1. Field of the Invention
The present invention relates to a connector, and particularly to a connector which firmly connects with cables and mates with a plug connector and which has long life-span and reliable communication performance.
2. Related Art
A conventional connector, which is adapted to be assembled to cables and mate with a plug connector, comprises an insulative housing, a plurality of conductive terminals received in the insulative housing and a shell shielding the insulative housing. The insulative housing has a mating portion for mating with the plug connector and a connecting portion for connecting with the cables. The conductive terminals are received between the mating portion and the connecting portion for electrically connecting with ends of the cables and mating with terminals of the plug connector.
The conductive terminals of the conventional connector are usually soldered to the cables. However, the cables are required to move frequently to mate with other devices. Correspondingly the cables tend to disengage from the conductive terminals of the conventional connector, resulting in unreliable communication and shortened life-span.
Accordingly, an object of the present invention is to provide a connector which reliably connects with cables for stable communication performance and long life-span.
The connector comprises a first housing and a second housing assembled to each other. The first housing has a first insulator and a first shell shielding the first insulator. The first insulator transversely defines a plurality of passageways therethrough for receiving conductive terminals. An opening is longitudinally defined through a top of the first insulator. Latching grooves are respectively defined beside opposite ends of the opening. A plurality of U-shaped anchors is longitudinally arranged on the first shell and is spaced the same distance from each other for sandwiching the cables therebetween.
The second housing includes a rectangular second insulator received in the opening, and a second shell shielding the second insulator. A plurality of biasing projections is longitudinally formed along a front of the second insulator and cooperates with the anchors to press the cables. A plurality of engaging holes is defined in the second shell and is longitudinally spaced the same distance from each other for locking the anchors. The second shell has assembling arms respectively extending and bending from opposite sides thereof for engaging with the latching grooves.
With reference to
The first housing 2 includes a first insulator 20 and a first shell 21 shielding the first insulator 20. The first insulator 20 is flat and rectangular and transversely defines a plurality of passageways 201 therethrough for receiving conductive terminals 4. Each conductive terminal 4 includes a contact end 40 at a rear end thereof for mating with a plug connector and a V-shaped pierce end 41 at a front end thereof for connecting with a cable 6. An opening 202 is longitudinally defined through a top of the first insulator 20. Latching grooves 203 are respectively defined beside opposite ends of the opening 202. A slot 204 is longitudinally defined in a lower portion of the first insulator 20 and communicates with the opening 202. A pair of locking blocks 206 extends from a rear of the first insulator 20 and respectively forms a plurality of protrusions 205 at outward sides thereof. The first shell 21 has connecting arms 211 respectively extending and bending from opposite sides thereof. The connecting arms 211 form first barbs 212 at opposite edges thereof for interferentially engaging with the first insulator 20. A plurality of U-shaped anchors 213 is longitudinally arranged between the connecting arms 211 and is spaced the same distance from each other for sandwiching the cables 6 therebetween. The distance between the anchors 213 is slightly smaller than the diameter of the cables 6 for retaining the cables 6 firmly. Inclined surfaces 214 are formed at opposing sides of a top edge of each anchor 213 for guiding the cables 6. The first shell 21 has a latching plate 216 at a rear thereof for enclosing a rear portion of the first insulator 20. A plurality of locking holes 215 is defined in opposite sides of the latching plate 216 for cooperating with the protrusions 205 of the first insulator 20.
The second housing 3 includes a rectangular second insulator 30 and a second shell 31 shielding the second insulator 30. A plurality of biasing projections 301 is longitudinally formed along a front of the second insulator 30 and cooperates with the anchors 213 to press the cables 6. A plurality of engaging holes 310 is defined in the second shell 31 and is longitudinally spaced the same distance from each other for locking the anchors 213. The width of the engaging holes 310 is slightly smaller than the width of the anchors 213. The second shell 31 has assembling arms 311 respectively extending and bending from opposite sides thereof. The assembling arms 311 form second barbs 312 at opposite edges thereof for interferentially engaging with the latching grooves 203 of the first insulator 20. A pressing plate 313 transversely extends from a front of the second shell 31 for pressing the cables 6 reliably.
In assembly, the first housing 2 and the second housing 3 are assembled to each other. Referring to
It is understood that the invention may be embodied in other forms without departing from the spirit thereof. Thus, the present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Name | Date | Kind |
---|---|---|---|
5762513 | Stine | Jun 1998 | A |
5766033 | Davis | Jun 1998 | A |
6346055 | Rege | Feb 2002 | B1 |