The present disclosure relates generally to systems and methods for adding expansion slots to electronic connectors.
Computing systems (e.g., desktop computers, blade servers, rack-mount servers, etc.) are employed in large numbers in various applications. Computing systems employ connectors of various types to ensure that components of the computing systems are able to communicate with each other or with other computing systems. The connectors can provide an interface between distinct components, thereby allowing power and/or communication signals to flow between the distinct components. In some cases, connectors are simple and not readily identifiable without looking for identifiable marks on the connector. In some cases, connectors are unable to both receive memory modules or other control cards, and facilitate communication with components of computing systems. Thus, the present disclosure is directed at solving problems related to providing expansion slots on connectors for various purposes.
Some implementations of the present disclosure provide a connector that consists of a body, a first slot, a second slot, a first terminal, and a second terminal. The first slot is provided on the body for receiving a first printed circuit board (PCB). The second slot is provided on the body for receiving a second PCB. The first slot and the second slot are separate and distinct slots. When the first PCB and the second PCB are received in the first slot and the second slot, respectively, the first terminal electrically connects to the first PCB and the second PCB, and the second terminal connects to only the second PCB.
In an embodiment, the first terminal is configured to connect to a top surface of the first PCB. In an embodiment, the first terminal is configured to connect to a bottom surface of the first PCB. In an embodiment, the second terminal is connected to a cable via a wire connector. The cable is electrically connected to an electronic component separate from the first PCB and the second PCB.
In an embodiment, the first terminal includes a bend connected to a first leg and a second leg, such that the first leg connects to the first PCB and the second leg connects to the second PCB. In an embodiment, the first leg of the first terminal connects to the first PCB at a connection point on the first leg. The connection point is located between the bend and an end of the first leg. In an embodiment, the second leg of the first terminal connects to the second PCB at a connection point on the second leg. The connection point is located between the bend and an end of the second leg. In an embodiment, a connection point located on the first leg of the first terminal protrudes away from the second leg of the first terminal. In an embodiment, a connection point located on the first leg of the first terminal protrudes towards the second leg of the first terminal. In an embodiment, an end of the first leg of the first terminal is wedged on a first part of the body, and an end of the second leg of the first terminal is wedged on a second part of the body, such that the first terminal is held in place by a compression of the bend by the first part of the body and the second part of the body.
In an embodiment, when either the first PCB or the second PCB are received in the first slot or the second slot, respectively, the bend is further compressed, and the first leg of the first terminal and the second leg of the first terminal move towards each other. In an embodiment, the first leg of the first terminal and the second leg of the first terminal have different lengths. In an embodiment, the second terminal includes a contact point that connects to the second PCB. The contact point is provided on a loop-shaped conductor, an arc-shaped conductor, or an L-shaped conductor.
Some implementations of the present disclosure provide a pluggable component module for connecting to a printed circuit board (PCB) of a computing system. The pluggable module includes a computer component and a connector. The connector includes a body, a first slot, a second slot, a first terminal, and a second terminal. The first slot is provided on the body for receiving a control board. The second slot is provided on the body for receiving the PCB. The first slot and the second slot are separate and distinct slots. When the control board and the PCB are received in the first slot and the second slot, respectively, the first terminal electrically connects to the control board and the PCB, and the second terminal connects to only the PCB.
In an embodiment, the control board includes an electrically erasable programmable read-only memory (EEPROM). The PCB is a fan transfer board, and the computer component is a fan. In an embodiment, the first terminal provides an electrical connection between the EEPROM and the fan transfer board, and the second terminal provides an electrical connection between the fan transfer board and the fan. In an embodiment, the control board has a smaller surface area than that of the PCB, and the first slot is smaller than the second slot. In an embodiment, most of the control board fits completely within the first slot, and less than half of the surface area of the PCB is enclosed by the second slot. In an embodiment, when the control board and the PCB are received in the first slot and the second slot, respectively, the control board is parallel to the PCB.
Some implementations of the present disclosure provide a computing system that includes a chassis, a printed circuit board (PCB) attached to the chassis, and one or more pluggable components. Each of the pluggable components includes a body, a first slot, a second slot, a first terminal, and a second terminal. The first slot is provided on the body for receiving a control board. The second slot is provided on the body for receiving the PCB. The first slot and the second slot are separate and distinct slots. When the control board and the PCB are received in the first slot and the second slot, respectively, the first terminal electrically connects the control board and the PCB, and the second terminal connects to only the PCB.
The above summary is not intended to represent each embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an example of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of representative embodiments and modes for carrying out the present invention, when taken in connection with the accompanying drawings and the appended claims.
The disclosure will be better understood from the following description of embodiments together with reference to the accompanying drawings.
The present disclosure is susceptible to various modifications and alternative forms. Some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The present inventions can be embodied in many different forms. Representative embodiments are shown in the drawings, and will herein be described in detail. The present disclosure is an example or illustration of the principles of the present disclosure, and is not intended to limit the broad aspects of the disclosure to the embodiments illustrated. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference, or otherwise. For purposes of the present detailed description, unless specifically disclaimed, the singular includes the plural and vice versa; and the word “including” means “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, can be used herein to mean “at,” “near,” or “nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.
In some implementations, a control card, an electrically erasable programmable read-only memory (EEPROM), or some other memory device is used to maintain an individual identity of a pluggable computer component. The control card can serve to monitor use of the pluggable computer component. For example, a computer board (e.g., a motherboard) may have controllers that collect usage statistics of different components of a computing system. In some cases, the computer board may collect statistics on the temperature of a central processing unit (CPU) or other processors of the computing system, a fan speed of one or more fans of the computing system, real-time memory capacity of the computing system, etc. In some computing systems, the computer board may be augmented with an external or an expansion card in order to perform at least some of the aforementioned monitoring tasks. Embodiments of the present disclosure provide a connector that can receive such an expansion card, thus saving space on the computer board. The connector will also extend the lifetime of the computer board by delaying replacing the computer board. In some implementations, the expansion card can be used to monitor activities of the connector. For example, the expansion card can hold an identity of or characteristics of the connector (e.g., a serial number of the connector, components being interfaced by the connector, whether or not the connector facilitates sharing of power, a type of connector, a communication protocol of the connector, etc.).
Embodiments of the present disclosure will be described with an example of a fan, and a fan transfer board, but the present disclosure is not limited to merely the fan and the fan transfer board. The fan is used as an example as a pluggable computer component so as to highlight some advantages of some implementations of the present disclosure. Although the fan is used as an example, other pluggable computer components, for example, a monitor card module (MCM), a port interface module (PIM), a switch controller module (SCM), etc., can benefit from the present disclosure.
In the chassis 102, a printed circuit board (PCB) is installed between the side walls and on the bottom panel. In some implementations, the PCB is a fan transfer board 106. One or more fan modules 104a, 104b, 104c, etc., can be installed on the fan transfer board 106 via connectors 112a, 112b, 112c, etc., respectively. The connectors 112a, 112b, 112c, etc., receive fingers 114 of the fan transfer board 106. The fingers 114 include terminals that electrically and mechanically connect to terminals of the connectors 112a, 112b, 112c, etc. The fan modules 104b and 104c are shown already installed or connected to the fan transfer board 106. The fan module 104a is shown unconnected to the fan transfer board 106. The fan module 104a includes a fan 110a and a connector 112a. The other fan modules 104b and 104c also include identical fans similar to fan 110a.
In some implementations, the fan transfer board 106 lacks some functionality and should be augmented. For example, the fan modules 104a, 104b, 104c, etc., may include newer fan technology, and the fan transfer board 106 may be an older technology configuration. Hence, in order to take advantage of new features provided by the fan modules 104a, 104b, 104c, etc., control cards 116a, 116b, 116c, etc., can be used along with the fan transfer board 106. For example, the control card 116b can send control signals to the fan transfer board 106 which can then relay those signals to the fan module 104b. Conversely, the fan module 104b can send signals to the fan transfer board 106 which can relay those signals to the control card 106b. The control card 116b in some implementations can instruct the fan module 104b to reduce fan speed in response to a level of ambient noise detected from the fan module 104b. The control card 116b can thus include a microphone or other sensors for determining the ambient noise for controlling fan speed of the fan module 104b.
The control cards 116a, 116b, 116c, etc., are PCBs with circuit components. The control cards 116a, 116b, 116c, etc., can include an EEPROM or some other programmable device. Each of the control cards 116a, 116b, 116c, etc., can have a smaller surface area than the fan transfer board 106. In some cases, due to the fan transfer board 106 being of an older technology, there may not be any expansion slots on the fan transfer board 106 to receive the control cards 116a, 116b, 116c, etc. As such, connectors 112a, 112b, 112c, etc., include a slot for receiving the control cards 116a, 116b, 116c, etc.
The letters “a”, “b”, “c,” etc., are used to differentiate between multiple items of a same or similar type in
The upper terminal 202 is provided for connecting the control board 116 to the finger 114 at a contact point 212. The upper terminal 202 is a single conductor that is bent over with two legs extending from the bend and in roughly parallel alignment with each other. Each of the two legs is not completely straight and includes deflections along the length of the leg. The deflections are around a location where the upper terminal 202 should contact a PCB, and a contact point of each of the two legs is located at the deflections. In some implementations, the upper terminal 202 includes a contact point 210 on one leg that touches the control board 116 at the bottom of the control board 116. The contact point 212 is on the other arm of the upper terminal 202. The contact points 210 and 212 are at areas where the upper terminal 202 is deflected, and therefore, the upper terminal 202 extends outward at the location of these contact points 210 and 212.
The control board 116 and the finger 114 are parallel to each other when installed in the connector 112. The control board 116 is received at the slot 250, and the finger 114 is received at a different slot 254 of the connector. Instead of having a straight metal terminal connecting the control board 116 and the finger 114, the connector 112 has the bent upper terminal 202. The upper terminal 202 includes a bend 218 that can handle some compression or pinching together of the two legs of the upper terminal 202. The upper terminal 202 has some elasticity such that the two legs of the upper terminal 202 try to move away from each other when pinched or compressed. The two legs moving apart causes two ends 214 and 216 of the legs of the upper terminal 202 to move toward a top wall 232 and a bottom wall 234 of an opening 257 provided on a panel 256 included in the body of the connector 112. The upper terminal 202 resists a pinching force that brings both legs of the upper terminal 202 together. The top wall 232 and the bottom wall 234 of the opening 257 provide mechanical stability, such that the upper terminal 202 is held in place when the finger 114 or the control board 116 is not inserted in the connector 112 (as shown in
The upper terminal 202 can be shaped such that the contact point 212 orients downwards in order to touch a top surface of the finger 114. In some implementations, the contact point 210 is oriented upwards in order to touch the bottom surface of the control board 116. In some implementations, the locations of the contact points 212 and 210 are not aligned along a same vertical axis. As such, legs of the bent upper terminal 202 can have different lengths. In the example of
The lower terminal 204 includes a contact 220 for connecting a bottom surface of the finger 114 to the lower terminal 204. The lower terminal 204 can be connected to a cable 206 via a wire connector 222. The cable 206 can be an electrical interface to the fan 110. The electrical connection between the fan 110 and the control board 116 can thus be described as having the upper terminal 202, the finger 114, and the lower terminal 204 as intermediaries. The lower terminal 204 can include a loop with a contact point 212 for making contact to the bottom surface of the finger 114. The loop can be mostly oval in shape. Although an oval shape is provided in
The lower terminal 204 can include a lip 221. The connector 112 can include a catch 230 for catching the lip 221, thus preventing the lower terminal 204 from moving laterally towards the fan 110. The lip 221 prevents the lower terminal 204 from moving towards the fan 110 when the finger 114 is inserted in the slot 254.
Each of the upper terminals 402 includes a bend 518, similar to the bend 218 of
The separator or holder 237 is shown flush with the upper terminal 402 in
Although the fan module is used as an example, connectors designed according to some implementations of the present disclosure can used for any pluggable component (e.g., an MCM, a PIM, an SCM, etc.). Functionality of the pluggable component can be augmented with a connector that includes a slot for receiving a control card, according to some implementations of the present disclosure.
As used in this application, the terms “component,” “module,” “system,” or the like, generally refer to a computer-related entity, either hardware (e.g., a circuit), a combination of hardware and software, software, or an entity related to an operational machine with one or more specific functionalities. For example, a component may be, but is not limited to being, a process running on a processor (e.g., digital signal processor), a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller, as well as the controller, can be a component. One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers. Further, a “device” can come in the form of specially designed hardware; generalized hardware made specialized by the execution of software thereon that enables the hardware to perform specific function; software stored on a computer-readable medium; or a combination thereof.
The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof, are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. Furthermore, terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur or be known to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments. Rather, the scope of the invention should be defined in accordance with the following claims and their equivalents.
This patent application claims the benefit of U.S. Provisional Patent Application No. 63/034,803, filed Jun. 4, 2020. The contents of that application in its entirety are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63034803 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16998752 | Aug 2020 | US |
Child | 18486155 | US |