1. Field of the Invention
The invention relates to a connector having a lance for locking a terminal fitting thereto.
2. Description of the Related Art
U.S. Pat. No. 7,083,471 relates to a connector for supplying an electric power to an apparatus mounted on an electric car such as a motor, inverter or the like accommodated inside a metal case. The connector has an electric wire-side connector mounted at an end of an electric wire and an equipment-side connector mounted on a mounting hole that penetrates through the case. The electric wire-side connector and the equipment-side connector are fit on each other to bring terminals in both connectors into contact with each other.
Cavities penetrate the housing of the electric wire-side connector and terminal fittings connected to ends of electric wires are accommodated in the cavities. Each terminal fitting has a lance-locking hole formed therein. An elastically deformable lance is formed in each cavity for locking the terminal fitting. The terminal fitting flexes a locking lance during insertion into the cavity. Thus, the lance deforms elastically into a flexibility allowance space adjacent to the direction in which the lance deforms. The lance then returns elastically to lock the terminal fitting in the housing in a removal-prevented state.
A retainer formed separately from the housing often is used to penetrate into the flexibility allowance space for the lance to prevent the lance from flexing and to keep the lance locked to the lance-locking hole. The terminal fitting is locked doubly to the lance and the retainer and thus is retained securely inside the housing.
The above-described construction requires the connector to have the housing and the separate retainer. Additionally, the housing must be formed with a mounting part where the retainer is mounted and a locking mechanism for holding the retainer on the mounting part. Thus, the housing is large and requires plural component parts.
The invention has been completed in view of the above-described situation. It is an object of the present invention to provide a connector which is capable of holding a terminal fitting at a high strength by a double locking construction and can be made to be compact.
The invention relates a connector with first and second housings that can be fit together. The housings have cavities for accommodating terminal fittings. A first terminal fitting is mounted in the cavity of the first housing. A lance is formed in the first housing and locks the first terminal fitting mounted in the cavity to prevent the first terminal fitting from being removed from the cavity. The lance can deform elastically in a flexibility allowance space in the first housing to unlock the first terminal fitting. A second terminal fitting is provided in the cavity of the second housing and is connectable to the first terminal fitting when the housings are fit together. A retainer projection is provided in the second housing and projects in a fit-on direction in which the first and second housings are fit together and penetrates into the flexibility allowance space. The retainer projection is guided by the first housing in an operation of fitting the first and second housings together and prevents the lance from flexing in an unlocking direction. Thus, the first terminal fitting is locked doubly and is held at a high strength.
A lance will not be in a normal locking state if the terminal fitting has not been inserted sufficiently and will project into the flexibility allowance space. This deformed lance will contact the retainer projection during an operation of fitting the first and second housings together, thereby preventing the retainer projection from penetrating properly into the flexibility allowance space and preventing complete connection of the first and second housings. This locking-inadequate state of the first terminal fitting can be detected immediately. In addition, the retainer projection is formed unitarily with the second housing and functions to guide the first housing and second housings together. Furthermore, the unitary formation of the retainer projection with the second housing reduces the number of component parts to simplify inventory management and makes the connector compact.
The first housing may have two cavities, and the lances may be located at a side of each of the cavities near a center of the first housing. In this construction, the two retainer projections that prevent the lance from flexing in an unlocking direction are provided near the center of the first housing. Therefore, the retainer projections are not likely to be broken.
The first housing may have a fit-on detection connector disposed between the lances. The retainer projections are disposed with the fit-on detection connector sandwiched between the retainer projections in an operation of fitting the first and second housings together. In this construction, the fit-on detection connector is used to guide the retainer projection into the flexibility allowance space, thus utilizing the space effectively and making the entire connector compact.
The first and the second housings preferably are provided with a bolt and a female screw part respectively so that the bolt is screwed into the female screw part to fit the first and second housings together. A length of the bolt is set so that screwing the bolt into the threaded hole starts after a front end of the retainer projection penetrates into the flexibility allowance space during a fit-on of the housings. Thus, the lance and the retainer projection will not be broken by forcibly screwing the bolt into the female screw part in a locking-inadequate state where the lance projects into the flexibility allowance space.
The connector of the invention can be compact and can hold the terminal fitting at a high strength by the double locking construction.
The connector assembly of the invention is illustrated in
The electric wire-side connector 10 has a first housing 10A made of synthetic resin and formed with two integrally formed tubes 11 spaced laterally at a predetermined interval, as shown in
A square pillar-shaped interlocking fit-on part 17 corresponding to a fit-on detection connector part is provided between the tubes 11 and is spaced from each tube 11. A short-circuit terminal 18 having a pair of male terminals is disposed inside the interlocking fit-on part 17. The short-circuit terminal 18 fits on an interlocking connector 40 on the equipment-side connector 30 to detect whether the electric wire-side connector 10 and the equipment-side connector 30 have been fit together properly.
A first shielding shell 50 made of die-casted aluminum is mounted on the first housing 10A from the rear, as shown in
A bolt insertion hole 54 is formed through a rear wall of the fixing part 51 of the first shielding shell 50 (see
As shown in
A lance 19 cantilevers forward in each tube 11 and a locking projection 19A is formed at a front end of the lance 19. The locking projection 19A projects into the cavity 12 and engages the shoulder 14B to prevent the female terminal fitting 14 from being removed from the cavity 12. Each lance 19 is formed on a side of the tube 11 toward the middle and in proximity to the interlocking fit-on part 17 is positioned. Each lance 19 can flex toward the interlocking fit-on part 17 in the center of the electric wire-side connector 10.
A flexibility allowance space 22 is formed between each lance 19 and a side surface of the interlocking fit-on part 17 and is dimensioned to allow the lance 19 to deform sufficiently for the locking projection 19A to disengage from the female terminal 14. A guide groove 23 extends continuously into the flexibility allowance space 22 from the front of the electric wire-side connector 10 and is open toward the fit-on side of both the electric wire-side connector 10 and equipment-side connector 30.
The equipment-side connector 30 has a second housing 30A made of synthetic resin. As shown in
The second shielding shell 60 is made of die-casted aluminum and is fit on the second housing 30A from the front. As shown in
The female screw pedestal 65 projects sideways from the body 61 of the second shielding shell 60 in
Two male terminal fittings 35 are accommodated inside the second housing 30A, as shown in
An interlocking accommodation part 38 penetrates longitudinally through the equipment-side connection part 33 at approximately the middle of the terminal body parts 36 in its width direction, as shown in
Two spaced apart plate-shaped retainer projections 34 extend forward from an inner rear wall of the cylindrical hood 31, as shown in
The second shielding shell 60 is fit on the second housing 30A in advance and then the equipment-side connector 30 is mounted on the case by inserting the equipment-side connector 30 into the connector-mounting hole formed through the case. Thus, the second shielding shell 60 is disposed outside an unshown apparatus so that the screw insertion hole 63 of the second shielding shell 60 and a threaded hole of the unshown case overlap. An unshown screw is screwed therein to fix conductively the second shielding shell 60 to the unshown case. The rubber packing 64 waterproofs the gap between an outer wall surface of the unshown case and the second shielding shell 60 as well as the second housing 30A.
The electric wire-side connector 10 then is fit on the equipment-side connector 30. Initially the fixing part 51 of the first shielding shell 50 is placed in position to overlap and fit the female screw pedestal 65 of the second shielding shell 60, as shown in
The equipment-side connector 30 and the electric wire-side connector 10 are pressed from the temporary fit-on state so that the retainer projection 34 penetrates deeper into the flexibility allowance space 22. Thus, the fit-on groove 34A is fit on the back 19B of the lance 19 and the retainer projection 34 penetrates deep into the flexibility allowance space 22. As a result, the screw shaft 56B of the fit-on bolt 56 engages the threaded hole 66 of the second shielding shell 60. The fit-on bolt 56 then is rotated with a wrench to screw the fit-on bolt 56 into the threaded hole 66, thereby causing the first and second shielding shells 50 and 60 to approach each other. As shown in
In the fit-on finish state, the entire retainer projection 34 is in the flexibility allowance space 22 and prevents the lance 19 from flexing in an unlocking direction. Thus, the lance 19 will not unlock from the retainer projection 34 even if a pulling force is applied to the electric wire 13. Therefore, the female terminal 14 is locked doubly and cannot escape the cavity 12.
The interlocking connector 40 is fit on the interlocking fit-on part 17 when the electric wire-side connector 10 is fit on the equipment-side connector 30. Thus, an unshown fit-on detection circuit detects that the electric wire-side connector 10 is fit on the equipment-side connector 30. As a result, a relay or the like is closed and a power circuit is energized.
As described above, the retainer projection 34 on the electric wire-side connector 10 prevents the lance 19 of the equipment-side connector 30 from flexing, thus preventing the female terminal 14 from being removed from the cavity 12. Therefore it is not necessary to provide the electric wire-side connector 10 with a retainer for doubly locking the lance 19 or a locking mechanism for retaining the retainer on the electric wire-side connector 10.
The lance 19 will not be in a normal locking state if the female terminal 14 is not inserted sufficiently into the cavity 12 and part of the lance 19 will project into the flexibility allowance space 22. Thus, the front end of the retainer projection 34 will contact the lance 19 while fitting the electric wire-side connector 10 on the equipment-side connector 30 and the retainer projection 34 cannot penetrate into the flexibility allowance space 22. Accordingly, the electric wire-side connector 10 cannot be fit on the equipment-side connector 30 and even the semi-fit-on state cannot be obtained. An operator immediately can detect that the female terminal 14 is in a locking-inadequate state.
The length of the screw shaft 56B of the fit-on bolt 56 is set so that the screwing of the fit-on bolt 56 into the threaded hole 66 starts after the electric wire-side connector 10 has been fit on the equipment-side connector 30 sufficiently for the front end of the retainer projection 34 to penetrate into the flexibility allowance space 22. The screw shaft 56B of the fit-on bolt 56 engages the thread groove of the threaded hole 66 after the electric wire-side connector 10 is fit temporarily on the equipment-side connector 30. Thus, even though an electric tool, such as an impact wrench, is used when the female terminal 14 is in the locking-inadequate state, the electric wire-side connector 10 and the equipment-side connector 30 do not have even a temporary fit-on state and there is no fear that the fit-on bolt 56 is screwed into the threaded hole 66. Accordingly, the lance 19 and the retainer projection 34 will not be broken because the electric wire-side connector 10 cannot be fit forcibly on the equipment-side connector 30 in the locking-inadequate state.
The retainer projection 34 is formed integrally with the second housing 30A and guides the electric wire-side connector 10 onto the equipment-side connector 30 in the correct direction. The fit-on groove 34A of the retainer projection 34 engages the lance 19 and surrounds the back 19B of the lance 19. Thus, the retainer projection 34 assures the proper vertical orientation of the electric wire-side connector 10 in the equipment-side connector 30 so that the electric wire-side connector 10 and the equipment-side connector 30 can be moved into the fit-on state. The electric wire-side connector 10 is fit on the equipment-side connector 30 correctly due to the above-described guide function of the retainer projection 34.
The retainer projection 34 is unitary with the second housing 30A, thereby reducing the number of component parts and making the connector compact. The conventional connector that has the retainer separate from the housing must have a locking mechanism on the electric wire-side connector 10 for holding the retainer. However, the retainer projection 34 of the subject invention is formed integrally with the second housing 30A. Thus, the electric wire-side connector 10 does not need the locking mechanism used in the conventional connector and the connector is compact.
The retainer projection 34 is near the center of the second housing 30A, thereby improving the strength of the retainer projection 34 and preventing the retainer projection 34 from being broken, because both connectors cannot be forcibly fit together.
The invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.
The above-described connector has the bolt 56 screwed into the threaded hole 66 to fit the first and second shielding shells 50 and 60 together and to fit the electric wire-side connector 10 on the equipment-side connector 30. However, the electric wire-side connector 10 may be fit on the equipment-side connector 30 by using a known lever mechanism.
The above-described lance 19 is disposed at approximately the center of the first housing 10A in its width direction, and the two retainer projections 34 are formed by forward extending the laterally extended side walls of the interlocking accommodation part 38 in the direction in which the electric wire-side connector 10 fits on the equipment-side connector 30. However, the invention is not limited to the above-described form. For example, the lance 19 may be disposed at both sides of the first housing 10A in its width direction, the flexibility allowance space 22 is provided outward from each cavity 12, and the retainer projections 34 are inserted into both sides of the first housing 10A1 in its width direction.
Number | Date | Country | Kind |
---|---|---|---|
2009-194530 | Aug 2009 | JP | national |