The present application is based upon and claims the benefit of priority of Japanese Patent Application No. 2009-122494, filed on May 20, 2009, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to a connector that is connected to a counterpart connector by fitting. The present invention relates more particularly to a differential transmission connector.
2. Description of the Related Art
Data transmission systems include an ordinary transmission system and a differential transmission system. The ordinary transmission system employs an electric wire for each data item. The differential transmission system, using a pair of electric wires for each data item, simultaneously transmits a “+” signal to be transmitted and a “−” signal equal in magnitude and opposite in direction to the “+” signal. The differential transmission system, which has the advantage of being less susceptible to noise compared with the ordinary transmission system, is widely used in fields where signals are transmitted at high speed.
The differential transmission connector unit 1 includes the plug connector 2 and the jack connector 3. The plug connector 2 is mounted on a backplane (external board) 4. The jack connector 3 is mounted at an end of a daughterboard (external board) 5. The plug connector 2 and the jack connector 3 are connected so that the backplane 4 and the daughterboard 5 are electrically connected by the connector unit 1. (See, for example, Japanese Laid-Open Patent Application No. 5-275139.)
As illustrated in
The signal contact pairs 252 are arranged in row directions (the X1 and the X2 direction) and in column directions (the Z1 and the Z2 direction) like a grid. Each of the signal contact pairs 252 includes a signal contact 254 and a signal contact 256 for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal contacts 254 and 256 are arranged in the column directions. Each of the ground contacts 258 includes a horizontal plate part 258-1 and a vertical plate part 258-2 to cover a corresponding one of the signal contact pairs 252 on its Z1 side and X1 side. The horizontal plate parts 258-1 extend to the backside of the housing 8 to serve as terminal parts.
As illustrated in
The insulative housing 6 includes openings 62-1 and 62-2 corresponding to the signal contacts 254 and 256, respectively, of the plug connector 2; and inverse L-letter shaped slits 62-3 corresponding to the ground contacts 258 of the plug connector 2.
The modules 10 are arranged in the row directions. Each of the modules 10 includes four signal contact pairs 152, which are arranged in the column directions. Each of the signal contact pairs 152 includes a signal contact 154 and a signal contact 156 for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal contacts 154 and 156 are arranged in the column directions. The ground plates 111 are provided one between each adjacent two of the modules 10.
The plug connector 2 and the jack connector 3 are electrically connected with the housing 8 being fit into the housing 6 to have the signal contacts 254 and 256 inserted into the housing 6 through the openings 62-1 and 62-2 to be in contact with the signal contacts 154 and 156, respectively.
At this point, the ground contacts 258 are inserted into the housing 6 through the corresponding slits 62-3 to have the vertical plate parts 258-2 and the horizontal plate parts 258-1 placed on the X1 side and the Z1 side, respectively, of the corresponding electrically connected portions of the signal contact pairs 252 and 152.
According to this configuration, each adjacent two of the connected signal contact pairs 152 and 252 are partitioned by a corresponding one of the ground plates 111 and a corresponding one of the ground contacts 258. Accordingly, it is possible to suppress crosstalk between adjacent signals and transmit signals at high speed.
According to one aspect of the present invention, a connector to be connected to a counterpart connector includes a circuit board having a ground layer, an insulating layer, and a first conductive layer successively stacked, the first conductive layer including a signal circuit and a ground circuit; and a second conductive layer electrically connecting the ground circuit and the ground layer, the second conductive layer being provided on a side of the counterpart connector in the ground circuit.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and not restrictive of the invention, as claimed.
Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings, in which:
According to the above-described configuration of Japanese Laid-Open Patent Application No. 5-275139, when the plug connector 2 and the jack connector 3 are connected, the ground contacts 258 and the ground plates 111 are not in contact. Accordingly, the end sides of the ground contacts 258 and the end sides of the ground plates 111 become the dead ends (stubs) of transmission paths. Accordingly, ground is less effective against high-frequency signals, so that there may be the problem of varying ground potential.
According to one aspect of the present invention, a connector is provided whose ground is more effective against high-frequency signals.
A description is given below, with reference to the accompanying drawings, of an embodiment of the present invention.
Referring to
Here, in the drawings of the embodiment, Y1-Y2 indicates the directions in which the plug connector 2A and the jack connector 3A are connected relative to each other, Z1-Z2 indicates the directions in which the jack connector 3A is mounted on the daughterboard 5A relative to each other, and X1-X2 indicates the directions perpendicular to the Y1 and the Y2 direction and the Z1 and the Z2 direction. In the drawings of the embodiment, elements or configurations corresponding to those illustrated in
A description is given below first of a configuration of the jack connector 3A, then of a configuration of the plug connector 2A, and then of a connected portion of the plug connector 2A and the jack connector 3A.
The jack connector 3A includes a first insulative housing 6A, a second insulative housing 7A, and multiple modules 10A.
The first insulative housing 6A is configured to be fit to an insulative housing 8A (
The second insulative housing 7A is configured to support the first insulative housing 6A and also to support the multiple modules 10A so that the modules 10A are parallel to each other. For example, the second insulative housing 7A has multiple slits 72A. The slits 72A are arranged in the X1-X2 directions. The modules 10A are incorporated in the corresponding slits 72A on a one-to-one basis.
Each of the modules 10A includes the circuit board 11A with multiple connection pads 15A and multiple connection pads 16A; multiple leads 12A; multiple solder layers 17A; and an insulative spacer 13A. The leads 12A electrically connect the circuit board 11A to the daughterboard 5A. The solder layers 17A are disposed between the leads 12A and the corresponding connection pads 16A, so that the leads 12A are fixed to the corresponding connection pads 16A through the respective solder layers 17A. A description is given in detail below of the circuit board 11A.
The spacer 13A is fixed onto one side of the circuit board 11A. The spacer 13A has multiple guide grooves 132A on its surface (X1-side surface) facing the circuit board 11A. The leads 12A are accommodated in the corresponding guide grooves 132A in such a manner as to be movable inside the guide grooves 132A when the solder layers 17A melt. Examples of the material of the solder layers 17A include a Sn—Bi alloy having a melting point of approximately 140° C. and a Sn—In alloy having a melting point of approximately 190° C.
Referring to
In the case illustrated in
When the solder layers 17A are caused to melt by application of heat, the leads 12A move inside the corresponding guide grooves 132A so as to absorb the (surface) warpage of the daughterboard 5A. As a result, it is possible to ensure the connection of the leads 12A to the daughterboard 5A after the heat treatment.
Referring to
The ground layer 111A and the insulating layer 112A cover substantially the entire conductive layer 113A. The ground layer 111A and the conductive layer 113A are basically insulated by the insulating layer 112A. A description is given in detail below of the conductive layer 113A.
The circuit boards 11A may be manufactured by a common method such as one using photolithography and etching.
In the case illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
According to this embodiment, the circuit board 11A has a three-layer structure of the insulating layer 112A and the conductive layer 113A successively stacked on the ground layer (metal plate) 111A. Alternatively, the circuit board 11A may have another three-layer structure of the insulating layer 112A, the ground layer 111A formed on one of the principal surfaces of the insulating layer 112A, and the conductive layer 113A formed on the other one of the principal surfaces of the insulating layer 112A. In either case, by forming the conductive layer 113A by a method using photolithography and etching, it is possible to microfabricate the conductive layer 113A and to reduce its thickness, so that it is possible to reduce the size of the jack connector 3A.
Referring back to
The signal circuit SC1 includes four signal connection pad pairs 152A aligned in the Z1-Z2 directions on the plug connector 2A side (on the Y1 side); four signal connection pad pairs 162A aligned in the Y1-Y2 directions on the daughterboard 5A side (on the Z2 side); and four signal interconnect pairs 142A that connect the signal connection pad pairs 152A and 162A.
Each of the signal connection pad pairs 152A includes a pair of signal connection pads 154A and 156A for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal connection pads 154A and 156A are aligned in the Z1-Z2 directions. Each of the signal connection pads 154A and 156A bifurcates at the end to have a two-pronged fork shape.
Each of the signal connection pad pairs 162A includes a pair of signal connection pads 164A and 166A for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal connection pads 164A and 166A are aligned in the Y1-Y2 directions. Each of the signal connection pads 164A and 166A has a rectangular shape.
Each of the signal interconnect pairs 142A includes a pair of signal interconnects 144A and 146A for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal interconnects 144A connect the Y1-side signal connection pads 154A and the Z2-side signal connection pads 164A. The signal interconnects 146A connect the Y1-side signal connection pads 156A and the Z2-side signal connection pads 166A.
On the other hand, the ground circuit GC1 includes four ground connection pads 158A aligned in the Z1-Z2 directions on the plug connector 2A side (on the Y1 side); and four ground connection pads 168A aligned in the Y1-Y2 directions on the daughterboard 5A side (on the Z2 side).
The ground connection pads 158A are provided one for each of the signal connection pad pairs 152A on its Z1 (or Z2) side, so as to alternate with the signal connection pad pairs 152A. Each of the ground connection pads 158A has substantially the same shape as the signal connection pads 154A and 156A, bifurcating at the end to have a two-pronged fork shape.
The ground connection pads 168A are provided one for each of the signal connection pad pairs 162A on its Y2 (or Y1) side, so as to alternate with the signal connection pad pairs 162A, Each of the ground connection pads 168A has substantially the same rectangular shape as the signal connection pads 164A and 166A.
In the description of this embodiment, the signal connection pads 154A and 156A and the ground connection pads 158A, which are provided on the plug connector 2A side (on the Y1 side), may be collectively referred to as the “connection pads 15A” (
A conductive layer is provided between the ground circuit GC1 and the ground layer 111A. For example, in the case illustrated in
As illustrated in
The conductive layer 114A is provided on the plug connector 2A side (on the Y1 side) in the ground circuit GC1. For example, as illustrated in
The conductive layer 114A may be further provided in or around part of the ground circuit GC1 which part comes into contact with the counterpart ground circuit GC2 (the ground circuit GC2 of the plug connector 2A) (
As illustrated in
Further, the conductive layer 114A may be provided on the daughterboard 5A side (the Z2 side) in the ground circuit GC1. For example, as illustrated in
Further, the conductive layer 114A may be provided in or around part of the ground circuit GC1 which part comes into contact with the leads 12A. For example, as illustrated in
Next, a description is given of a configuration of the plug connector 2A.
The plug connector 2A includes the insulative housing 8A; the multiple circuit boards 21A each having multiple connection pads 25A and multiple connection pads 26A; and multiple leads 22A.
Referring to
The leads 22A electrically connect the circuit boards 21A to the backplane 4A. Multiple solder layers 27A are disposed between the leads 22A and the corresponding connection pads 26A, so that the leads 22A are fixed to the corresponding connection pads 26A through the respective solder layers 27A.
As illustrated in
As illustrated in
The ground layer 211A and the insulating layer 212A cover substantially the entire conductive layer 213A. The ground layer 211A and the conductive layer 213A are basically insulated by the insulating layer 212A. A description is given in detail below of the conductive layer 213A.
Like the circuit boards 11A, the circuit boards 21A may be manufactured by a common method such as one using photolithography and etching.
Referring to
The signal circuit SC2 includes four signal connection pad pairs 252A aligned in the Z1-Z2 directions on the jack connector 3A side (on the Y2 side); four signal connection pad pairs 262A aligned in the Z1-Z2 directions on the backplane 4A side (on the Y1 side); and four signal interconnect pairs 242A that connect the signal connection pad pairs 252A and 262A.
Each of the signal connection pad pairs 252A includes a pair of signal connection pads 254A and 256A for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal connection pads 254A and 256A are aligned in the Z1-Z2 directions. Each of the signal connection pads 254A and 256A has a rectangular shape.
Each of the signal connection pad pairs 262A includes a pair of signal connection pads 264A and 266A for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal connection pads 264A and 266A are aligned in the Z1-Z2 directions. Each of the signal connection pads 264A and 266A has a rectangular shape.
Each of the signal interconnect pairs 242A includes a pair of signal interconnects 244A and 246A for transmitting positive and negative signals, respectively, having complementary waveforms in axial symmetry. The signal interconnects 244A connect the Y2-side signal connection pads 254A and the Y1-side signal connection pads 264A. The signal interconnects 246A connect the Y2-side signal connection pads 256A and the Y1-side signal connection pads 266A.
On the other hand, the ground circuit GC2 includes the four ground connection pads 258A aligned in the Z1-Z2 directions on the jack connector 3A side (on the Y2 side); four ground connection pads 268A aligned in the Z1-Z2 directions on the backplane 4A side (on the Y1 side); and four ground interconnects 248A that connect the ground connection pads 258A and 268A.
The ground connection pads 258A are provided one for each of the signal connection pad pairs 252A on its Z1 (or Z2) side, so as to alternate with the signal connection pad pairs 252A. Each of the ground connection pads 258A has a rectangular shape to project further toward the jack connector 3A side (in the Y2 direction) than the signal connection pads 254A and 256A.
The ground connection pads 268A are provided one for each of the signal connection pad pairs 262A on its Z1 (or Z2) side, so as to alternate with the signal connection pad pairs 262A. Each of the ground connection pads 268A has substantially the same rectangular shape as the signal connection pads 264A and 266A.
In the description of this embodiment, the signal connection pads 254A and 256A and the ground connection pads 258A, which are provided on the jack connector 3A side (on the Y2 side), may be collectively referred to as the “connection pads 25A” in the case of not distinguishing them in particular. Further, the signal connection pads 264A and 266A and the ground connection pads 268A, which are provided on the backplane 4A side (on the Y1 side), may be collectively referred to as the “connection pads 26A” in the case of not distinguishing them in particular.
A conductive layer is provided between the ground circuit GC2 and the ground layer 211A. For example, in the case illustrated in
As illustrated in
The conductive layer 214A is provided on the jack connector 3A side (on the Y2 side) in the ground circuit GC2. For example, as illustrated in
The conductive layer 214A may be further provided in or around part of the ground circuit GC2 which part comes into contact with the counterpart ground circuit GC1 (the ground circuit GC1 of the jack connector 3A) (
As illustrated in
Further, the conductive layer 214A may be provided on the backplane 4A side (the Y1 side) in the ground circuit GC2. For example, as illustrated in
Further, the conductive layer 214A may be provided in or around part of the ground circuit GC2 which part comes into contact with the leads 22A. For example, as illustrated in
Next, a description is given, with reference to
The connection pads 25A of the plug connector 2A come into contact with the corresponding connection pads 15A of the jack connector 3A so that the plug connector 2A and the jack connector 3A are electrically connected.
At this point, the signal connection pads 154A come into contact with the signal connection pads 254A, the signal connection pads 156A come into contact with the signal connection pads 256A, and the ground connection pads 158A come into contact with the ground connection pads 258A. Adjacent signal pairs (adjacent electrically connected portions of the signal connection pad pairs 152A and 252A) in the Z1-Z2 directions have the ground connection pads 158A and 258A placed therebetween, and adjacent signal pairs in the X1-X2 directions have the ground layers 111A and 211A placed therebetween. This makes it possible to suppress crosstalk between adjacent signal pairs, so that it is possible to transmit signals at high speed.
Further, as illustrated in
As described above, according to the jack connector 3A of this embodiment, the conductive layer 114A-2 that electrically connects the ground layer 111A and the ground circuit GC1 may be provided on the counterpart connector (plug connector 2A) side in the ground circuit GC1. Accordingly, it is possible to narrow (reduce) the stub S1 of the transmission path F1. As a result, it is possible to suppress a variation in ground potential even in high-speed transmission, so that it is possible to make ground more effective against high-frequency signals.
According to the plug connector 2A of this embodiment, the conductive layer 214A-1 that electrically connects the ground layer 211A and the ground circuit GC2 may be provided on the counterpart connector (jack connector 3A) side in the ground circuit GC2. Accordingly, it is possible to narrow (reduce) the stub 52 of the transmission path F2. As a result, it is possible to suppress a variation in ground potential even in high-speed transmission, so that it is possible to make ground more effective against high-frequency signals.
Further, according to the jack connector 3A of this embodiment, the conductive layer 114A-3 is further provided in or around part of the contact part C1 of the ground circuit GC1 which part comes into contact with the ground circuit GC2. Accordingly, it is possible to shorten the transmission path between the plug connector 2A and the ground layer 111A. As a result, it is possible to suppress a variation in ground potential even in high-speed transmission, so that it is possible to make ground more effective against high-frequency signals.
Further, according to the plug connector 2A of this embodiment, the conductive layer 214A-2 is further provided in or around the contact part C3 of the ground circuit GC2 which comes into contact with the ground circuit GC1. Accordingly, it is possible to shorten the transmission path between the jack connector 3A and the ground layer 211A. As a result, it is possible to suppress a variation in ground potential even in high-speed transmission, so that it is possible to make ground more effective against high-frequency signals.
Further, according to the jack connector 3A of this embodiment, the conductive layer 114A-3 is provided near the contact part C1 and on the opposite side of the contact part C1 from the plug connector 2A. This allows the transmission direction of the shortest transmission path between the plug connector 2A and the ground layer 111A to be a forward direction (unidirectional), so that it is possible to improve transmission characteristics.
Further, according to the plug connector 2A of this embodiment, the conductive layer 214A-2 is provided near the contact part C3 and on the opposite side of the contact part C3 from the jack connector 3A. This allows the transmission direction of the shortest transmission path between the jack connector 3A and the ground layer 211A to be a forward direction (unidirectional), so that it is possible to improve transmission characteristics.
Further, according to the jack connector 3A of this embodiment, the conductive layer 114A-4 is provided on the external board (daughterboard 5A) side in the ground circuit GC1. This makes it possible to narrow (reduce) the stub S2 of the transmission path F1 on the external board side. As a result, it is possible to suppress a variation in ground potential even in high-speed transmission, so that it is possible to make ground more effective against high-frequency signals.
Further, according to the plug connector 2A of this embodiment, the conductive layer 214A-3 is provided on the external board (backplane 4A) side in the ground circuit GC2. This makes it possible to narrow (reduce) the stub S4 of the transmission path F2 on the external board side. As a result, it is possible to suppress a variation in ground potential even in high-speed transmission, so that it is possible to make ground more effective against high-frequency signals.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority or inferiority of the invention. Although the embodiment of the present inventions has been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
For example, in the above-described embodiment, the conductive layer (114A, 214A) is provided at four or more points in the ground circuit (GC1, GC2). The present invention, however, is not limited to this, and the conductive layer (114A, 214A) may be provided, for example, at two points, one at the counterpart connector (2A, 3A) side end and one at the external board (5A, 4A) side end, in the ground circuit (GC1, GC2).
Further, in the above-described embodiment, a terminal part (not graphically illustrated) may be provided that projects from the ground layer (111A, 211A) toward the external board (5A, 4A) to electrically connect the ground layer (111A, 211A) to the external board (5A, 4A). In this case, the conductive layer (114A, 214A) may be provided only at the counterpart connector side end in the ground circuit (GC1, GC2).
Further, in the above-described embodiment, when the solder layers (17A, 27A) are caused to melt by application of heat, the leads (12A, 22A) move inside the corresponding guide grooves (132A, 84A) to absorb the (surface) warpage of the external board (5A, 4A) as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2009-122494 | May 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6040524 | Kobayashi et al. | Mar 2000 | A |
6652319 | Billman | Nov 2003 | B1 |
6663429 | Korsunsky et al. | Dec 2003 | B1 |
6812411 | Belau et al. | Nov 2004 | B2 |
7044793 | Takemasa | May 2006 | B2 |
7044794 | Consoli et al. | May 2006 | B2 |
7326858 | Lee et al. | Feb 2008 | B2 |
7696007 | Kikuchi et al. | Apr 2010 | B2 |
Number | Date | Country |
---|---|---|
5-275139 | Oct 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20100297880 A1 | Nov 2010 | US |