1. Technical Field
The present invention relates to a connector.
2. Related Art
Conventionally, there is a known connector which can prevent a lever from collapsing even if there is a slight external force or a vibration before or during insertion of a flexible printed circuit board (substrate) to save the time and effort of flexible printed circuit board insertion work (for example, refer to Japanese Unexamined Patent Publication No. 2009-129860).
However, with regard to the conventional connector, disclosed is only a configuration which can prevent the lever from collapsing due to a vibration, for example, before the insertion of the substrate or on other occasions. Therefore, the user has to determine whether the substrate is inserted up to a suitable position. Furthermore, the user needs to operate the lever, that is, to raise or push down the lever before and after making the determination.
The present invention been devised to solve the problems described above, and an object thereof is to provide a connector in which only insertion of a substrate up to a proper position automatically completes an electrical connection between the substrate and a contact point member, and which allows the state of the connector to be recognized from the outside.
In accordance with one aspect of the present invention, there is provided
a connector including
a housing with an insertion recessed portion into which a substrate is to be inserted,
a contact point member that is installed in the housing and that includes a contact point portion which protrudes into the insertion recessed portion and makes an electrical connection to a conductive portion of the substrate to be inserted, and
a position determining member which moves the contact point member, when the substrate is inserted into the insertion recessed portion of the housing, in such a manner that the contact point portion is retracted from the insertion recessed portion, and then protrudes into the insertion recessed portion to make an electrical connection to the conductive portion of the substrate.
With this configuration, only the insertion of the substrate into the insertion recessed portion of the housing may automatically complete the electrical connection between the substrate and the contact point member.
The position determining member preferably moves depending on each movement in such a manner that the movement of the position determining member is recognizable from the outside of the housing.
This configuration enables checking for whether the electrical connection between the conductive portion of the substrate and the contact point portion of the contact point member is properly made to be performed from the outside of the housing, without needing additional work.
The position determining member may include
a movement member that is movable between a first position where the contact point portion of the contact point member is retracted from the insertion recessed portion, and a second position where the contact point portion of the contact point member protrudes into the insertion recessed portion, and
a latching member that position-determines the movement member in the second position, then moves to transport the movement member to position-determine the movement member in the first position when the substrate is inserted into the insertion recessed portion of the housing, and thereafter cancels the position-determined state when the substrate is inserted up to a proper position.
With this configuration, a state of an internal portion obtained by the insertion of the substrate into the housing may be recognized from a movement position of the movement member. In addition, since the position-determination of the movement member is achieved by the latching member, the state of the internal portion can be exactly recognized by establishing clear matching between the positions and the states of the internal portion.
The first position of the movement member may be distinguishable from the second position where the movement member protrudes from the housing.
With this configuration, the state, in which the contact point member is retracted from the insertion recessed portion by the substrate being inserted into the housing, can be easily recognized from the movement of the movement member, that is, from the outside of the housing.
The movement member preferably includes a shaft portion, and the contact point member preferably includes a holding portion that elastically holds the shaft portion of the movement member in a state of being installed in the housing.
With this configuration, not only an additional member for holding the movement member is made unnecessary but also a smooth movement of the movement member may be performed because of the elastic holding.
The holding portion of the contact point member preferably urges the movement member positioned in the first position in such a manner that the movement member is able to move to the second position.
With this configuration, only the canceling of the latched state by the latching member may automatically make a movement of the movement member that is positioned-determined in the first position to the second position, because of the elastic force exerted by the holding portion of the contact point member.
The movement member preferably includes an abutting receiving portion, and the movement member preferably moves from the second position to the first position when the substrate which is to be inserted into the housing is brought into contact with the abutting receiving portion and then inserted inward further.
With this configuration, the insertion of the substrate into the housing may enable the movement of the movement member from the second position to the first position via the abutting receiving portion.
The movement member may be supported by the holding portion of the contact point member in such a manner as to rotate about the shaft portion, and the movement of the movement member from the first position to the second position may be achieved by the rotation about the shaft portion in a direction in which the substrate is inserted.
With this configuration, the second position can be provided inside the housing, and the movement member may be configured in a manner not to protrude from the housing after the installation of the substrate. This makes the whole structure compact.
The substrate preferably includes a latching notch portion, the movement member preferably moves from the first position to the second position by the substrate being inserted up to an installation completion position, and the abutting receiving portion of the movement member may be latched onto the latching notch portion of the substrate.
With this configuration, since only the insertion of the substrate up to a proper position completes the latching of the abutting receiving portion of the movement member onto the latching notch portion of the substrate, slipping-off of the substrate may be prevented.
The latching member may include a pressure receiving portion that is pressed by a leading end edge of the substrate inserted into the insertion recessed portion of the housing, an elastic portion that elastically deforms by the pressure receiving portion being pressed, and an arm portion that has a latch protrusion portion and separates the latch protrusion portion from the movement member by the elastic member which elastically deforms,
and the movement member may include a first latch recessed portion onto which the latch protrusion portion formed in the arm portion is able to be latched when the movement member is positioned in the first position, and a second latch recessed portion onto which the latch protrusion portion formed in the arm portion is able to be latched when the movement member is positioned in the second position.
According to the present invention, whether the movement member has moved is recognizable from the outside by only inserting the substrate into the insertion recessed portion of the housing. Accordingly, whether the electrical connection between the conductive portion of the substrate and the contact point portion of the contact point member, which is performed inside the housing, is properly performed can be checked, without needing excessive work.
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. It is to be noted that the terms (for example, terms including “upward,” “downward,” “sideways,” “end,” “front,” and “rear”) expressing specific directions and positions be used if necessary in the following description, but these terms be used only for an easy understanding of the present invention described with reference to the drawings, and the meanings of these terms not limit a technical scope of the present invention. Furthermore, the following description is only an example in nature, and is not intended to limit the present invention, applications thereof, or uses thereof.
(First Embodiment)
As illustrated in
A plurality of guide holes 10 are formed on the partition wall 7, at predetermined intervals in the width direction. The plurality of guide holes 10 are formed to communicate with the upper and lower surfaces and extend in the backward direction. Furthermore, guide groove portions 11 are formed in the bottom surface which makes up the insertion recessed portion 6. The guide groove portions 11 are formed to correspond to the guide holes 10, respectively and extend in the forward and backward directions. The guide holes 10 and the guide groove portions 11 communicate with insertion holes 12 in the rear surface side of the housing 1. The insertion holes 12 are open in the direction of the rear surfaces of the recess 5 and the insertion recessed portion 6 and in the direction of the rear surface of the housing 1. The guide holes 10, the guide groove portions 11, and the insertion holes 12, which are positioned at both side ends, make up a first attachment portion 13 for installing the latching member 3. The plurality of insertion holes 12, arranged in parallel between the insertion holes 12, make up a second attachment portion 14 for installing the contact point member 2. In each of the first attachment portions 13, a latching portion 15, which is elastically deformable downward and has a latching pawl 15a protruding upward from a leading end part, is formed in a rear end portion of the bottom surface making up the insertion hole 12. A latching hole 16 in the rectangular shape, which communicates with the insertion hole 12, is formed in a position corresponding to each of the latching portions 15, in an upper wall making up the insertion hole 12.
A lower surface of the front end of the partition wall 7 is an upward-inclined surface that is gradually inclined upward, along the direction of facing toward the front side. Furthermore, a front end part of the bottom surface of the insertion recessed portion 6 is a downward-inclined surface that is gradually inclined downward, along the direction of facing toward the front side. Furthermore, a front end part of an inside surface of each of both side walls is a sideways-inclined surface that is gradually inclined from side to side, along the direction of facing toward the front side. These inclined surfaces are for facilitating an insertion of the substrate 17 (refer to
A release recessed portion 19 is formed in each of both end portions of the front surface of the housing 1, and an approximately L-shaped groove portion 20 being open in the direction of the front surface is formed in the release recessed portion 19. A fixation fitting 21 is fixed by being pressed into each groove portion 20 from the front side. The fixation fitting 21 is a metal plate member bent in the shape of a letter approximately like C. In the fixation fitting 21, the upper end wall and the side wall are pressed into the groove portion 20, the lower end wall is narrow in width, and the lower surface protrudes downward from the lower surface of the housing 1.
As illustrated in
Protrusion portions 26 are formed in an upper position in the first arm portion 23 and a lower position in the second arm portion 24, respectively in the front end edge of the installation portion 22. Furthermore, a press-in protrusion portion 27, which protrudes upward in the vicinity of the protrusion portion formed in the upper position, is formed in the upper end edge of the installation portion 22.
The first arm portion 23 protrudes forward from the installation portion 22, and a contact point portion 28 is formed in a manner to protrude downward from the leading end part of the first arm portion 23. The lower side of the leading end edge of the contact point portion 28 has an inclination portion 29 that gradually faces upward, along the direction of facing toward the leading end. A holding piece 30 is formed in the leading end part of the contact point portion 28. The holding piece 30 bulges upward substantially in the shape of a letter C. The holding piece 30 is in the form that conforms the upper half part of the shaft portion 43 of the movement member 4 described below. The holding piece 30 holds the shaft portion 43 to support the movement member 4 in a rotatable manner.
The second arm portion 24 obliquely extends downward from the installation portion 22, and thereafter protrudes in parallel with the first arm portion 23. A pressing portion 31, which protrudes upward from the leading end part of the second arm portion 24, is formed in a position facing the contact point portion 28 of the first arm portion 23. An inclination portion 32, which faces the inclination portion 29 of the first arm portion 23, is formed on the upper side of the leading end edge of the pressing portion 31.
As illustrated in
As illustrated in
The connector having the above-mentioned configuration is assembled as follows.
First, the contact point members 2 are inserted into the insertion holes 12 in the second attachment portion 14 of the housing 1, respectively from the rear end side. The contact point member 2 is installed in the housing 1 when the installation portion 22 is inserted into the insertion hole 12 and the press-in protrusion portion 27 is brought into pressure contact with the inside surface of the insertion hole 12. In the installed state, the contact point portion 28 of the first arm portion 23 protrudes into the insertion recessed portion 6. In addition, the holding piece 30 protrudes into the recess 5, and a gap is formed between the leading end part of the holding piece 30 and the upper surface of the partition wall 7.
Subsequently, the movement member 4 is installed by using the holding piece 30 of the contact point member 2 which has protruded into the recess 5 of the housing 1. The shaft portion 43 of the movement member 4 is inserted into the gap that is formed between the leading end part of the holding piece 30 and the bottom surface of the recess 5, from the front side. The holding piece 30 deforms elastically first by the shaft portion 43 of the movement member 4, and then returns to its original form, to hold the shaft portion 43. As a result, the installation of the movement member 4 is completed. In this state, the movement member 4 is position-determined in the horizontal position.
After that, the latching member 3 is inserted into the insertion hole 12 formed in the second attachment portion 14, from the rear surface side. The installation of the latching member 3 may be completed by inserting the arm portion 34 into the insertion hole 12, and press-fitting the installation portion 33. In this state, the latch protrusion portion 38 of the latching member 3 is latched onto the second latch recessed portion 46 of the movement member 4 positioned in the horizontal position.
Thus, in the assembled connector, when installing the substrate 17, insertion of the substrate 17 into the insertion recessed portion 6 of the housing 1 as it is from the state illustrated in
And, if the substrate 17 is pushed into the insertion recessed portion 6, as illustrated in
Then, as the substrate 17 is pushed into the insertion recessed portion 6 gradually, as illustrated in
When the substrate 17 is further pushed into the insertion recessed portion 6, as illustrated in
As the insertion of the substrate 17 into the insertion recessed portion 6 in the housing 1 is in progress in this way, the movement member 4 rotates to be in the standing-up position, and after that returns to be in the horizontal position when the inserted substrate 17 reaches a proper position. Therefore, the user can check whether the installation of the substrate 17 is completed from the outside of the housing 1 by recognizing the rotation state of the movement member 4. Since the slipping-off of the substrate 17 from the housing 1 is prevented thanks to the abutting receiving portion 39 of the movement member 4, the stably installed state can be achieved.
(Second Embodiment)
As illustrated
In the movement member 4 of this configuration, when a substrate 17 is inserted into an insertion recessed portion 6 of a housing 1 as illustrated in
If the substrate 17 is pushed inward further, the substrate 17 comes into contact with an abutting receiving portion 57 of the latching member 3 and an elastic portion 36 elastically deforms. As a result, the latch protrusion portion 38 is unlatched from the first latch recessed portion 54. Accordingly, the movement member 4 rotates from the standing-up position to the horizontal position by the elastic force of a first arm portion 23 of a contact point member 2 which is exerted on a shaft portion 52. Therefore, a contact point portion 28 which protrudes into the insertion recessed portion 6 comes into pressure contact with a conductive portion of the substrate 17, making an electrical connection. The user can recognize visually that the movement member 4 rotates from the horizontal position to the standing-up position, and then rotates again to the horizontal position. By recognizing this movement visually, it is possible to identify that the substrate 17 is inserted up to a proper position and an electrical connection between the contact point portion 28 of the contact point member 2 and the conductive portion of the substrate 17 is made, from the outside of the housing 1. At this time, the abutting receiving portion 56 of the movement member 4 is latched onto the latching notch portion 18 of the substrate 17 so that the substrate 17 may be prevented from being slip off the housing 1.
There has thus been shown and described a connector which fulfills all the objects and advantages sought therefore. Many changes, modifications, variations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2012-059302 | Mar 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4252389 | Olsson | Feb 1981 | A |
4252392 | Whiteman, Jr. | Feb 1981 | A |
4334728 | Reynolds et al. | Jun 1982 | A |
8323044 | Tsunemura | Dec 2012 | B2 |
8579654 | Chen et al. | Nov 2013 | B2 |
20080254662 | Koga | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
101057372 | Oct 2007 | CN |
101252231 | Aug 2008 | CN |
2001-155829 | Jun 2001 | JP |
2009-129860 | Jun 2009 | JP |
Entry |
---|
State Intellectual Property Office of People's Republic of China First Office Action issued Dec. 10, 2014 (English Translation). |
Number | Date | Country | |
---|---|---|---|
20130280947 A1 | Oct 2013 | US |