The invention relates to a connector.
Japanese Unexamined Patent Publication No. 2006-253074 discloses a male connector in which a receptacle projects forward from a terminal accommodating portion. Male terminal fittings are accommodated in the terminal accommodating portion, and tabs of the male terminal fittings project into the receptacle. A retainer, through which the tabs pass, is mounted into a front part of the terminal accommodating portion facing the receptacle. The retainer is movable in a front-rear direction between a partial locking position where the male terminal fittings are allowed to be inserted into and withdrawn from the terminal accommodating portion and a full locking position where the male terminal fittings properly inserted into the terminal accommodating portion are retained. A moving plate is accommodated in the receptacle for positioning the tabs penetrating therethrough. The moving plate is disposed to face the front surface of the retainer.
A prying preventing portion projects forward on the retainer and through the moving plate. The retainer can be displaced between the partial locking position and the full locking position by pinching the prying preventing portion with fingers and pushing or pulling the prying preventing portion. However, the projection of the prying preventing portion from the front surface of the retainer enlarges the retainer.
The invention was completed on the basis of the above situation and aims to reduce the size of a retainer.
The invention is directed to a connector with a housing including a terminal holding portion and a fitting space facing a front surface of the terminal holding portion. A terminal fitting is held in the terminal holding portion and a tab at a front a front part of the terminal fitting projects into the fitting space. A retainer is mounted in a front part of the terminal holding portion and is movable between a partial locking position where the terminal fitting is allowed to be inserted into and withdrawn from the terminal holding portion and a full locking position where the properly inserted terminal fitting is retained. A moving plate is accommodated in the fitting space to face a front surface of the retainer and is configured to position the tab. An opening penetrates through the moving plate in a front-rear direction, and a tool is insertable into the opening from the front of the moving plate. An operated portion is formed in the retainer to face the opening from behind and can be contacted by the tool inserted into the opening.
The retainer can be moved between the partial locking position and the full locking position by inserting the tool into the opening from the front of the moving plate and operating the operated portion by the tool. Thus, the retainer need not be formed with an elongated projection projecting forward, and the retainer can be reduced in size.
The full locking position may be set behind the partial locking position, and the operated portion may have a pushing surface facing forward of the retainer. According to this configuration, the retainer can be moved from the partial locking position to the full locking position by pushing the pushing surface by the tool inserted into the opening.
The housing may include a resiliently deflectable locking lance configured to retain the terminal fitting properly inserted into the terminal holding portion. The retainer may include a deflection restricting portion insertable into a deflection space for the locking lance, and the pushing surface may be formed on a front surface of the deflection restricting portion. According to this configuration, the deflection restricting portion functions as the pushing surface so that the shape of the retainer can be simplified.
The full locking position may be set behind the partial locking position, and the operated portion may have a hooking surface facing rearward of the retainer. According to this configuration, the retainer can be moved from the full locking position to the partial locking position by hooking the tool inserted into the opening to the hooking surface and pulling the tool forward.
The housing may include a resiliently deflectable locking lance configured to retain the terminal fitting properly inserted into the terminal holding portion, and the opening may be disposed at a position facing the locking lance from the front. According to this configuration, the locking lance can be deflected resiliently and separated from the terminal fitting by the tool inserted into the opening from the front of the moving plate.
One specific embodiment of the invention is described with reference to
A male connector M (connector as claimed) of this embodiment is connectable to a female connector F (see
<Housing 10>
The housing 10 is configured by assembling a housing body 11 made of synthetic resin, a front receptacle 21, a connection detecting member 25 and a seal ring 26. The housing body 11 is a single member including a terminal holding portion 12 and a tubular portion 13 projecting forward from the outer peripheral edge of a front end part of the terminal holding portion 12.
As shown in
As shown in
As shown in
The receptacle 22 is configured by assembling the front receptacle 21 with the tubular portion 13. An internal space of the receptacle 22 serves as a fitting space 23 open forward of the housing 10. The female connector F is fit into the fitting space 23 from front. When the female connector F is properly fit into the receptacle 22, a lock arm 24 integrally formed to the front receptacle 21 locks the female connector F and the both connectors F, M are locked in a connected state by this locking action.
<Male Terminal Fittings 28>
As shown in
The male terminal fitting 28 is inserted into the terminal accommodation chamber 14 through the rear holder 17 and the one-piece rubber plug 15 from behind the housing 10. Since the terminal body 29 interferes with the locking lance 18 in the process of inserting the male terminal fitting 28, the locking lance 18 is resiliently deformed to retract toward the deflection space 19. When the male terminal fitting 28 is inserted properly, the locking lance 18 resiliently returns to lock the locking projection 32. By this primary locking action by the locking lance 18, the male terminal fitting 28 is held in a retained state with a rearward movement thereof restricted. In pulling out the male terminal fitting 28 inserted into the terminal accommodation chamber 14 rearward, the locking lance 18 is separated from the locking projection 32 by being resiliently displaced toward the deflection space 19 and the wire is pulled rearward with that separated state maintained.
<Retainer 33>
The retainer 33 is inserted into the receptacle 22 from the front of the housing 10 and mounted in the front part of the terminal holding portion 12. The retainer 33 is movable in the front-rear direction between a partial locking position (see
The base 34 is substantially in the form of a flat plate parallel to a moving direction of the retainer 33 between the partial locking position and the full locking position. A thickness direction of the base 34 is substantially parallel to a resilient deflecting direction of the locking lance 18. As shown in
Elongated regions of the base 34 behind and adjacent to the respective cuts 35, 36 function as deflection restricting portions 38. When the retainer 33 is at the partial locking position, the deflection restricting portions 38 are located forward of the deflection spaces 19. Thus, the locking lances 18 can be resiliently deflected in a direction separating or away from the male terminal fittings 28 while entering the deflection spaces 19. When the retainer 33 is at the full locking position, the deflection restricting portions 38 are located in the deflection spaces 19. Thus, resilient deflection of the locking lances 18 in the direction separating from the male terminal fittings 28 is restricted.
The front wall 39 rises up from a front end of the base 34. The front wall 39 is formed with operation holes 40 penetrating through the front wall 39 in the front-rear direction and individually corresponding to the respective terminal accommodation chambers 14. The operation holes 40 are arranged at the same intervals as the terminal accommodation chambers 14 and the cuts 35, 36 in the lateral direction. The lower surface of each operation hole 40 is open downward of the retainer 33 (base 34) via the communication space 37. The operation holes 40 and the cuts 35, 36 are arranged one after the other communicate with each other in the communication space 37.
The retainer 33 is formed with operated portions 41 individually corresponding to the respective cuts 35, 36 and the respective operation holes 40. The operated portion 41 has a pushing surface 42 and a hooking surface 43. The front surface of each deflection restricting portion 38 is a flat surface at a right angle to the front-rear direction (moving direction of the retainer 33 from the partial locking position to the full locking position) and functions as the pushing surface 42. The pushing surface 42 is a surface defining the cut portion 35, 36 and open forward of the retainer 33 via the communication space 37. The hooking surface 43 is formed on an opening edge part on the rear end of each operation hole 40 and facing rearward.
<Moving Plate 44>
The moving plate 44 is accommodated into the receptacle 22 to face the front surface of the retainer 33 and movable in the front-rear direction between a standby position and a connection position. As shown in
The plate body 45 is formed with positioning holes 47 penetrating in the front-rear direction (plate thickness direction of the plate body 45). The positioning holes 47 are arranged to individually face the terminal accommodation chambers 14 in the front-rear direction. The tabs 30 are passed through the positioning holes 47 and positioned in directions (vertical direction and lateral direction) perpendicular to a connecting direction of the both connectors F, M (moving direction of the moving plate 44).
The plate body 45 is formed with openings 48. The openings 48 are located individually right below the positioning holes 47. The openings 48 are arranged to individually face the pushing surfaces 42 in the front-rear direction. Further, the opening edges (upper edges) of the operation holes 40 where the hooking surfaces 43 are formed are located behind the openings 48 (see
<Functions of Embodiment>
In mounting the male terminal fitting 28 into the housing 10, the male terminal fitting 28 is inserted into the terminal accommodation chamber 14 from behind the housing 10 with the moving plate 44 held at the standby position and the retainer 33 held at the partial locking position. In the process of inserting the male terminal fitting 28, the locking lance 18 is displaced resiliently to retract toward the deflection space 19 due to interference with the male terminal fitting 28. When the male terminal fitting 28 reaches a proper insertion position, the locking lance 18 resiliently returns to lock the locking projection 32 of the male terminal fitting 28, wherefore the male terminal fitting 28 is retained by the locking lance 18.
After the insertion of all the male terminal fittings 28 is completed, a pushing tool 51 (tool as claimed) is inserted successively into the opening 48 of the moving plate 44 in the fitting space 23 and the communication space 37 from the front of the housing 10 and pushes the pushing surface 42 of the retainer 33 with a tip of the pushing tool 51, as shown in
If all the male terminal fittings 28 are inserted properly, the retainer 33 is pushed from the partial locking position to the full locking position and the deflection restricting portions 38 enter the deflection spaces 19 as shown in
If there is any male terminal fitting 28 left in an insufficiently inserted state, the locking lance 18 interfering with that male terminal fitting 28 is located in the deflection space 19. Thus, if an attempt is made to push the retainer 33 to the full locking position, the deflection restricting portion 38 interferes with the locking lance 18 located in the deflection space 19. Therefore, the retainer 33 cannot be pushed to the full locking position and the presence of the male terminal fitting 28 in the insufficiently inserted state can be detected.
The female connector F is fit into the receptacle 22 (fitting space 23) to connect the female connector F to the male connector M having the male terminal fittings 28 mounted in the housing 10. The front surface (right surface in
In the process of separating the connectors F, M in the connected state, the moving plate 44 at the connection position is moved forward integrally with the female connector F due to an unillustrated coupling structure and returns to the standby position. When the moving plate 44 returns to the standby position, the female connector F and the moving plate 44 are uncoupled so that the female connector F is separated forward of the receptacle 22 (fitting space 23) with the moving plate 44 held at the standby position.
In withdrawing the male terminal fitting 28 from the housing 10 with the female connector F separated from the male connector M, the retainer 33 at the full locking position first is pulled back to the partial locking position. At this time, as shown in
After the retainer 33 is moved to the partial locking position, the pull-back tool 52 is pulled from the retainer 33 (operation hole 40) and the moving plate 44 (opening 48). Thereafter, as shown in
The male connector M of this embodiment includes the housing 10, the male terminal fittings 28, the retainer 33 and the moving plate 44. The housing 10 includes the terminal holding portion 12 and the fitting space 23 facing the front surface of the terminal holding portion 12. The male terminal fitting 28 includes the tab 30 in the front part, and held in the terminal holding portion 12 with the tab 30 projecting into the fitting space 23. The retainer 33 is mounted in the front part of the terminal holding portion 12. The retainer 33 is movable in the front-rear direction between the partial locking position where the male terminal fittings 28 are allowed to be inserted into and withdrawn from the terminal holding portion 12 and the full locking position where the male terminal fittings 28 properly held in the terminal holding portion 12 are retained. The moving plate 44 has a function of positioning the tabs 30 and is accommodated in the fitting space 23 to face the front surface of the retainer 33.
The openings 48 penetrate the moving plate 44 in the front-rear direction, and the pushing tool 51, the pull-back tool 52 and the unlocking tool 54 are insertable into the openings 48 from the front of the moving plate 44. The retainer 33 is formed with the operated portions 41 facing the openings 48 from behind and contactable by the pushing tool 51, the pull-back tool 52 and the unlocking tool 54 inserted into the opening 48.
By pushing the operated portion 41 by the pushing tool 51 inserted into the opening 48 from the front, the retainer 33 can be moved from the partial locking position to the full locking position. Further, by pulling the operated portion 41 by the pull-back tool 52 inserted into the opening 48 from the front, the retainer 33 can be moved from the full locking position to the partial locking position. Since the retainer 33 need not be formed with elongated projections projecting forward, the retainer 33 can be reduced in size.
Further, the full locking position of the retainer 33 is behind the partial locking position and the operated portions 41 have the pushing surfaces 42 facing forward of the retainer 33. Accordingly, the retainer 33 can be moved from the partial locking position to the full locking position by pushing the pushing surface 42 by the pushing tool 51 inserted into the opening 48. Further, the housing 10 includes the resiliently deflectable locking lances 18 to retain the male terminal fittings 28 in the terminal holding portion 12. The retainer 33 includes the deflection restricting portions 38 insertable into the deflection spaces 19 for the locking lances 18, and the pushing surfaces 42 are on the front surfaces of the deflection restricting portions 38. Accordingly, since the deflection restricting portions 38 function as the pushing surfaces 42, the shape of the retainer 33 can be simplified.
Further, the full locking position of the retainer 33 is set behind the partial locking position and the operated portions 41 have the hooking surfaces 43 facing rearward of the retainer 33. According to this configuration, the retainer 33 can be moved from the full locking position to the partial locking position by hooking the pull-back tool 52 inserted into the opening 48 to the hooking surface 43 and pulling the pull-back tool 52 forward.
Further, the housing 10 includes the resiliently deflectable locking lances 18 configured to retain the male terminal fittings 28 properly inserted into the terminal holding portion 12, and the openings 48 are disposed at positions facing the locking lances 18 from front. According to this configuration, the locking lance 18 can be deflected resiliently and separated from the male terminal fitting 28 by the unlocking tool 54 inserted into the opening 48 from the front of the moving plate 44.
The invention is not limited to the above described and illustrated embodiment. For example, the following embodiments also are included in the scope of the invention.
Although the operated portion has the pushing surface for pushing the retainer to the full locking position and the hooking surface for pulling the retainer back to the partial locking position in the above embodiment, the operated portion may have only either one of the pushing surface and the hooking surface.
Although the invention is applied to a waterproof connector in the above embodiment, the present invention can also be applied to a non-waterproof connector.
Although the locking lance can be separated from the terminal fitting using the opening in the above embodiment, the locking lance may be separated from the terminal fitting using an opening other than the former opening.
Although the opening is at the position facing the locking lance from front in the above embodiment, the opening may be disposed at a position not facing the locking lance.
Although the opening edge of the opening is continuous over the entire periphery in the above embodiment, a part of the opening edge may be open on the outer peripheral edge of the moving plate.
Number | Date | Country | Kind |
---|---|---|---|
2018-213442 | Nov 2018 | JP | national |