A system and method are described for providing improved connector position assurance. This invention relates especially to electrical connectors and connector position assurance, and also to connector systems that may have a terminal, a female connector, and a male connector. The invention further relates to methods for connecting using the improved connector position assurance of the present invention.
Numerous connector systems have been developed, and especially relating to electrical connectors. It is common to have male and female connector portions. Various locking mechanisms have been devised to secure connectors in a connected position. These may include generally, the use of a latch member. Latch securing methods have been previously investigated, including sliding latch securing mechanisms. However, it is believed that hinged options so far have not been available to practically and reliably secure a latch, especially where a latch stop is attached to a connector housing such that it may pivot into the connector to secure a latch.
The present invention is intended to provide improved connector position assurance that may be used to secure engagement between a first and second connector. A latch stop mechanism on a first connector may be used to selectively limit movement of a latch and an attached latch lock after the latch lock has been engaged to secure the first connector to the second connector. The latch stop mechanism may be attached to the connector housing and have a series of hinges that allow a latch stop to pivot into place, preferably locking with a latch, limiting movement of the latch and latch lock.
The latch and latch lock are thereby secured by the latch stop in a position engaging the latch lock with the second connector. This serves to provide improved connector position assurance.
The invention is described in further detail in the drawings and the detailed description below.
The present invention offers an improved connector position assurance mechanism. A connector system according to the present invention is illustrated in
One embodiment of the invention shown in
Connectors that may be used in the present invention include various types of connectors, but especially male and female connectors having housings. For a connector housing, the front of the housing may be considered the portion of the housing nearest the surface that mates with another connector.
The present invention may employ a latch 50 with a latch lock 54 to engage two connectors. A typical latch of the present invention may be seen in
The latch 50 of the present invention may also include a latch stop contact surface 66 to interact with the latch stop surface 68. The latch 50 may also have a cavity 62, as shown in
In the present invention, it is preferred that one connector have a latch lock 54 that may be engaged with a corresponding latch securing surface on the second connector. For example, a latch lock 54 may be depressed, deflecting the latch beam 56. A housing of a second connector may slide over the latch lock until a latch securing surface of the second connector housing is in position. The latch lock 54 may then be raised into contact with the latch securing surface. In a preferred embodiment of the present invention, the latch lock 54 may be positioned in a latch lock window 53 in the second connector housing. One or more sides of the latch window may serve as a latch securing surface.
The improved connector position assurance of the present invention operates to ensure that the latch lock 54 remains engaged with the latch securing surface. This is accomplished by employing a latch stop mechanism 10 that limits movement of the latch 50 and attached latch lock 54. A latch stop mechanism conveniently is attached to the connector housing in such a way that it may be manipulated to limit movement of the latch.
The latch stop mechanism 10 of the present invention may have a series of hinges and sections with a latch stop attached to a distal section. Preferably, the latch stop mechanism has a proximal hinge 12, a distal hinge 16, a proximal section 14 between the proximal hinge 12 and the distal hinge 16, a distal section 18 situated on a side of the distal hinge opposite the proximal section, and a latch stop disposed on the distal section.
It is preferred that sections 14 and 18 of the present invention are structural members sufficiently rigid to support a latch stop arm 22 and work in concert with the hinges 12 and 16. The sections may be planar or of any other suitable shape or construction.
The term “hinge” is intended to mean a moveable joint. The hinge of the present invention allows members of the latch stop mechanism to pivot around a portion of the connector housing. Preferably, movement is in one plane, so that the latch stop surface 68 remains in alignment as it moves toward the latch cavity 62 and arrives at the latch stop contact surface 66 of the latch. The hinges of the present invention serve to pivotably join two members, each member on an opposite side of the hinge. Accordingly, each hinge has two sides, each side corresponding to a member joined by the hinge.
In a preferred embodiment, one or more hinges of the latch stop mechanism 10 may be a live hinge. It is preferred that the latch stop mechanism 10 have at least two live hinges.
By bending the hinges of the latch stop mechanism 10, it is possible to position the latch stop arm 22 toward the latch cavity 62, and ultimately position the latch stop surface 68 against the latch stop contact surface 66 of the latch, so that the latch 50 cannot be deflected downward.
The latch stop mechanism 10 may comprise a latch stop arm 22 extending outward from the distal section 18 of the latch stop mechanism 10. The latch stop arm 22 may have a latch stop surface 68 and may also have a locking surface 28 to lock the latch stop surface into place. The term “latch stop” includes the latch stop surface 68 and the structure on which this surface is disposed. For example, the latch stop may include an arm, a wedge, or both. The latch stop may have one or more inclined surfaces, especially on or about the latch stop arm. Preferably, there is a wedge 24 projecting from the distal section 18 of the latch stop mechanism 10. The wedge 24 may be inserted into the latch cavity 62. The wedge 24 may assist pushing the lower surface of the latch 50 upward, and ultimately facilitate contact between the latch stop surface 68 and latch stop contact surface 66 of the latch.
When the latch stop contact surface 66 contacts the latch stop surface 68, movement of the latch 50 is limited. Thus, the latch lock 54 may not be disengaged from the latch lock window 53 unless the latch stop surface 68 is removed from the latch cavity 62. Further, in a preferred embodiment, the latch stop surface 68 may not be removed from the latch cavity 62 so long as the latch stop locking surface 28 remains in contact with a latch stop catch surface 64. Both the latch stop lock 26 on the latch stop and the latch stop catch surface 64 on the latch 50 may comprise inclined planes. An inclined plane on either the catch or lock surfaces may help guide the lock into place. Preferably, the latch stop lock 26 is disposed on the latch stop arm 22. The lock may have an inclined plane that guides the locking surface 28 toward the catch surface 64. The catch may have a corresponding inclined plane and corresponding catch surface.
The portion of the latch stop arm 22 that enters the latch cavity 62 may be shaped to facilitate entry into the latch cavity. The distal portion of the latch stop arm 22 may be rounded. Edges may feature chamfers.
In a preferred embodiment, a latch stop comprises a latch stop arm 22 and a latch stop wedge 24. The latch stop is centered on a distal section that is part of a hinged frame with two proximal hinges, two proximal sections, and two distal hinges. One result of this hinged frame is an opening through which the latch 50 may protrude when the latch stop mechanism is bent and the latch stop is positioned against the latch stop contact surface 66.
The male connector 1 in
Front views in
In a preferred embodiment, the latch stop is wedged against the latch stop contact surface 66. This does not necessarily mean that a wedge 24 is in contact with the latch stop contact surface 24. The latch stop locking surface 28 on the latch stop lock 26 locks with the latch stop catch surface 64.
In a preferred embodiment, a female connector, a terminal, latch, and latch stop are provided. The female connector is aligned with the male connector. The latch on the female connector is deflected and a latch lock on the female connector is engaged with a latch window on the male connector. A coupling surface on the latch lock is contacted with a latch securing surface on the latch window, causing the male and female connectors to be coupled.
The terms “coupled” and “coupling” as used herein are not limited to their technical definition in the electrical arts. Rather these terms are used according their general meaning in the way two objects, such as railroad cars, may be mechanically coupled. Thus, the male connector and female connector are coupled by the latch lock passing through the latch window,
The operation of the latch stop mechanism, as shown in
The many features and advantages of the present invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be included as falling within the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/016979 | 2/20/2015 | WO | 00 |