1. Field of the Invention
The invention relates to a connector having a lever.
2. Description of the Related Art
U.S. Pat. No. 5,401,179 discloses a connector with a housing that is connectable with a mating housing. A lever is mounted rotatably to a rotary shaft of the housing and has a cam groove. The mating housing has a cam pin that can engage with the cam groove on the lever. The cam pin and the cam groove cooperate as the lever is rotated to connect the housing and the mating housing.
The lever is substantially U-shaped and has two side plates and an operational piece that connects the side plates to each other. Rotary shafts project from outer surfaces of the housings and fit into the mounting holes in the side plates.
This construction necessitates the forcible opening of both side plates of the lever outwardly so that both mounting holes can be fit on the rotary shaft. More specifically, it is necessary to match the position of the mounting holes to the rotary shaft while resisting the elastic force of the side plates. Thus this construction has inherent mounting difficulties for an operator.
The invention has been completed in view of the above-described situation. Therefore it is an object of the invention to mount a lever easily on a connector housing.
The invention relates a connector with first and second housings that can be fit together. The connector also has a lever with a side plate and an operation portion at one end of the side plate. A rotary shaft extends from an end of the side plate opposite the operation portion and a projection is formed on the rotary shaft. A lever-mounting portion is provided on the first housing and can accommodate the lever so that an outer surface of the lever-mounting portion confronts the side plate. A receiving portion is provided on the second housing and engages a force exerting portion on the lever to displace the housings in a fit-in direction when the lever is operated.
An insertion opening is formed at one end of the lever-mounting portion and can receive the rotary shaft so that the lever can be mounted along the outer surface of the lever-mounting portion. Additionally, an introduction groove penetrates through the lever-mounting portion and extends along the lever mounting direction.
In the above-described construction, the rotary shaft can be disposed rotatably at an end of the introduction groove, and the projection of the rotary shaft can be locked to a rear side of an edge of an opening at the end of the introduction groove to prevent the side plate from moving out along an axial direction of the rotary shaft.
The connector further includes a return prevention portion between the lever and the lever-mounting portion. The return prevention portion locks to a mating member to prevent the rotary shaft from returning in a direction opposite to the lever-mounting direction in the introduction groove after the rotary shaft reaches the end of the introduction groove. However, an operator can perform an operation of rotating the lever.
The projection preferably has a first engaging tooth that projects radially out from an outer surface of the rotary shaft. An accommodation space is formed between the lever-mounting portion and an outer surface of the first housing for accommodating the engaging tooth. A second engaging tooth is provided at the receiving portion of the second housing and penetrates into the accommodation space, when the housings are fit together. The first and second engaging teeth engage each other when the housings initially are fit together. The housings fit together further due to progress of engagement between the first and second engaging teeth caused by operation of the lever.
Lever-mounting portions may be disposed on both side surfaces of the first housing, and the lever may have two side plates connected with each other by the operation portion. Thus, the lever is substantially U-shaped and can straddle the first housing. A projection is formed on an inner surface of each of the side plates for preventing the lever from returning in a direction opposite to the lever-mounting direction. A circular arc-shaped locking groove is formed on the outer surface of the lever-mounting portion, and is disposed around an axis of the rotary shaft. The projection can be locked in the locking groove, but can be displaced along the locking groove.
The rotary shaft is fit into the insertion opening, with the side plates of the lever confronting the lever-mounting portion. The lever then is slid along the introduction groove. The rotary shaft is locked to the return prevention portion when the rotary shaft reaches the end of the introduction groove. Thus, the lever is held at the end of the introduction groove and cannot be displaced from the lever-mounting portion.
As described above, the lever can be mounted on the lever-mounting portion along the outer surface of the lever-mounting portion. Thus, the lever-mounting operation can be accomplished easily, as compared with the conventional lever-mounting operation which is performed by opening the side plates outward.
The first and second engaging teeth engage when the housings initially fit together and then pull the housings together as the lever is operated. The first and second engaging teeth also prevent removal of the lever. Thus, the construction of the connector is simplified.
The rotary shafts fit in the respective insertion openings of the first housing as the lever is slid along the introduction groove. The return prevention projection then fits into the locking groove when the rotary shaft reaches the end of the introduction groove to prevent the return of the lever. The return prevention projection is displaced along the locking groove as the lever is operated to guide the movement of the lever.
A male connector in accordance with the invention includes a male housing 1, as shown in
An engaging tooth 7 is formed on each side surface of the male housing 1 in the vicinity of an opening of the hood 4. The engaging tooth 7 projects up and out in the widthwise direction of the male housing 1. A guide 8 is formed behind the engaging tooth 7 and projects in the widthwise direction of the male housing 1. The guide 8 projects higher than the engaging tooth 7 in the widthwise direction of the male housing 1 and a tapered surface 8A is formed on the front-end surface of the guide piece 8.
The female housing 5 of the female connector has a female terminal accommodation portion 9 and an outer casing 10 disposed around and the entire peripheral surface the female terminal accommodation portion 9. Cavities 11 penetrate longitudinally through the female terminal accommodation portion 9 in positions corresponding to the male terminal fittings 2 and a flexible lance 12 is formed in each cavity 11 for locking a corresponding female terminal fitting (not shown) therein. A cap-shaped retainer 13 is fit on a front surface of the female terminal accommodation portion 9 (see
The outer casing 10 is connected with the female terminal accommodation portion 9 at four corners of a rear portion thereof. A fit-in space 15 is formed between the female terminal accommodation portion 9 and the outer casing 10 for receiving the hood 4 of the male housing 1. A rubber ring 16 is fit inside the outer casing 10 and on the periphery of a rear portion of the female terminal accommodation portion 9. The rubber ring 16 closely contacts an inner surface of the hood 4 when the male housing 1 and the female housing 5 are fit together to seal the gap between the housings 1 and 5. A peripheral edge of a rear end of the retainer 13 and a front surface of the rubber ring 16 confront each other when the retainer 13 is at the main locking position to prevent the rubber ring 16 from being removed from the female terminal accommodation portion 9.
A rubber plug 17 for sealing all electric wires and female terminal fittings connected therewith is disposed in close contact with a rear surface of the female terminal accommodation portion 9. Insertion holes 18 penetrate through the rubber plug 17 and are coaxial with the respective cavities 11. The female terminal fittings can be inserted into the respective insertion holes 18. Each insertion hole 18 can closely contact the peripheral surface of a coating film of each of the electric wires. A rubber plug hold-down member 19 made of synthetic resin is disposed on a rear surface of the rubber plug 17 and is locked on the female housing 5. The rubber plug 17 can be fixed to and pressed against the rear side of the female terminal accommodation portion 9 by mounting the rubber plug hold-down member 19 on the female connector housing 5. Windows 20 penetrate through the rubber plug hold-down member 19. Each window 20 is coaxial with the corresponding insertion hole 18 and the corresponding cavity 11 and is constructed so that the corresponding female terminal fitting and the corresponding electric wire are freely insertable therein.
The connector has a lever 21 mounted in lever-mounting portions 22 formed on side surfaces of the outer casing 10 in its widthwise direction. Each lever-mounting portion 22 is in the shape of a forwardly open bag. The inside of the lever-mounting portion 22 communicates with the fit-in space 15 and the engaging tooth 7 can penetrate therein when the male and female housings 1 and 5 are fit together.
An introduction groove 23 is formed longitudinally on a side surface of each of the lever-mounting portions 22. One end of the introduction groove 23 is open towards the front of the female housing 5 to form an insertion opening 23A into which a rotary shaft 24 of the lever 21 can be inserted. A holding portion 23B is formed at the rear end of the introduction groove 23 is formed in the shape of a circular arc for rotatably holding the rotary shaft 24 of the lever 21. Circular arc-shaped locking grooves 25 penetrate through the side surfaces of the lever-mounting portions 22 at locations rearward of and coaxial with the holding portion 23B. A tapered escape edge 26 is formed at a front of the lever-mounting portion 22 and below the introduction groove 23. The escape edge 26 prevents the lever 21 from interfering with the lever-mounting portion 22 when the lever 21 is rotated. A horizontal fit-in groove 27 is formed on an inner surface of the lever-mounting portion 22 at a location rearward of the escape edge 26. The guide piece 8 of the male connector housing 1 can fit in the fit-in groove 27 when the male and female housings 1 and 5 are fit together.
The lever 21 has two side plates 28 confronting the side surfaces of the lever-mounting portion 22. The lever 21 further includes an operation portion 29 connecting upper ends of the side plates 28 to each other. A pin-shaped rotational shaft 24 projects orthogonally from an inner surface of each of the side plates 28. Two gear pieces 30 project radially out from a front end of the rotary shaft 24. The gear pieces 30 engage the engaging tooth 7 of the male connector as the lever 21 is rotated and move the female and male housings 5 and 1 in a fit-in direction. A projection 31 is formed on the side plate 28 near the rotary shaft 24. The projection 31 is movable with the rotary shaft 24 along the introduction groove 23. The projection 31 then rides over a portion of an outer surface of the lever-mounting portion 22 between the holding portion 23B and the locking groove 25 as the rotary shaft 24 approaches the holding portion 23B. The projection 31 then fits into the locking groove 25 to prevent the lever 21 from returning in a direction opposite to a lever-mounting direction. Additionally, the lever 21 can slide along the locking groove 25 while the lever 21 is being rotated.
An inclined surface 31A (see
A concave groove 32 is formed on an outer surface of the side plate 28 forward of the rotary shaft 24 is disposed. The groove 32 is formed vertically entirely on the outer surface of the side plate 28 so that a portion of the side plate 28 forward of the concave groove 32 can deform easily when the lever 21 is at the position shown in
A stopper 33 projects out from a corner of a rear upper end of the outer surface of each lever-mounting portion 22. The stoppers 33 engage side edges of both side plates 28 of the lever 21 when the lever 21 is mounted on the female housing 5 in the lever-mounting position shown in
The female housing 5 can be fit shallowly on the hood 4 of the male housing 1 with the lever 21 at the lever-mounting position. At this time, the engaging tooth 7 of the male housing 1 penetrates into the lever-mounting portion 22 of the female housing 5 from the front and contacts one of the gear pieces 30 of the lever 21 so that the engaging tooth 7 is between both gear pieces 30. At the same time, the tapered surface 8A of the guide piece 8 slidably contacts the inclined edge 34A of the front plate 34 of the lever 21 and deforms the front plate 34 outward about the concave groove 32. Thus, the front plate 34 is released from the holding surface 35, the lever 21 is released from the lever-mounting position and the entrance of the fit-in groove 27 is released so that the lever 21 can be rotated. The engagement between the gear pieces 30 of the lever 21 and the engaging tooth 7 of the male connector housing 1 urges the male and female housings 1 and 5 together as the lever 21 is rotated.
The locking projection 6 is locked to the locking concavity 37 when the lever 21 reaches the locking position. The lever 21 is held at the locking position and the male and female terminal fittings are connected to each other at a normal state.
The lever 21 is positioned forward of the female housing 5 in preparation for mounting. The rotary shafts 24 of the lever 21 and the projection 31 then are inserted through the insertion opening 23A of the introduction groove 23. The entire lever 21 in this posture then is pressed into the introduction groove 23. Thus, the inner surfaces of the side plates 28 slide in contact with the outer surface of the lever-mounting portion 22 without the side plates 28 deforming outward. The projection 31 passes through the holding portion 23B and rides over the outer surface of the lever-mounting portion 22 immediately before the rotary shaft 24 reaches the holding portion 23B at the end of the introduction groove 23. The projection 31 fits into the locking groove 25 when the rotary shaft 24 has reached the holding portion 23B. In this manner, the projection 31 locks in the locking groove 25 and prevents a return of the lever 21. Further both gear pieces 30 are locked to the rear side of the introduction groove 23. Thus, the lever 21 is mounted on the female housing 5 while preventing the side plates from being opened outward. The rotary shaft 24 and the projection 31 are guided into the introduction groove 23 while the lever 21 is being mounted on the female housing 5. Thus the lever 21 is prevented from rotating and the posture of the lever 21 is fixed. Accordingly, the lever 21 is at the lever-mounting position when the lever 21 is mounted completely on the female housing 5. That is, the side plate 28 of the lever 21 and the stopper 33 of the female housing 5 contact each other, and the front plate 34 contacts the holding surface 35 under pressure. Thus the lever 21 is held at the lever-mounting position and is prevented from rotating in both directions. Therefore, it is unnecessary to perform work for adjusting the lever 21 to the lever-mounting position before filling the male and female housings 1 and 5 together.
As described above, the lever 21 is mounted on the lever-mounting portion 22 merely by sliding the lever 21 along the lever-mounting portion 22 and without opening the side plates 28. Therefore, the lever-mounting operation is performed smoothly and simply.
The invention is not limited to the embodiment described above with reference to the drawings. For example, the following embodiments are included in the technical scope of the present invention. Further, various modifications of the embodiments can be made without departing from the spirit and scope of the invention.
The illustrated lever 21 has side plates 28 at both sides of the operation portion 29, but the lever may have only one side plate at one side of the operation portion.
The engaging tooth is the force exertion portion and the projected portion for preventing the lever from opening outward. However, the force exertion portion can be separate from the projected portion.
When the force exertion portion is formed separately from the projected portion, the force exertion portion may be a known cam groove and cam pin.
Number | Date | Country | Kind |
---|---|---|---|
2004-339428 | Nov 2004 | JP | national |