The present invention relates to connectors, particularly a connector employed in a connecting portion to which vibration is applied.
A connector is a component employed for connecting electric wiring. Particularly in the case where the connector is employed for a wiring harness to which vibration of the vehicle is applied, there is a possibility of the connector, if of a general type, being detached by vibration.
Japanese Patent Laying-Open No. 2001-176602 discloses the technology of improving adhesion between a connector and a vibration isolation cover to ensure the vibration isolation capability by incorporating a rubber member between the connector employed in a vehicle and the vibration isolation cover.
In recent years, attention has been directed to electric cars, fuel cell electric vehicles and hybrid vehicles in consideration of the high fuel cost and environmental grounds. Such vehicles are mounted with motors for driving wheels, high voltage batteries, and the like. A power cable that can conduct high tension current to transmit power thereto is employed.
The power cable is connected to the motor by a connector due to the ease in assembly and maintenance. Such a connector is large in size, as compared to a conventional connector employed for an on-vehicle wiring harness.
Vibration of a large connector in response to vibration of the motor can cause generation of noise.
Although the vibration-proof connector disclosed in the aforementioned Japanese Patent Laying-Open No. 2001-176602 takes into account the issue of preventing connector detachment by suppressing vibration thereof, the publication is silent about suppressing the spread of noise generated from the connector (the drumming noise caused by a portion or the entirety of the surface of the connector vibrating likewise the surface of a drum) when an object of vibration and the connector are fastened together.
An object of the present invention is to provide a connector having sound generated from the connector caused by vibration reduced.
According to the present invention, a connector includes a main body supporting a wiring, and a sound-proof member attached to at least a first face of the main body to absorb sound generated from the main body caused by vibration.
Preferably, the sound-proof member includes a cover facing the first face, and a sound absorbing material located between the cover and the first face.
More preferably, the sound-proof member further includes a sound insulation material provided at the cover so as to wrap around the sound absorbing material.
Further preferably, the connector further includes a fastening member fastening the cover to the main body.
More preferably, the main body is made of metal, and the cover is made of resin.
Preferably, the main body has a portion inserted in a housing that vibrates during operation. The sound-proof member is attached to a portion of the main body protruding from the housing in a state where the main body has a portion inserted in the housing.
Further preferably, the main body has a shape in which the width of the cross section is greater than the height. The first face corresponds to the surface along the width direction of the cross section.
Preferably, the main body includes a first member formed with a recess in which the wiring is to be accommodated, and a second member forming a lid over the first member with the wiring accommodated. The first face corresponds to a portion of the second member.
Preferably, the main body is attached to a housing of an on-vehicle rotating electric machine. The wiring is a power wiring to supply power to the on-vehicle rotating electric machine.
Preferably, the power wiring includes a plurality of power cables. The plurality of power cables are accommodated in the main body in a juxtaposing manner. The first face corresponds to the surface along the direction in which the plurality of power cables are juxtaposed.
In accordance with the present invention, the spread of noise generated from the surface of the connector fastened to a vibrating object towards the surrounding can be prevented.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
An embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding components have the same reference characters allotted, and description thereof will not be repeated.
The vehicle shown in
Referring to
Connection is established between inverter 6 and transaxle 10 by a 3-phase power cable 18. A connector 8 is employed at the connection between power cable 18 and transaxle 10.
Referring to
The main body is attached to the housing of transaxle 10 of
Connector 8 further includes terminals 30U, 30V, and 30W electrically connected to power cables 18U, 18V and 18W, respectively, a connector insertion unit 36 supporting terminals 30U, 30V and 30W, and a stopper 28 provided at an insertion limit such that connector insertion unit 36 is inserted up to a predetermined length.
The main body of connector 8 includes a base 22 formed with bulges 22U, 22V and 22W to store the three power cables 18U, 18V and 18W, respectively, and a lid 24 over base 22 with power cables 18U, 18V and 18W accommodated therein.
The main body of connector 8 has a cross sectional configuration in which the width is larger than the height since the main body supports the three power cables in a juxtaposed manner. Therefore, the main body has a broad and flat shape such that sound is readily generated by vibration from lid 24. The sound emitting surface where sound-proof member 26 is attached corresponds to the face in the direction of width of the cross section.
The main body of connector 8 has its portion up to stopper 28 inserted into the housing of transaxle 10 of the vehicle that vibrates during motion. Sound absorbing member 26 is attached to a portion of the main body protruding from the housing with a portion of the main body inserted in the housing.
Base 22 includes valleys 38 and 40 between bulges 22U, 22V and 22W, when viewed from the back side. Base 22 therefore has a structure with higher rigidity than lid 24 even though the thickness is the same. It is therefore considered that lid 24 vibrates and emits sound more readily than base 22.
In the example shown in
Referring to
Sound-proof member 26 further includes a sound insulation material 52 provided so as to surround sound absorbing material 56 such that sound absorbing material 56 absorbs sound without any leakage.
Sound-proof material 56 may be a layer of polyester non-woven fabric, glass wool, urethane, and the like. Sound insulation material 52 may be an open-cell foam type soft sponge-like foam obtained by foaming a mixture of a fire retardant mixed into synthesized rubber. Such sound absorbing material and sound insulation material may be the general type commonly employed for interior components of a vehicle.
Cover 50 is provided with bolts holes 58 and 60 to be fastened to base 22 together with lid 24 of the main body of connector 8. Bolts 32 and 34 of
Referring to
Base 22 is identified as the first member of the connector main body provided with a recess in which the wiring is accommodated. Lid 24 is identified as the second member forming a lid on base 22 that is the first member, with the wiring accommodated. Cover 50 serving as a sound proof member is attached to the top surface of lid 24 by bolts 32A and 34A and nuts 32B and 34B.
By virtue of attachment by means of bolts 32A and 34A and nuts 32B and 34B, sound insulation material 52 is pressed appropriately to be flush with cover 50, whereby sound leakage is suppressed. In this state, sound absorbing material 56 is brought into contact with or is suitably adjacent to lid 24.
The power is transmitted to the vehicle motor by a plurality of power cables 18U, 18V and 18W. Each of power cables 18U, 18V and 18W includes a conductive metal core and an insulative cover thereon. Power cables 18U, 18V and 18W are accommodated in base 22 of the main body of connector 8 in a juxtaposed manner, as shown in
In
In accordance with the present embodiment, the spread of sound generated from the connector can be prevented. This contributes to realization of a quiet vehicle particularly for the on-vehicle type. The connector of the present embodiment is particularly advantageous in the case where quietness is required in the passenger compartment in vehicles having low running noise such as a hybrid vehicle and fuel cell vehicle.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-073511 | Mar 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP06/02792 | 2/10/2006 | WO | 00 | 8/21/2007 |