The descriptions are generally related to connectors for coupling modules (such as memory modules) or devices with a printed circuit board such as a mother board, and more particularly, to connectors with a pin orientation that may enable a reduction in crosstalk.
Various technologies exist for connecting cards and modules with a printed circuit board (PCB) such as a motherboard. It is possible to couple electronic components directly to a motherboard, however, it is common to use a connector between the motherboard and the card or module to enable removably coupling the card or module with the motherboard.
Connectors typically have pins to couple with contacts on both the module and motherboard sides. Some pin configurations can result in significant crosstalk. For example, high frequency signal pins that are in close proximity may cause signal quality degradation due to crosstalk.
The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more “embodiments” are to be understood as describing at least one implementation of the invention that includes one or more particular features, structures, or characteristics. Thus, phrases such as “in one embodiment” or “in an alternate embodiment” appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.
Descriptions of certain details and implementations follow, including a description of the figures, which may depict some or all of the embodiments described below, as well as discussing other potential embodiments or implementations of the inventive concepts presented herein.
Connector pin orientation to reduce crosstalk is described herein. In one example, a connector includes rows of pins with a staggered orientation. For example, a connector to couple a card or module to a motherboard includes connector housing and a plurality of pins. Each of the plurality of pins includes two ends including a card or module-facing end to couple with the card or module and a motherboard-facing end to couple with the motherboard. Each of the plurality of pins includes a middle section in the connector housing, wherein one or both of the ends include one or more bends relative to the middle section. The plurality of pins includes alternating signal pins and ground pins, wherein the signal pins having an opposite orientation relative to the ground pins.
The configuration shown
Unlike the connector of
In contrast, the pins 122 of the connector 126 are arranged in multiple rows in close proximity, resulting in some pins having more than two aggressors.
The spacing between pins is the same. Therefore, the pins have a consistent pitch P1. The pitch of pins in a row is the distance between adjacent pins along an axis of the row. The pitch is typically measured from a mid-point of the pins. For example, the pitch P1 between the pin 303D and the pin 303E is the same pitch P1 between the pin 303E and the pin 303F. Because the shape and orientation of the pins is the same, the middle sections of the pins are also spaced evenly. For example, the distance D1 between the pin 303B and an adjacent pin 303C is the same as the distance D1 between the pin 303B and the pin 303C.
The connector pins of
Each pin has a middle section between two ends. For example, the pin 403A has a middle section 410A between a top end 406A and a bottom end 408A. The pin 403B has a middle section 410B between a top end 406B and a bottom end 408B. Similarly, the pin 403C has a middle section 410C between a top end 406C and a bottom end 408C. In one example, the top end couples with a card or module (or other device to be installed into the connector). Therefore, the top ends of the pins may be referred to as the card or module-facing ends. Examples of card or modules that may be installed in a connector with a staggered pin orientation include: a memory module (such as a dual-in line memory module (DIMM)), a graphics card, an accelerator, or other device to couple with a motherboard via signal pins in a connector. The bottom ends couple with a PCB, such as a motherboard. Therefore, the bottom ends of the pins may be referred to as the motherboard-facing ends. Each of the pins in
In the illustrated example, the top end and bottom end of each pin both bend away from the middle section in the same direction. For example, the pin 403A has a top end 406A and a bottom end 408A that are both bent in the same direction away from the middle section 410A. In the illustrated example, the bends in the pin result in a C-shaped pin. In one example, the length of each of the plurality of pins is greater than width of the pin. For example, the length L of the pin 403F is greater than the width W of the pin. In an example of a pin with a substantially straight middle section, the width of the pin may be the same as the distance between the further point of the ends of the pins from an axis along the middle section of pin and the axis along the middle section. Wider pins with ends that extend further from the middle section may benefit more from the staggered orientation shown in
In the illustrated example, the plurality of pins 403A-403H have identical shapes. Additionally, in the example of
In the illustrated example, one or both of the ends of each of the plurality of pins include a flat section parallel to the motherboard (in this example, the plane of the motherboard is along the x-axis and z-axis (not shown), which would be going into and out of the page). For example, the pin 403H includes a flat section 405H parallel to the x-axis and parallel to the motherboard. The pins illustrated in
The bends in the pin (either at the ends or in the middle section) may result in curves or protuberances away from an axis along the length of the pin. Although the middle sections of the pins in
The spacing between pins is the same. Therefore, the pins have a consistent pitch P1. The pitch of pins in a row is the distance between adjacent pins along an axis of the row. The pitch is typically measured from a mid-point of the pins. For example, the pitch P1 between the pin 403A and the pin 403B is the same pitch P2 between the pin 403B and the pin 403C. In another example, there may also be a varied or staggered pin pitch. For example, some implementations may have a different pitch between adjacent pairs of pins (e.g., P1<P2 or P1>P2). Although only one row of pins is illustrated in
Unlike the pins in
As shown in
Thus, the connector pins in
Unlike the connector of
In one example, the pins 622 of the connector 626 are arranged in multiple rows in close proximity, resulting in some pins having more than two aggressors (such as shown in
The system 700 also includes memory 702 (e.g., system memory). The system memory can be in the same package (e.g., same SoC) or separate from the processor(s) 701. The system 700 can include static random-access memory (SRAM), dynamic random-access memory (DRAM), or both. In some examples, memory 702 may include volatile types of memory including, but not limited to, RAM, D-RAM, DDR SDRAM, SRAM, T-RAM or Z-RAM. One example of volatile memory includes DRAM, or some variant such as SDRAM. Memory as described herein may be compatible with a number of memory technologies, such as DDR4 (Double Data Rate (DDR) version 4, JESD79-4, initial specification published in September 2012 by JEDEC), LPDDR4 (LOW POWER DOUBLE DATA RATE (LPDDR) version 4, JESD209-4, originally published by JEDEC in August 2014), LPDDR5 (LPDDR version 5, JESD209-5, originally published by JEDEC in February 2019), WIO2 (Wide I/O 2 (WideIO2), JESD229-2, originally published by JEDEC in August 2014), HBM (HIGH BANDWIDTH MEMORY DRAM, JESD235, originally published by JEDEC in October 2013), DDR5 (DDR version 5, JESD79-5 initial specification published in July 2020 by JEDEC), LPDDR5 (LPDDR version 5, currently in discussion by JEDEC), HBM2 (HBM version 2, currently in discussion by JEDEC), and/or others, and technologies based on derivatives or extensions of such specifications. In one example, the memory 702 includes a byte addressable DRAM or a byte addressable non-volatile memory such as a byte-addressable write-in-place three dimensional crosspoint memory device, or other byte addressable write-in-place non-volatile memory devices (also referred to as persistent memory), such as single or multi-level Phase Change Memory (PCM) or phase change memory with a switch (PCMS), NVM devices that use chalcogenide phase change material, resistive memory including metal oxide base, oxygen vacancy base and Conductive Bridge Random Access Memory (CB-RAM), nanowire memory, ferroelectric random access memory (FeRAM, FRAM), magneto resistive random access memory (MRAM) that incorporates memristor technology, spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory. The memory may be packaged as one or more DIMMs to be inserted into a connectors as described herein.
The system 700 also includes communications interfaces 706, a display (e.g., touchscreen, flat-panel) 710, and other components 708. The other components may include, for example, a power supply (e.g., a battery or/or other power supply), sensors, power management logic, or other components. The communications interfaces 706 may include logic and/or features to support a communication interface. For these examples, communications interface 706 may include one or more input/output (I/O) interfaces that operate according to various communication protocols or standards to communicate over direct or network communication links or channels. Direct communications may occur via use of communication protocols or standards described in one or more industry standards (including progenies and variants). For example, I/O interfaces can be arranged as a Serial Advanced Technology Attachment (SATA) interface to couple elements of a node to a storage device. In another example, I/O interfaces can be arranged as a Serial Attached Small Computer System Interface (SCSI) (or simply SAS), Peripheral Component Interconnect Express (PCIe), or Non-Volatile Memory Express (NVMe) interface a storage device with other elements of a node (e.g., a controller, or other element of a node). Such communication protocols may be utilized to communicate through I/O interfaces as described in industry standards or specifications (including progenies or variants) such as the Peripheral Component Interconnect (PCI) Express Base Specification, revision 3.1, published in November 2014 (“PCI Express specification” or “PCIe specification”) or later revisions, and/or the Non-Volatile Memory Express (NVMe) Specification, revision 1.2, also published in November 2014 (“NVMe specification”) or later revisions. Network communications may occur via use of communication protocols or standards such those described in one or more Ethernet standards promulgated by IEEE. For example, one such Ethernet standard may include IEEE 802.3. Network communication may also occur according to one or more OpenFlow specifications such as the OpenFlow Switch Specification. Other examples of communications interfaces include, for example, a local wired point-to-point link (e.g., USB) interface, a wireless local area network (e.g., WiFi) interface, a wireless point-to-point link (e.g., Bluetooth) interface, a Global Positioning System interface, and/or other interfaces.
The computing system 700 also includes non-volatile storage 704, which may be the mass storage component of the system. Non-volatile types of memory may include byte or block addressable non-volatile memory such as, but not limited to, NAND flash memory (e.g., multi-threshold level NAND), NOR flash memory, single or multi-level phase change memory (PCM), resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), magnetoresistive random access memory (MRAM) that incorporates memristor technology, spin transfer torque MRAM (STT-MRAM), three-dimensional (3D) cross-point memory structure that includes chalcogenide material and/or phase change material, or a combination of any of the above. For these examples, storage 704 may be arranged or configured as a solid-state drive (SSD). The data may be read and written in blocks and a mapping or location information for the blocks may be kept in memory 702. The non-volatile memory may be packaged as one or more DIMMs to be inserted into a connectors as described herein.
The computing system 700 may also include one or more accelerators or other computing devices. For example, the computing system 700 may include an Artificial Intelligence (AI) or machine learning accelerator optimized for performing operations for machine learning algorithms, a graphics accelerator (e.g., GPU), or other type of accelerator. An accelerator can include processing circuitry (analog, digital, or both) and may also include memory within the same package as the accelerator. Accelerators may be mounted on cards to be inserted into connectors such as the connectors described herein.
Examples of Connectors with Staggered Pin Orientation Follow.
Example 1: A connector to couple a card or module to a motherboard includes connector housing and a plurality of pins. Each of the plurality of pins including two ends including a card or module-facing end to couple with the card or module and a motherboard-facing end to couple with the motherboard. Each of the plurality of pins including a middle section in the connector housing, wherein one or both of the ends include one or more bends relative to the middle section. The plurality of pins includes alternating signal pins and ground pins. The signal pins have an opposite orientation relative to the ground pins.
Example 2: A connector in accordance with example 1, wherein the signal pins include single-ended input/output (I/O) pins.
Example 3: A connector in accordance with one or more of examples 1 and 2, wherein: the card or module includes one or more of a memory module, a dual-in line memory module (DIMM), a graphics card, and an accelerator.
Example 4: A connector in accordance with one or more of examples 1, 2, and 3, wherein: each of the plurality of pins has an identical shape.
Example 5: A connector in accordance with one or more of examples 1, 2, 3, and 4 wherein: the middle section of a pin is parallel to the middle section of the other pins of the plurality.
Example 6: A connector in accordance with one or more of examples 1, 2, 3, 4, and 5 wherein: each of the plurality of pins has a C-shape.
Example 7: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, and 6, wherein: the middle section of each of the plurality of pins is straight and orthogonal to the motherboard.
Example 8: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, and 6, wherein the middle section of each of the plurality of pins includes one or more protrusions.
Example 9: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, and 8, wherein: one or both of the ends of each of the plurality of pins include a flat section parallel to the motherboard.
Example 10: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, and 9, wherein: one or both of the ends of each of the plurality of pins extend further from an axis of the middle section than any protrusion in the middle section.
Example 11: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, wherein: a length of each of the plurality of pins is greater than a distance between the ends and an axis along the middle section.
Example 12: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11, wherein: the distance of the ends from the axis is between 10-50% of the length of each of the plurality of pins.
Example 13: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, further including a socket to receive and retain the card or module parallel to the motherboard.
Example 14: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13, wherein: the plurality of pins includes multiple rows of evenly spaced pins, and the middle section of a pin in a row is closer to the middle section of a first adjacent pin in the row than the middle section of a second adjacent pin in the row.
Example 15: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14, wherein: the plurality of pins include more than two rows of pins.
Example 16: A connector in accordance with one or more of examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15, wherein: the plurality of pins includes more 3-8 rows of pins.
Example 17: A memory module connector to couple a memory module to a motherboard, the memory module including: connector housing, and a plurality of pins. Each of the plurality of pins includes two ends including a memory module-facing end to couple with the memory module and a motherboard-facing end to couple with the motherboard. Each of the plurality of pins includes a middle section in the connector housing, wherein the ends of each of the plurality of pins bend away from the middle section. The plurality of pins includes alternating signal pins and ground pins, the signal pins having an opposite orientation relative to the ground pins.
Example 18: A memory module connector of example 17, and further in accordance with one or more of examples 2-16.
Example 19: A system including a motherboard, and a connector coupled with the motherboard. The connector includes connector housing and a plurality of pins. Each of the plurality of pins includes two ends including a card or module-facing end to couple with a card or module and a motherboard-facing end to couple with the motherboard. Each of the plurality of pins includes a middle section in the connector housing, wherein one or both of the ends bends away from the middle section. The plurality of pins includes alternating signal pins and ground pins, the signal pins having an opposite orientation relative to the ground pins.
Example 20: A system in accordance with example 19, further including one or more of: a processor, a memory module, a power supply, and a battery.
Various components described herein can be a means for performing the operations or functions described. Each component described herein includes software, hardware, or a combination of these. The components can be implemented as software modules, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), digital signal processors (DSPs), etc.), embedded controllers, hardwired circuitry, etc.
Besides what is described herein, various modifications can be made to the disclosed embodiments and implementations of the invention without departing from their scope. Therefore, the illustrations and examples herein should be construed in an illustrative, and not a restrictive sense. The scope of the invention should be measured solely by reference to the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
8641449 | Cai | Feb 2014 | B2 |
9172161 | Walden | Oct 2015 | B2 |
10490951 | Chang | Nov 2019 | B2 |
10522949 | Loffink | Dec 2019 | B1 |
20150372425 | Fazelpour et al. | Dec 2015 | A1 |
20190045632 | Li et al. | Feb 2019 | A1 |
20190245309 | Lee | Aug 2019 | A1 |
20220149550 | Maynard | May 2022 | A1 |
20230411907 | Liao | Dec 2023 | A1 |
Entry |
---|
Extended European Search Report for Patent Application No. 21198614.6, Mailed Mar. 11, 2022, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210151916 A1 | May 2021 | US |