This invention relates generally to electrical connectors, and more specifically to a cable connector assembly having a rotatable cable exit that is suitable for use with a shielded cable.
Electrical systems exist that include shielded cable assemblies for transmitting electrical signals. Conductive metallized braids are coupled to the cable and surround the signal conductors in the cable for shielding purposes, and the metallized braids are connected to shielding features of connectors and components which ultimately provide a conductive path to ground. In systems of this type, connectors for shielded cables often include conductive metal shells. Some conventional metal shells include integral ferrule surfaces formed therewith which aid in connecting the cable braid to the shells. The cable braid is extended over the ferrule surfaces of the shells, and outer ferrule elements are attached over and crimped to the cable braid, thereby trapping the cable braid between the ferrule surfaces of the shell and the outer ferrule elements.
In some applications, several connectors may be mounted side-by-side on a circuit card or a panel. Many times, when the cables exit the connectors, all of the cables must be turned up or down, left or right to be run in the same direction, such as into a raceway. Typically, technicians forcibly bend the cables in order to route the cables in a desired direction or fit the cables into a raceway. Care must be taken, however, to avoid damage to the cable that may result from excessive pulling or twisting on the cable. Further, as cables and cable bundles become larger, safe manipulation of the cables, such as in fitting the cables into a raceway, becomes more difficult.
In one aspect, a cable connector is provided. The cable connector includes a housing having a mating end and a cable exit end. A ferrule is rotatably retained in the housing proximate the cable exit end. The ferrule is rotatable within a predetermined range with respect to the housing.
Optionally, the housing includes an arcuate slot having end edges and the ferrule includes a protrusion received in the slot. The protrusion is movable between the end edges to define the predetermined range of rotation of the ferrule. The ferrule includes an inlet end defining an inlet centerline and a body bent at an acute angle with respect to the inlet centerline. The housing includes an interior channel formed proximate the cable exit end. The ferrule has flanges formed thereon that are received in the interior channel to retain the ferrule within the housing. The ferrule includes a groove that receives a conductive gasket between the ferrule and the housing. The conductive gasket includes a coil spring. The ferrule includes a pair of flanges formed on an exterior thereof. The flanges define the groove that receives the conductive gasket.
In another aspect, a cable connector is provided that includes a housing having a mating end and a cable exit end. A ferrule has an inlet end rotatably retained in the housing proximate the cable exit end. The inlet end defines an inlet centerline about which the ferrule rotates within a predetermined range with respect to the housing. The ferrule includes a body bent at an acute angle with respect to the inlet centerline of the ferrule.
The ferrule 130 is rotatably retained in the cable exit end 150 of the housing 136. A slot 154 is formed in the cable exit end 150. The slot 154 has an arcuate shape and defines end edges 156 and 158. A protrusion 162 is formed on the ferrule 130. The protrusion 162 extends radially from the ferrule 130 and is positioned within the slot 154. The protrusion 162 is movable within the slot 154 between the end edges 156 and 158 and thereby defines a range of rotation of the ferrule 130 with respect to the housing 136. The ferrule 130 includes a first ferrule element 170 and a second ferrule element 172 that are joined together. A retainer 176 is provided on the ferrule 130 at a ferrule exit 178 to grip the cable 120 at the ferrule exit 178. More specifically, the retainer 176 grips a shielding layer 180 of the cable 120. In one embodiment, the retainer 176 includes a band around the ferrule exit 178 to clamp the ferule 130 to the shielding layer 180 of the cable 120. Alternatively, the retainer 176 may include a sleeve (not shown) that receives the ferrule exit end 178 and the cable 120. The sleeve is crimped to the ferrule exit 178 and the shielding layer 180 of the cable 120. It is to be understood that other known clamping mechanisms are not intended to be excluded.
In an exemplary embodiment, each of the upper and lower shells 138 and 140 are fabricated from a conductive material, such as die cast metal, and the shells 138 and 140 form a protective enclosure about the ferrule 130 and the contact module 184 (see
The ferrule 130 has an inlet end 204 and an outlet end 206. The inlet end 204 is rotatably received in the housing 136 proximate the cable exit end 150. More specifically, the flanges 190 and 192 are received in the housing channel 188 so that the ferrule 130 is rotatably retained in the housing 136. The inlet end 204 defines an inlet centerline C1 about which the ferrule 130 rotates. The cable exit end 150 of the housing 136 defines a plane P. The inlet centerline C1 is perpendicular to the plane P. The ferrule 130 includes a body 131 that extends from the cable exit end 150 of the housing 136. The outlet end 206 defines an outlet centerline C2 that intersects the inlet centerline C1 at an angle B. That is, the outlet end 206 of the ferrule 130 extends at the angle B with respect to the inlet centerline C1. Further, the body 131 bends at an angle denoted by B with respect to the inlet centerline C1 of the inlet end 204 of the ferrule 130. Consequently, the body 131 extends in a non-parallel manner from the inlet centerline C1. In an exemplary embodiment the angle B is an acute angle. The bend on the body 131 facilitates routing the cable 120 at an angle at the cable exit end 150 of the housing 136.
When assembled to a cable 120, the cable shielding layer 180 is rolled back over the cable 120 and the cable 120 is inserted between the ferrule element inner surfaces 220 and 222. The shielding layer is then pulled over the ferrule elements 170 and 172. The retainer 176 is then positioned over the shielding layer 180 and the ferrule elements 170 and 172 and tightened. The conductive gasket 200 is inserted in the groove 196 formed between the flanges 190 and 192. The conductive gasket 200 extends slightly beyond the groove 196 so that when the ferrule 130 is installed in the housing 136 (
The embodiments thus described provide a cable connector 110 including a ferrule 130 that provides a rotatable exit from the connector 110 that facilitates manipulation of the cable 120 to route the cable 120 in a particular direction, such as along a raceway. The ferrule 130 is formed with a bend that facilitates turning or bending the cable 120 without subjecting the cable 120 to excessive stress to prevent damage to the cable 120. The connector 110 is particularly useful in applications having multiple connectors 110 mounted in close proximity to one another.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4810213 | Chabot | Mar 1989 | A |
5911595 | Orr et al. | Jun 1999 | A |
6644999 | Tan et al. | Nov 2003 | B1 |
7074087 | Szczesny et al. | Jul 2006 | B2 |
20040216912 | Osborn, Jr. | Nov 2004 | A1 |