The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2020-194778 filed in Japan on Nov. 25, 2020.
The present invention relates to a connector.
In the related art, the connector is connected to the counterpart connector so that the terminal fittings can be in an energized state. This type of connector is disclosed in, for example, Japanese Patent Application Laid-open No. 2011-204610.
In the connector, the amount of heat generated at the terminal fitting or the electric wire increases as the current of the device to which the connector is connected increases. Therefore, in the conventional connector, an increase in temperature is suppressed by increasing the size of the terminal fitting, increasing the wire diameter of the electric wire, or the like. However, these measures are not necessarily preferable because the size of the connector is significantly increased.
Therefore, an object of the present invention is to provide a connector that suppresses an increase in temperature by enhancing heat dissipation performance.
In order to achieve the above mentioned object, a connector according to one aspect of the present invention includes a terminal fitting; an insulating housing having a terminal accommodation chamber in which the terminal fitting is accommodated, and attached to a casing of an installation target device; and an insulating heat dissipation member that takes heat from the terminal fitting and dissipates the heat, wherein the heat dissipation member includes a heat absorbing portion that comes into contact with the terminal fitting in the terminal accommodation chamber and takes heat from the terminal fitting, and a heat transfer portion that transfers the heat taken by the heat absorbing portion to a heat transfer target portion outside the terminal accommodation chamber.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Hereinafter, an embodiment of a connector according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited by the embodiment.
One of the embodiments of a connector according to the present invention will be described with reference to
Reference numeral 1 in
The connector 1 includes a terminal fitting 10, a housing 20, and a shield shell 30 (
The terminal fitting 10 is formed of a conductive material such as metal. The terminal fitting 10 is physically and electrically connected to a counterpart terminal fitting 510 (
For example, one of the terminal connection portion 11 and the counterpart terminal connection portion 511 is formed in a female terminal shape, and the other is formed in a male terminal shape. Here, the terminal connection portion 11 is formed in a cylindrical male terminal shape, and the counterpart terminal connection portion 511 is formed in a cylindrical female terminal shape into which the terminal connection portion 11 is fitted coaxially.
The terminal fitting 10 is formed as a straight-shaped terminal fitting in which the terminal connection portion 11 and the electric wire connection portion 12 are disposed on a straight line in the fitting connection direction with the counterpart terminal connection portion 511. In the terminal fitting 10 illustrated here, the electric wire connection portion 12 is formed in a cylindrical shape concentric with the terminal connection portion 11 and having an outer diameter larger than that of the terminal connection portion 11.
In addition, the terminal fitting 10 has an insulating anti-tactile portion 15 for preventing direct contact of fingers of an operator with the terminal connection portion 11 at a distal end portion (an end portion opposite to the electric wire connection portion 12) of the terminal connection portion 11 (
The connector 1 illustrated here includes two pairs of terminal fittings 10 and electric wires where the terminal fitting 10 and the electric wire compose a pair. The two pairs of terminal fittings 10 and the electric wires are disposed side by side with a distance with the respective terminal connection portions 11 having the same fitting connection direction.
The housing 20 is formed of an insulating material such as synthetic resin and has an insulating property. The housing 20 is attached to the casing Ca of the installation target device. For example, the casing Ca has a through hole Ca1 that allows the inside and the outside of the casing Ca to communicate with each other (
The housing 20 has a terminal accommodation chamber 21a in which the terminal fitting 10 is accommodated (
The housing 20 illustrated here has a tubular terminal accommodation portion 21 having the terminal accommodation chamber 21a therein for each terminal accommodation chamber 21a (
The terminal accommodation portion 21 is disposed in a state of projecting from a wall face Ca2, of the casing Ca, located at the outside, and has a fitting portion 21b to which a counterpart fitting portion 521b (
An elastic member 41 having an arc shape concentric with the outer peripheral face thereof and capable of being elastically deformed in the radial direction is assembled to the fitting portion 21b (
Further, the terminal accommodation portion 21 has a projecting portion from a wall face Ca3 of the casing Ca toward the inside as a rectangular cylindrical portion 21c (
Further, the housing 20 has an annular flange portion 22 in which part of the terminal accommodation chamber 21a is disposed (
The housing 20 illustrated here includes a first housing member 20A having the terminal accommodation portion 21 and a second housing member 20B having the flange portion 22 and assembled to the first housing member 20A (
The first housing member 20A has a base portion 23 that integrates the two terminal accommodation portions 21 at the outer periphery thereof (
The second housing member 20B covers the cylindrical portions 21c of the two terminal accommodation portions 21 from the outside in the assembled state of the first housing member 20A. The second housing member 20B has a base portion 24 part of which is disposed in the through hole Ca1 of the casing Ca and that extends from the inside to the outside of the casing Ca, and the flange portion 22 provided at a projecting portion of the base portion 24 at the outside of the casing Ca (
The housing 20 further includes a lid-like third housing member 20C that covers the base portion 24 of the second housing member 20B from the projecting portion at the inside of the casing Ca (
The shield shell 30 prevents noise from entering the terminal fitting 10 at the outside of the casing Ca, and is formed of a metal material. The metal shield shell 30 includes a tubular shield portion 31 that accommodates the fitting portions 21b and the base portion 23 in the first housing member 20A, a shield flange portion 32 that holds the flange portion 22 between the shield flange portion and the wall face Ca2 of the casing Ca from a second annular face 22b in the axial direction, and a fixing portion 33 that fixes the shield flange portion 32 to the casing Ca (
The tubular shield portion 31 is formed as an elliptical or oval cylindrical body.
The shield flange portion 32 is formed as a flat plate disposed outward of the outer peripheral face of the tubular shield portion 31 in the radial direction. The shield flange portion 32 has a recess 32a having the same shape as the flange portion 22 and accommodating the flange portion 22 therein (
The fixing portion 33 is a piece portion projecting from the shield flange portion 32 on the same plane, and has a through hole 33a for screw fixing (
Here, in the connector 1, since the terminal fitting 10 is held by the housing 20, heat of the terminal fitting 10 due to energization is transferred to the housing 20. The heat of the housing 20 is transferred to the casing Ca via the sealing member 51 or the surrounding air, or is transferred to the shield shell 30 via the sealing member 52 or the surrounding air, for example. Therefore, in the connector 1, the heat generation amount of the terminal fitting 10 increases as the current of the installation target device increases, and thus there is a possibility that the heat of the terminal fitting 10 cannot be released well with this configuration. In addition, in the connector 1, the heat of the terminal fitting 10 can be transferred to the electric wire, but since the amount of heat generated by the electric wire increases as the current of the installation target device increases, there is a possibility that the heat of the terminal fitting 10 cannot be released to the electric wire.
Therefore, the connector 1 has an insulating heat dissipation member 60 that takes heat from the terminal fitting 10 and dissipates the heat (
The heat dissipation member 60 is formed of a raw material having a higher thermal conductivity than a raw material of the housing 20 in order to enhance the heat absorption efficiency from the terminal fitting 10 than the housing 20. For example, the heat dissipation member 60 is formed using fine ceramics such as aluminum nitride as a raw material.
The heat dissipation member 60 includes a heat absorbing portion 61 that comes into contact with the terminal fitting 10 in the terminal accommodation chamber 21a and takes heat from the terminal fitting 10, and a heat transfer portion 62 that transfers the heat taken by the heat absorbing portion 61 to a heat transfer target portion outside the terminal accommodation chamber 21a (
The heat absorbing portion 61 is disposed at a position that does not interfere with the fitting connection between the terminal connection portion 11 and the counterpart terminal connection portion 511. Therefore, the heat absorbing portion 61 is disposed in the terminal accommodation chamber 21a toward the cylindrical portion 21c, and comes into contact with the terminal fitting 10 in the terminal accommodation chamber 21a toward the cylindrical portion 21c.
For example, the heat absorbing portion 61 comes into contact with the exterior wall face of the terminal fitting 10 along the extending direction of the terminal fitting 10 and the terminal accommodation chamber 21a. The heat absorbing portion 61 illustrated here is provided to come into contact with the electric wire connection portion 12 of the terminal fitting 10 to take heat from the terminal fitting 10 from the electric wire connection portion 12. For example, the electric wire connection portion 12 illustrated here has planar exterior wall faces 12a parallel to each other on the outer peripheral face (
The heat transfer portion 62 is disposed between the flange portion 22 of the housing 20 and the shield flange portion 32 of the shield shell 30, and transfers heat to the shield flange portion 32 at least by coming into contact with the shield flange portion 32. That is, in the connector 1, part of the shield shell 30 is used as a heat transfer target portion to which heat of the heat transfer portion 62 is transferred outside the terminal accommodation chamber 21a. However, the heat transfer target portion may be part of a member other than the shield shell 30 depending on the configuration of the connector 1, or may be the atmosphere such as air in contact with the heat transfer portion 62.
The connector 1 has a heat transfer chamber 32b that accommodates the heat transfer portion 62 between the flange portion 22 and the shield flange portion 32 with the heat transfer portion 62 coming into contact with the shield flange portion 32, and that transfers heat of the heat transfer portion 62 to at least the shield flange portion 32 (
In the heat transfer chamber 32b illustrated here, by holding the heat transfer portion 62 by the shield flange portion 32 and the flange portion 22, one plane of the heat transfer portion 62 comes into surface contact with the facing wall face 32b1 of the shield flange portion 32, and the other plane of the heat transfer portion 62 comes into surface contact with the second annular face 22b of the flange portion 22. For this reason, for example, the heat transfer chamber 32b adjusts the recess amount of the annular recess such that the sealing member 52 is elastically deformed between the groove bottom of the seal groove 22c of the flange portion 22 and the wall face 32ai of the shield flange portion 32 without bringing the second annular face 22b of the flange portion 22 into contact with the wall face 32ai of the recess 32a of the shield flange portion 32 when the heat transfer portion 62 is held. As a result, the heat of the heat transfer portion 62 is further transferred to the flange portion 22.
The heat transfer portion 62 illustrated here is disposed on the long side portion of each of the flange portion 22 and the shield flange portion 32 in the heat transfer chamber 32b. Accordingly, the heat transfer portion 62 can extend in the parallel direction (that is, in the longitudinal direction of the flange portion 22 and the shield flange portion 32) of the two terminal fittings 10. Therefore, since the contact area of the heat transfer portion 62 with the flange portion 22 and the shield flange portion 32 can be increased, the heat transfer efficiency to these portions can be enhanced.
The heat transfer chamber 32b is formed with a wall face, of the second annular face 22b of the flange portion 22, inward of the seal groove 22c. Therefore, in the connector 1, the heat transfer portion 62 can be disposed inward of the sealing member 52 regardless of the arrangement of the sealing member 52. Therefore, in the connector 1, it is possible to suppress a reduction in waterproof performance due to the provision of the heat dissipation member 60.
The heat dissipation member 60 illustrated here includes a coupling portion 63 that couples the heat absorbing portion 61 and the heat transfer portion 62 (
The heat dissipation member 60 is held by the housing 20, for example.
The second housing member 20B illustrated here has a plurality of protrusions (hereinafter, referred to as a “first protrusion”) 25 projecting from the second annular face 22b of the flange portion 22, and the heat transfer portion 62 is held by the housing 20 by being held between the two first protrusions 25 disposed to face each other with a distance therebetween (
Furthermore, the second housing member 20B illustrated here has two protrusions (hereinafter, referred to as a “second protrusion”) 26 projecting from the second annular face 22b of the flange portion 22 for each heat dissipation member 60 between the two first protrusions 25, and the coupling portion 63 is held by the housing 20 when held by the two second protrusions 26 (
Note that the heat dissipation member 60 may be held between the first housing member 20A and the second housing member 20B. For example, in the connector 1, the heat transfer portion 62 and the coupling portion 63 of the heat dissipation member 60 are disposed between the base portion 23 of the first housing member 20A and the second annular face 22b of the flange portion 22 of the second housing member 20B. Therefore, the heat dissipation member 60 may be held by the housing 20 when the heat transfer portion 62 and the coupling portion 63 are held between the base portion 23 and the second annular face 22b of the flange portion 22.
As described above, in the connector 1, the heat of the terminal fitting 10 is transferred to the housing 20, transferred to the casing Ca and the shield shell 30 via the housing 20, and dissipated to the surrounding air. In addition, in the connector 1, the heat of the terminal fitting 10 transferred to the shield shell 30 is dissipated to the surrounding air via the counterpart housing 520 covering the tubular shield portion 31 from the outside. Furthermore, in the connector 1, when the temperature of the electric wire is lower, the heat of the terminal fitting 10 is transferred to the electric wire. The connector 1 of the present embodiment has a heat transfer path via the heat dissipation member 60 in addition to the same heat transfer path as the conventional one. Therefore, the connector 1 of the present embodiment can improve the heat dissipation performance of the terminal fitting 10 as compared with that of the related art, and can suppress the high temperature of the terminal fitting 10, so that it is possible to cope with an increase in current.
In a case where the casing Ca includes a cooling structure or a cooling mechanism that cools the casing Ca, by cooling the casing Ca with the cooling structure or the like, it is easy for the casing Ca to take heat from the terminal fitting 10 transferred to the casing Ca via or without via the heat dissipation member 60. For example, the cooling structure and the cooling mechanism may be of an air-cooling type in which surrounding air is forcibly applied to the casing Ca or a surface area of the casing Ca exposed to the surrounding air is expanded by fins or the like. In addition, the cooling structure and the cooling mechanism may be of a water-cooling type in which flowing water is directly or indirectly applied to the surface of the casing Ca to cause the water to take heat from the casing Ca, or water is caused to flow to a water passage in a wall of the casing Ca to cause the water to take heat from the casing Ca. Therefore, in the connector 1, when the casing Ca includes the cooling structure or the like, more heat of the terminal fitting 10 can be taken away by the casing Ca cooled by the cooling structure or the like, so that the heat dissipation performance of the terminal fitting 10 can be further enhanced. Therefore, in the connector 1, it is possible to further cope with an increase in current.
Further, the heat dissipation member 60 is accommodated in the connector by using a gap between the heat dissipation member and the terminal fitting 10 in the terminal accommodation chamber 21a or using a chamber including a recess formed between the flange portion 22 and the shield flange portion 32. Therefore, the connector 1 of the present embodiment can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art while suppressing an increase in size, so that it is possible to cope with an increase in current while maintaining the same size as that of the related art.
Furthermore, the heat transfer portion 62 of the heat dissipation member 60 is disposed at a place not related to the arrangement of the sealing member 52, that is, inside the sealing member 52. Therefore, the connector 1 of the present embodiment can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art without adversely affecting the waterproof property, so that it is possible to cope with an increase in current while maintaining the waterproof property equivalent to that of the related art.
Furthermore, the arrangement of the heat dissipation member 60 can be completed inside the shield shell 30. Therefore, the connector 1 of the present embodiment can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art without adversely affecting the shielding performance, so that it is possible to cope with an increase in current while maintaining the shielding performance equivalent to that of the related art.
Here, the counterpart connector 501 will be briefly described.
As described above, the counterpart connector 501 includes the counterpart terminal fitting 510, the counterpart housing 520, and the counterpart shield shell 530 (
The counterpart terminal fitting 510 is formed of a conductive material such as metal. The counterpart terminal fitting 510 includes the counterpart terminal connection portion 511 having the cylindrical female terminal shape described above and a counterpart electric wire connection portion 512 to be physically and electrically connected to the end of an electric wire We (
The counterpart terminal fitting 510 is formed as a straight shape in which the counterpart terminal connection portion 511 and the counterpart electric wire connection portion 512 are disposed on a straight line in the fitting connection direction with the terminal connection portion 11.
The counterpart connector 501 includes two pairs of counterpart terminal fittings 510 and electric wires We where the counterpart terminal fitting 510 and the electric wire We compose a pair. The two pairs of the counterpart terminal fittings 510 and the electric wires We are disposed side by side with a distance with the respective counterpart terminal connection portions 511 having the same fitting connection direction.
The counterpart housing 520 is formed of an insulating material such as synthetic resin and has an insulating property. The counterpart housing 520 includes a cylindrical terminal accommodation portion 521 for each counterpart terminal fitting 510 in which the counterpart terminal fitting 510 is accommodated, and a cylindrical electric wire accommodation portion 522 for each electric wire We in which the electric wire We pulled out from the counterpart terminal fitting 510 is accommodated (
The distal end of the terminal accommodation portion 521 is used as the counterpart fitting portion 521b to be fitted to the fitting portion 21b of the connector 1. The counterpart fitting portion 521b is fitted into the cylindrical fitting portion 21b, and the terminal connection portion 11 inside the fitting portion 21b is inserted into the counterpart fitting portion 521b, thereby fitting and connecting the terminal connection portion 11 inside the counterpart terminal connection portion 511.
In the counterpart housing 520, the inner diameter of the electric wire accommodation portion 522 is larger than the outer diameter of the terminal accommodation portion 521, and the end portion of the terminal accommodation portion 521 toward the electric wire accommodation portion 522 is inserted into the end portion of the electric wire accommodation portion 522 toward the terminal accommodation portion 521. The counterpart shield shell 530 is formed in a cylindrical shape using a metal material, and accommodates the accommodation position of the counterpart terminal connection portion 511 in the terminal accommodation portion 521 therein and accommodates the counterpart terminal connection portion 511 inside the electric wire accommodation portion 522. That is, the counterpart shield shell 530 prevents noise from entering the counterpart terminal fitting 510 and the electric wire We by accommodating the counterpart terminal fitting 510 to the electric wire We therein.
In the electric wire accommodation portion 522, an annular sealing member 551 with which an annular gap between the inner peripheral face of the sealing member and the electric wire We is filled is disposed at an end portion on a side where the electric wire We is drawn outward (
Further, the counterpart housing 520 has a cylindrical portion 523 that covers the two terminal accommodation portions 521 from the outside with a distance (
The counterpart connector 501 generates an assisting force of a fitting force and a removal force with respect to the connector 1 by a lever operation. Therefore, in the counterpart connector 501, a lever 560 is assembled to the counterpart housing 520 (
The lever 560 rotates relative to the counterpart housing 520 with the other ends of the two arms 561 as the rotation center. Therefore, the counterpart housing 520 has a rotation shaft 525 for each arm 561 (
When the connector 1 and the counterpart connector 501 are fitted and connected, the lever 560 is relatively rotated with respect to the counterpart housing 520 from a waiting position (
Furthermore, each arm 561 of the lever 560 has a guide portion 564 having an arc shape and having a through hole 563 disposed at the inner side of the arc at the other end (
When the lever 560 is relatively rotated with respect to the counterpart housing 520 in the rotation direction at the time of fitting connection, the outer peripheral face of the guided portion 35 comes into contact with the outer arc-shaped face 564a of the guide portion 564 to generate a force between the arc-shaped face 564a and the outer peripheral face while being slidably guided by the arc-shaped face 564a. Between the connector 1 and the counterpart connector 501, the force is transferred to the shield shell 30 and the counterpart housing 520 via each guided portion 35 and each arm 561, and the force is further transferred from the shield shell 30 to the housing 20 to act as an assisting force in the fitting connection direction. The outer arc-shaped face 564a of the guide portion 564 is formed to have a shape capable of generating such an assisting force.
On the other hand, when the lever 560 is relatively rotated with respect to the counterpart housing 520 in the rotation direction at the time of fitting connection release, the outer peripheral face of the guided portion 35 comes into contact with the inner arc-shaped face 564b of the guide portion 564, and a force is generated between the arc-shaped face 564b and the outer peripheral face while being slidably guided by the arc-shaped face 564b. Between the connector 1 and the counterpart connector 501, the force is transferred to the shield shell 30 and the counterpart housing 520 via each guided portion 35 and each arm 561, and the force is further transferred from the shield shell 30 to the housing 20 to act as an assisting force in a fitting connection release direction (removal direction). The inner arc-shaped face 564b of the guide portion 564 is formed to have a shape capable of generating such an assisting force.
The counterpart connector 501 includes a lever locking member 570 that suppresses the relative rotation of the lever 560 at the fitting completion position with the connector 1 (
[Modification]
Next, a modification of the connector according to the present invention will be described with reference to
Reference numeral 2 in
The connector 2 of the present modification corresponds to the connector 1 of the embodiment in which the housing 20, the shield shell 30, and the heat dissipation member 60 are respectively replaced with a housing 120, a shield shell 130, and a heat dissipation member 160 (
The housing 120 of the present modification is formed of an insulating material such as synthetic resin and has an insulating property. The housing 120 includes a first housing member 120A corresponding to a member in which the first housing member 20A and the second housing member 20B in the housing 20 of the embodiment are formed as one member (
The first housing member 120A has a terminal accommodation portion 121, for each terminal fitting 10, in which a terminal accommodation chamber 121a is formed (
In the first housing member 120A, a portion 123a, corresponding to the base portion 24 of the embodiment, of the base portion 123 is inserted into the through hole Ca1 of the casing Ca, and a second housing member 120B same as the third housing member 20C of the embodiment is assembled to a projecting portion from the wall face Ca3 of the casing Ca (
In the flange portion 122, the second annular face 122b has an annular seal groove 122c which is the same as the annular seal groove 22c of the flange portion 22 of the embodiment (
The heat dissipation member 160 of the present modification has the same function as the heat dissipation member 60 of the embodiment, and comes into contact with the terminal fitting 10 in the terminal accommodation chamber 121a to dissipate heat taken from the terminal fitting 10. Therefore, as in the heat dissipation member 60 of the embodiment, the heat dissipation member 160 is formed of a raw material having higher thermal conductivity than the raw material of the housing 120.
As in the heat dissipation member 60 of the embodiment, the heat dissipation member 160 includes a heat absorbing portion 161 that comes into contact with the terminal fitting 10 in the terminal accommodation chamber 121a and takes heat from the terminal fitting 10, a heat transfer portion 162 that transfers the heat taken by the heat absorbing portion 161 to a heat transfer target portion (part of the shield shell 130) outside the terminal accommodation chamber 121a, and a coupling portion 163 that couples the heat absorbing portion 161 and the heat transfer portion 162 (
The heat absorbing portion 161 of the present modification has a through hole 161a into which the terminal fitting 10 is inserted and whose peripheral edge portion comes into contact with the outer peripheral face of the terminal fitting 10 (
As described above, the terminal fitting 10 illustrated here includes the cylindrical terminal connection portion 11 and the cylindrical electric wire connection portion 12 which is concentric with the terminal connection portion 11 and has an outer diameter larger than that of the terminal connection portion 11. Therefore, the heat absorbing portion 161 may have the circular through hole 161a having a diameter generally equal to the outer diameter of the terminal connection portion 11. The heat absorbing portion 161 in this case takes heat from the terminal fitting 10 through the peripheral edge portion of the through hole 161a by inserting the terminal connection portion 11 into the through hole 161a and bringing the outer peripheral face of the terminal connection portion 11 into contact with the peripheral edge portion of the through hole 161a. In addition, the heat absorbing portion 161 may have the circular through hole 161a having a diameter generally equal to the outer diameter of the electric wire connection portion 12. The heat absorbing portion 161 in this case takes heat from the terminal fitting 10 through the peripheral edge portion of the through hole 161a by inserting the electric wire connection portion 12 into the through hole 161a and bringing the outer peripheral face of the electric wire connection portion 12 into contact with the peripheral edge portion of the through hole 161a. The electric wire connection portion 12 may have an exterior wall face 12a as in the embodiment, or may not have the exterior wall face 12a.
The heat absorbing portion 161 illustrated here has the circular through hole 161a having a diameter generally equal to the outer diameter of the terminal connection portion 11. Therefore, the heat absorbing portion 161 can use the end face of the electric wire connection portion 12 for positioning the heat dissipation member 160 by inserting the terminal connection portion 11 until the one plane comes into contact with the end face of the electric wire connection portion 12 toward the terminal connection portion 11.
As in the heat transfer portion 62 of the embodiment, the heat transfer portion 162 is disposed between the flange portion 122 of the housing 120 and the shield flange portion 32 of the shield shell 130, and transfers heat to the shield flange portion 32 by coming into contact with at least the shield flange portion 32. As in the heat transfer portion 62 of the embodiment, the heat transfer portion 162 is disposed on the long side portion of each of the flange portion 122 and the shield flange portion 32 and extends in the parallel direction (that is, in the longitudinal direction of the flange portion 122 and the shield flange portion 32) of the two terminal fittings 10.
The flange portion 122 illustrated here has a bulging portion 122d bulging out in a flat plate shape from the second annular face 122b inside the annular seal groove 122c (
Further, in the housing 120, the portion 123b of the base portion 123 corresponding to the base portion 23 of the embodiment communicates the outer and inner terminal accommodation chambers 121a, and a communication hole 123c communicating with the fitting groove 122e of the flange portion 122 is formed for each heat dissipation member 160 (
In the connector 1, by inserting the heat absorbing portion 161 and the coupling portion 163 from the communication hole 123c and fitting the heat transfer portion 162 into the fitting groove 122e, the heat dissipation member 160 is held by the housing 120 in a state where the heat absorbing portion 161 is accommodated in the terminal accommodation chamber 121a. Thereafter, in the connector 1, while the terminal fitting 10 is inserted into the terminal accommodation chamber 121a from the terminal connection portion 11, the terminal connection portion 11 is inserted into the through hole 161a of the heat absorbing portion 161.
The shield shell 130 of the present modification is similar to the recess 32a of the shield shell 30 of the embodiment, but has a recess 132a formed in accordance with the shape of the flange portion 122 of the present modification in the shield flange portion 32 (
Further, the shield flange portion 32 includes an accommodation groove 132b that is a recess further recessed than the recess 132a at the inner peripheral face of the tubular shield portion 31, and that accommodates the bulging portion 122d of the flange portion 122 together with the heat transfer portion 162 of each heat dissipation member 160 (
As in the connector 1 of the embodiment, in the connector 2 of the present modification, the heat of the terminal fitting 10 is transferred to the housing 120, transferred to the casing Ca and the shield shell 130 via the housing 120, and dissipated to the surrounding air. Further, as in the connector 1 of the embodiment, in the connector 2, the heat of the terminal fitting 10 transferred to the shield shell 130 is dissipated to the surrounding air through the counterpart housing 520 covering the tubular shield portion 31 from the outside. Further, as in the connector 1 of the embodiment, in the connector 2, when the temperature of the electric wire is lower, the heat of the terminal fitting 10 is transferred to the electric wire. In addition to such a heat transfer path that is the same as the conventional one, as in the connector 1 of the embodiment, in the connector 2 of the present modification, a heat transfer path via the heat dissipation member 160 is provided. Therefore, as in the connector 1 of the embodiment, the connector 2 of the present modification can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art, and can suppress the high temperature of the terminal fitting 10, so that it is possible to cope with an increase in current.
Further, as in the heat dissipation member 160 of the embodiment, the heat dissipation member 160 is accommodated in the connector by using a gap between the heat dissipation member and the terminal fitting 10 in the terminal accommodation chamber 121a or by using a chamber including a recess formed between the flange portion 122 and the shield flange portion 32. For this reason, as in the connector 1 of the embodiment, the connector 2 of the present modification can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art while suppressing the increase in size, so that it is possible to cope with the increase in current while maintaining the same size as that of the related art.
Furthermore, as in the heat dissipation member 160 of the embodiment, the heat transfer portion 162 of the heat dissipation member 160 is disposed inside the sealing member 52. Therefore, as in the connector 1 of the embodiment, the connector 2 of the present modification can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art without adversely affecting the waterproof property, so that it is possible to cope with an increase in current while maintaining the waterproof property equivalent to that of the related art.
Furthermore, as in the heat dissipation member 160 of the embodiment, the arrangement of the heat dissipation member 160 can be completed inside the shield shell 130. For this reason, as in the connector 1 of the embodiment, the connector 2 of the present modification can enhance the heat dissipation performance of the terminal fitting 10 as compared with that of the related art without adversely affecting the shielding performance, so that it is possible to cope with an increase in current while maintaining the shielding performance equivalent to that of the related art.
Furthermore, in the connector 2 of the present modification, in a case where the casing Ca includes the cooling structure and the like shown in the embodiment, as in the connector 1 of the embodiment, a larger amount of heat of the terminal fitting 10 can be taken away by the casing Ca cooled by the cooling structure and the like, so that it is possible to further cope with an increase in current.
In the connector according to the present embodiment, the heat of the terminal fitting is transferred to the housing, transferred to the casing or the like via the housing, and dissipated to the surrounding air. In the connector, when the temperature of the electric wire is lower, the heat of the terminal fitting is transferred to the electric wire. The connector according to the present embodiment has a heat transfer path via a heat dissipation member in addition to a heat transfer path that is the same as the conventional one. Therefore, the connector according to the present embodiment can improve the heat dissipation performance of the terminal fitting as compared with that of the related art, and can suppress the high temperature of the terminal fitting, so that it is possible to cope with an increase in current.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2020-194778 | Nov 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7070449 | Miyazaki | Jul 2006 | B2 |
8011976 | Ooki | Sep 2011 | B2 |
8414330 | Yamada | Apr 2013 | B2 |
10205271 | Aoshima | Feb 2019 | B1 |
10454199 | Christiano | Oct 2019 | B1 |
10644462 | Shimizu | May 2020 | B2 |
10714867 | Koyama | Jul 2020 | B2 |
11070009 | Lee | Jul 2021 | B2 |
11296456 | Takagi | Apr 2022 | B2 |
11608895 | Morello | Mar 2023 | B2 |
20190036270 | Aoshima | Jan 2019 | A1 |
20190322186 | Arai | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2011-204610 | Oct 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20220166174 A1 | May 2022 | US |