating terminals relative to one another.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
In accordance with an embodiment of the invention, a connection system is provided. The connector system includes a first connector body that defines a channel between a longitudinally-oriented fixed wall and a longitudinally-oriented flexible beam. The flexible beam is located opposite and generally parallel to the fixed wall when in a relaxed state. A distal beam surface of the flexible beam defines a first protrusion having a first inclined surface. The connector system also includes a second connector body that defines a cavity which is configured to receive the first connector body. A mesial surface inside of the cavity defines a second protrusion having a second inclined surface that is configured to abut and engage the first inclined surface of the flexible beam when the first connector body is disposed within the cavity of the second connector body. The connector system further includes a member that is configured to be inserted within the channel. When the member is inserted into the channel, it causes the flexible beam to flex laterally and move the first inclined surface with respect to the second inclined surface sufficient to generate a longitudinal force between the first and second inclined surfaces.
According to one particular embodiment of the invention, a mesial beam surface of the flexible beam defines a third protrusion having a third inclined surface. When the member is inserted into the channel, the member engages the third inclined surface and causes the flexible beam to flex laterally and move the first inclined surface with respect to the second inclined surface. The first inclined surface defines a first acute angle with respect to the distal beam surface, and the second inclined surface defines a second acute angle with respect to the mesial cavity surface. An angular measurement of the first acute angle is equal to an angular measurement of the second acute angle. Each longitudinal end of the flexible beam is fixed to the first connector body. The first connector body further comprises an electrical terminal and the second connector body further comprises a corresponding mating electrical terminal. The first connector body defines a flexible latching arm configured to secure the first connector body within the cavity of the second connector body. The member is characterized as a longitudinal member and is defined by a connector position assurance device. The latching arm may be disengaged to release the first connector body from the second connector body by pressing on a free end of the latching arm when the connector position assurance device is in a disengaged position and the latching arm is inhibited from disengagement when the connector position assurance device is in an engaged position. The longitudinal member is not engaged with the first inclined surface when the connector position assurance device is in the disengaged position and the longitudinal member is engaged with the first inclined surface when the connector position assurance device is in the engaged position.
According to another embodiment of the invention, a distal wall surface of the fixed wall defines the third protrusion having a third inclined surface. When the member is inserted into the channel, the member engages the third inclined surface causing the member to flex laterally and contact the flexible beam, thereby causing the flexible beam to also flex laterally and move the first inclined surface with respect to the second inclined surface.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
The connector assembly described herein is designed to connect first connector body to a mating second connector body to provide a tight longitudinal fit. As the first connector is inserted into a shrouded cavity of the second connector, an inclined surface protruding from an outside edge of a flexible beam mounted to the first connector engages a corresponding inclined surface protruding from an inside wall of the cavity. Once the inclined surfaces are engaged, a member is inserted into a cavity behind the flexible beam causing the beam to flex laterally outward. This lateral movement of the flexible beam causes the inclined surfaces to move relative to each other, thereby generating a force in the longitudinal direction that may cause the ends of the first and second connector bodies to move so that they are in intimate contact with each other. This intimate contact reduces the amount of relative vibration between the connectors and hence electrical terminals within the connectors. It also provides longitudinal positional assurance of the connectors and hence electrical terminals within the connectors.
As used herein, a mesial location is closer to the longitudinal axis X and a distal location is farther from the longitudinal axis X. As used herein, lateral describes a direction generally perpendicular to the longitudinal axis X. A forward direction is in the insertion direction 30 of the first connector 12 into the second connector 16 along the longitudinal axis X and a rearward direction is opposite the insertion direction 30. A rearward location on the first connector 12 is nearer the first wire cable 14 and on the second connector 16 is nearer the second wire cable 20 and a forward location is nearer the opposite end of the connector along the longitudinal axis X.
The first connector body 22 defines a channel 32 near a distal edge 34 of the first connector body 22. The channel 32 has a longitudinally-oriented and substantially inflexible fixed inner wall 36 and a longitudinally-oriented flexible beam 38 located opposite and generally parallel to the fixed inner wall 36 when the flexible beam 38 is in a relaxed state. The channel 32 also has a longitudinally-oriented and substantially inflexible fixed upper wall 40 and substantially inflexible fixed lower wall 42. The first connector body 22 also includes a second mirror imaged channel 32 on the opposite side of the connector. The flexible beam 38 is integrally formed with the first connector body 22 and is formed from the same material as the first connector body 22. The longitudinal ends 44 of the flexible beam 38 are fixed to the first connector body 22. A distal surface 46 of the flexible beam 38 defines a first protrusion 48 that has a first inclined surface 50 on the rearward side of the first protrusion 48. Alternative embodiments of the flexible beam 38 may be envisioned wherein the flexible beam 38 is not integrally formed or is formed of a different material In other alternative embodiments, the flexible beam may be a cantilevered beam wherein one longitudinal end is fixed to the first connector body and the other longitudinal end is a free end unattached to the first connector body.
Referring again to
According to the illustrated example shown in
As illustrated in
As shown in
This reaction force F causes the forward end 82 of the first connector body 22 to snugly engage the rearward end 84 of the connector body. This engagement fixedly locates the first connector body 22 relative to the second connector body 52, thereby reducing vibration between the first and second connector bodies 22, 52 as well as reducing longitudinal locational tolerance between the electrical terminals in the first connector body 22 and the mating terminals 18 in the second connector body 52. The engagement of the first and second protrusions 48, 60 may also reduce lateral locational tolerance between the electrical terminals in the first connector body 22 and the mating terminals 18 in the second connector body 52.
The first connector body 22 includes a flexible latching arm 86 having a lock notch (not shown). The second connector body 52 defines an inwardly extending lock nib (not shown) that is configured to engage the lock notch, thereby providing a primary lock securing the second connector body 52 within the cavity 56 of the first connector body 22. The CPA device 26 is configured to prevent inadvertent disengagement of the lock notch from the lock nib by forming a wedge between the latching arm 86 and the first connector body 22. The lock notch may be disengaged from the lock nib by pressing on a free end of the latching arm 86 when the CPA device 26 is in the disengaged position 66 as shown in
As shown in
Yet other alternative embodiments of the connector assembly may be envisioned in which a distal surface of the member defines a third protrusion that causes the flexible beam to flex outwardly when the CPA device is moved to the engaged position. The third protrusion may include a third inclined surface that engages a second protrusion on the mesial surface of the flexible beam or the third protrusion may be the sole means for causing the outward flexation of the flexible beam.
The examples presented herein are directed to electrical connector assemblies, however other embodiments of the connector assembly may be envisioned that are adapted for use with optical cables or hybrid connectors including both electrical and optical cable connections. Yet other embodiments of the connector system may be envisioned that are configured to interconnect pneumatic or hydraulic lines. The reaction force generated by the first and second protrusions may beneficially provide a sealing force to seals interconnecting pneumatic or hydraulic lines.
Accordingly a connector assembly 10, 10′ is provided. The connector assembly 10, 10′ has a fixed inclined surface 62 and a movable inclined surface 50 that generates a reaction force F to snugly engage a pair of first and second connectors 12, 16 that can limit the amount of vibrational movement between the first and second connectors 12, 16 and longitudinally locate the first and second connectors 12, 16 relative to each other. This is particularly beneficial for connector assemblies 10, 10′ having terminals with overlapping contact points that may be particularly sensitive to longitudinal location relative to each other, such as a USB 3.0 connector assembly. The fixed and moveable inclined surfaces 50, 62 may further laterally locate the first and second connectors 12, 16 relative to each other. The fixed and moveable inclined surfaces 50, 62 also provide a primary or secondary lock feature to secure the first and second connectors 12, 16 to one another.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. Moreover, the use of the terms first, second, etc. does not denote any order of importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
Number | Name | Date | Kind |
---|---|---|---|
6106340 | Myer | Aug 2000 | A |
6261115 | Pederson | Jul 2001 | B1 |
6435895 | Fink et al. | Aug 2002 | B1 |
6857892 | McLauchlan | Feb 2005 | B2 |
7264505 | Miyakawa | Sep 2007 | B2 |
7470138 | Chen | Dec 2008 | B1 |
7785146 | Chazottes | Aug 2010 | B2 |
8092245 | Morello et al. | Jan 2012 | B2 |
8137142 | Dawson | Mar 2012 | B1 |
20060281373 | Anbo | Dec 2006 | A1 |
20140242823 | Littek et al. | Aug 2014 | A1 |