The present invention relates to a technical field of connectors, especially to a type of connector.
A traditional connector is composed of a male plug and a female receptacle, and the purpose of electrical connection is achieved by the combination of the male plug and the female receptable.
Generally, the configuration of a male plug and a female receptable includes board-to-board, wire-to-board or wire-to-wire. In some applications such as large current transmission, in order to be able to transmit the large current from the wire end to the printed circuit board at the board end, there needs to be a stable and reliable wire-to-board connector.
In view of this, the present invention proposes a connector to provide high-current wire-to-board current transmission.
The first objective of the present invention is to provide a connector, which is a board-end connector type for connecting a wire-end connector.
The second objective of the present creation is based on the aforementioned connector, wherein the housing has a first opening and a second opening. In the front view of the housing, the first opening is located above the second opening, and there is a height difference between the first opening and the second opening, so as to avoid improper electrical connection between the first electrode disposed in the first opening and the second electrode of the second opening, such as short-circuit connection.
The third objective of the present invention is to provide foolproof key positions (or called Key positions) on the housing according to the aforementioned connector, for combining with the wire end connector, and the foolproof key positions are formed in the middle part of the first accommodating space of the housing and are adjacent to the second opening, and the distance between the foolproof key positions is smaller than the distance between the inner walls of the first accommodating space.
The fourth objective of the present invention is to form current divider pins at one end of the first electrode and one end of the second electrode respectively according to the aforementioned connector for the purpose of large current division and heat dissipation.
The fifth objective of the present invention is to provide a reinforcing rib according to the aforementioned connector, so as to strengthen the degree of the housing for adapting to the housing having a height.
The sixth objective of the present invention is based on the aforementioned connector, wherein the first electrode and/or the second electrode are formed with openings for subsequent bending.
The seventh objective of the present invention is based on the aforementioned connector, further comprising extension pieces formed on the sides of the housing respectively, where in addition to stably fixing the connector to the printed circuit board, the extension pieces can further increase the strength when the first electrode and the second electrode are respectively inserted into the first opening and the second opening.
In order to achieve the above objectives among others, the present invention provides a connector capable of connecting a printed circuit board having a first solder hole set and a second solder hole set and a wire end connector having a first buckle. The connector includes a housing, a first electrode and a second electrode. The housing further includes a first body, a plurality of bending parts, a plurality of foolproof key positions, a second buckle, a first opening and a second opening. The first body forms a first accommodating space and a second accommodating space. The bending parts are used for distinguishing the first accommodating space and the second accommodating space. The foolproof key positions, the first opening and the second opening are disposed in the first accommodating space. The second buckle is disposed in the second accommodating space. The second buckle may be disposed corresponding to the first buckle of the wire end connector for buckling the wire end connector in the first accommodating space and the second accommodating space. The volume of the first accommodating space is greater than the volume of the second accommodating space. The first electrode includes a first end and a third end. The first end corresponds to the first opening and the third end forms a plurality of first current divider pins for disposing the first solder hole set. Wherein, the number of the first current divider pins is not less than three. The second electrode includes a second end and a fourth end. The second end is disposed corresponding to the second opening. The fourth end forms a plurality of second current divider pins for disposing the second solder hole set. Wherein, the number of the second current divider pins is not less than three.
In order to achieve the above objectives among other objectives, the present invention provides a connector having a housing, a first electrode and a second electrode. The main technical feature of the connector is that the housing includes a first body, two bending parts, two foolproof key positions and a second buckle. The first body forms a first accommodating space and a second accommodating space. Wherein, the volume of the first accommodating space is greater than the volume of the second accommodating space. The bending parts are formed on the exterior of the first body to distinguish the first accommodating space and the second accommodating space. The two foolproof key positions are disposed in the first accommodating space to divide the first accommodating space into two sub-spaces for forming a first opening and a second opening respectively. The two foolproof key positions are formed in the middle part of the first accommodating space and adjacent to the second opening, and there is a third distance between the foolproof key positions. The third distance is smaller than a first distance between the inner walls of the first accommodating space. A second buckle is disposed at the second accommodating space. The second buckle may be disposed corresponding to a first buckle of an external wire end connector for buckling the wire-end connector in the first accommodating space and the second accommodating space.
In order to fully understand the purpose, features and effects of the present invention, the following specific embodiments are used in conjunction with the accompanying drawings to give a detailed description of the present invention. The description is as follows:
In this specification, “a” or “an” is used to describe the units, elements and components described herein. This is just for the convenience of illustration and provides a general meaning to the scope of the present invention. Therefore, unless clearly stated otherwise, this description should be understood to include one or at least one, and the singular number also includes the plural number.
In this specification, the terms “include”, “comprise”, “have” or any other similar terms are intended to cover non-exclusive inclusions. For example, an element, structure, product or device that contains a plurality of features is not limited to the requirements listed herein, but may include those features that are not explicitly listed but are generally inherent in the element, structure, product or device. In addition, unless there is a clear statement to the contrary, the term “or” refers to the inclusive “or” rather than the exclusive “or”.
Please refer to
The connector 10 includes a housing 12, a first electrode 14 and a second electrode 16.
Referring to
The housing 10 further includes a first body 122, a bending part 124, a foolproof key position 126, a second buckle 128, a first opening 1210 and a second opening 1212.
The first body 122 forms a first accommodating space SP1 and a second accommodating space SP2. The bending parts 124 are formed on two sides of the first body 122 for distinguishing the first accommodating space SP1 and the second accommodating space SP2. The first accommodating space SP1 is configured with a foolproof key position 126, a first opening 1210 and a second opening 1212. The second accommodating space SP2 is configured with a second buckle 128 so as to be able to correspond to the first buckle of the wire end connector, thereby buckling the wire end connector in the first accommodating space SP1 and the second accommodating space SP2. Herein, the volume of the first accommodating space SP1 is greater than the volume of the second accommodating space SP2. Herein, the number of the foolproof key positions 126 is two, and the foolproof key positions 126 form a middle part adjacent to the first accommodating space SP1, and in
In
In another embodiment, the connector 10 further includes a reinforcing rib 1220 formed on the surface of the second extension part 1218 to strengthen the structure of the first body 122.
In another embodiment, the housing further includes a third opening 1214 formed on the surface of the first body 122 for dissipating heat and reducing the air resistance generated in the first accommodating space SP1 and the second accommodating space SP2 when connecting the wire end connector.
In another embodiment, the connector 10 further includes a first extension part 1216 and a fixing piece 18. Herein, the number of the fixing piece 18 and the first extension part 1216 is illustrated as two, for example. The first extending parts 1216 are respectively formed on two sides of the first body 122 and form a third accommodating space SP3. The fixing pieces 18 are disposed in the third accommodating space SP3 of each of the extending parts 1216, and one end of each of the first extending parts 1216 can be disposed on the printed circuit board 2. Referring also to
Referring also to
The first electrode 14 includes a first end and a third end. The first end is disposed corresponding to the first opening 1210 and the third end forms a plurality of first current divider pins 146 for disposing a first solder hole set 22. Wherein, the number of the first current divider pins 146 is equal to or more than three, which are used for shunting current for the large current application field. Herein, the first electrode 14 further includes a second body 142, a first connection end 144, a first pin end 146, a first bump 148 and a third buckle 1410. The first connection end 144 and the first pin end 146 are respectively formed on the two free ends of the second body 142, and the first connection end 144 may correspond to the first end and the first pin end 146 may correspond to the third end. The first bump 148 and the third buckle 1410 are formed on the second body 142 and disposed corresponding to the first opening 1210, and the first electrode 14 further selectively includes a fourth opening 1412 to form a turning section between the first connection end 144 and the first pin end 146, and the first electrode 14 can be easily bent by means of the fourth opening 1412.
The second electrode 16 includes a second end and a fourth end. The second end is disposed corresponding to the second opening 1212. A plurality of second current divider pins 166 are formed on the fourth end for configuring the second solder hole set 24. Wherein, the number of the second current divider pins 166 is equal to or more than three. Herein, the second electrode 16 further includes a third body 162, a second connection end 164, a second pin end 166, a second bump 168 and a fourth buckle 1610. The second connection end 164 and the second pin end 166 are respectively formed on the two free ends of the third body 162, the second connection end 164 may correspond to the second end and the second pin end 166 may correspond to the fourth end. The second bump 168 and the fourth buckle 1610 are formed on the third body 162 and disposed corresponding to the second opening 1212, and the second electrode 16 further selectively includes a fifth opening 1612. The fifth opening 1612 is formed at the turning section between the second connecting end 164 and the second pin end 166, and the second electrode 16 can be easily bent by means of the fifth opening 1612.
The present invention has been disclosed in preferred embodiments above, but those skilled in the art should understand that this embodiment is only used to describe the present invention and should not be construed as limiting the scope of the present invention. It should be noted that all changes and substitutions equivalent to this embodiment should be included in the scope of the present invention. Therefore, the protection scope of the present invention shall be defined by the scope of the patent application.
Number | Date | Country | Kind |
---|---|---|---|
110204819 | Apr 2021 | TW | national |