The present invention relates to a connector, and more particularly, to a connector having signal contacts that transmit/receive signals to/from a counter connector, and non-signal contacts adapted for non-signal purposes such as power supply, and ground connection.
In general, in a connector adapted to transmit/receive signals and power supply to/from external apparatuses, a plurality of contacts including signal contacts for signal transmission, and non-signal contacts to be used for non-signal purposes such as power supply and ground connection, are arranged in one or more arrays. In such cases, in order to suppress cross-talk in signals transmitted at high-speed through the signal contacts, an arranging scheme is employed, for example, in which a non-signal contact is inserted between one signal contact and other signal contact so that the space between the signal contacts can be widened.
However, in recent years, with a decrease in size and an increase in density of electronic devices such as portable devices and information devices, connectors are also required to reduce in size and thus the space between two adjacent contacts in a connector is decreased as well. Therefore it becomes difficult to satisfactorily suppress cross-talk, only by widening the space between the signal contacts in a certain limited range.
For example, JP 2008-41656 A discloses a connector in which contacts are arranged in two rows of an upper row and a lower row. As shown in
However, for example, in a connector in which the contact arranging pitch is reduced to about 0.5 mm or less, and a high speed transmission of 5 Gbps (gigabits per second) or more is enabled, there is a problem in which cross-talk is not satisfactorily suppressed even if the circumference of signal contacts is encompassed by a ground contact and a ground plate.
The present invention is made to solve the above-mentioned problems in the prior art and an object thereof is to provide a connector capable of suppressing the occurrence of cross-talk, while achieving a decrease in size and high speed transmission.
The inventors of the present invention have conducted intensive studies and have found that in a connector which is small in size and performs high speed signal transmission, when a ground contact or a power supply contact is disposed between a pair of signal contacts, and a ground plate extending in a connector fitting direction is disposed parallel to these contacts, cross-talk occurs between contacts, in a portion of the pair of signal contacts for high speed transmission, extending in the connector fitting direction, through the ground plate disposed parallel thereto.
Therefore, a connector according to the present invention comprises a plurality of signal contacts and a plurality of non-signal contacts arranged on at least one contact array plane, a ground plate disposed on a ground plane parallel to the contact array plane so as to face the plurality of signal contacts and the plurality of non-signal contacts, and an insulator which holds the plurality of signal contacts, the plurality of non-signal contacts and the ground plate, wherein at least one of the non-signal contacts is disposed between each of the signal contacts and other of the signal contacts, wherein the ground plate has at least one opening at a location facing the at least one of the non-signal contacts disposed between each of the signal contacts and other of the signal contacts, and wherein none of the signal contacts are disposed on the ground plane.
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The metal shell 12 covers an outer periphery portion of the insulator 13, excluding a front surface section and a back surface section of the insulator 13, facing the fitting direction of the connector 11. Shell leg sections 12A to be mounted to the substrate are formed protrudingly in a direction perpendicular to the fitting direction of the connector 11.
As shown in
Each of the signal contacts 16 has a contact section 16A at its front end exposing to the counter connector housing section 12B, an insulator fixing section 16B in its middle portion embedded and fixed in the insulator 13, and a substrate mounting section 16C at its back end to be mounted and fixed to a substrate. The contact section 16A is to be in contact with a contact of a counter connector inserted in the counter connector housing section 12B. The contact section 16A and the insulator fixing section 16B are extended flatly on the contact array plane P1. The substrate mounting section 16C to be connected to the insulator fixing section 16B protrudes to a back section of the insulator 13, and has a shape bending with respect to the insulator fixing section 16B.
In addition, in the insulator 13, a ground plate 18 is held. The ground plate 18 is formed of a metal plate extending along a ground plane P2 parallel to the contact array plane P1 on which the contacts 14 including the signal contacts 16 are arranged. The ground plate 18 has a plate body 18A embedded in the insulator 13, and a plate leg section 18B exposed to outside from the back end of the insulator 13. The plate body 18A extends along the ground plane P2. The plate leg section 18B, together with the shell leg section 12A of the metal shell 12 protrudes in a direction perpendicular to the contact array plane P1 and the ground plane P2.
As shown in
As shown in
Accordingly, if the connector 11 is cut at a location of the non-signal contacts 17 disposed among the three sets of differential signal contact pairs CPs, as shown in
Each of the non-signal contacts 17 is configured similarly signal contacts 16, and has, at a front end, a contact section 17A protruding to the counter connector housing section 12B, has, in a middle portion, an insulator fixing section 17B to be fixed and embedded in the insulator 13, and has, at a back end, a substrate mounting section 17C to be mounted and fixed to a substrate. The contact section 17A is to be in contact with the contact of a counter connector inserted in the counter connector housing section 12B, and the contact section 17A and the insulator fixing section 17B are extended flatly on the contact array plane P1. The substrate mounting section 17C connected to the insulator fixing section 17B protrudes to the back section of the insulator 13, and has a shape bending with respect to the insulator fixing section 17B.
In addition, the plate front end section 18D of the ground plate 18 faces the front end of the contact section 17A of the non-signal contact 17, and the plate back end section 18E faces the back end of the insulator fixing section 17B of the non-signal contact 17 at the side of the substrate mounting section 17C.
Accordingly, the contact sections 16A and the insulator fixing sections 16B of the signal contacts 16, and the contact sections 17A and the insulator fixing sections 17B of the non-signal contacts 17 extend on the contact array plane P1. The plate body 18A of the ground plate 18 extending along the ground plane P2 parallel to the contact array plane P1 faces the contact sections 16A and the insulator fixing sections 16B of the signal contacts 16, and the contact sections 17A and the insulator fixing sections 17B of the non-signal contacts 17. In the plate body 18A of the ground plate 18, the openings 18C are formed in a portion facing the two non-signal contacts 17 disposed between each differential signal contact pair CP and other differential signal contact pair CP. Such a connector 11 can be manufactured by insert-molding the signal contacts 16, the non-signal contacts 17, and the ground plate 18 with a resin that forms the insulator 13, so that the insulator fixing sections 16B of the signal contacts 16, the insulator fixing section 17B of the non-signal contacts 17, and the plate body 18A of the ground plate 18 are embedded in the insulator 13, followed by press-fitting the insulator 13 into the metal shell 12.
The connector 11 is used as mounted on a substrate 19, as shown in
A not shown counter connector is inserted into the counter connector housing section 12B of the metal shell 12, and the contact sections 16A of the signal contacts 16, and the contact sections 17A of the non-signal contacts 17 are made in contact with each corresponding contact of the counter connector, so that the connector is set into a fitting status, thereby enabling transmitting and receiving signals to and from external apparatuses.
At this time, as shown in
Further, two non-signal contacts 17 are disposed between each differential signal contact pair CP and other differential signal contact pair CP, and the openings 18C are formed in the plate body 18A in a portion facing the two non-signal contacts 17. Thus, for example, while the arranging pitch of the contact is reduced to about 0.5 mm or less, and high speed transmission of 5 Gbps (gigabits per second) or more is achieved, the occurrence of cross-talk between each differential signal contact pair CP and other differential signal contact pair CP through the ground plate 18 can be prevented.
As a result, a connector capable of high speed signal transmission with a high degree of accuracy, while the size of the connector is reduced, is realized.
It should be noted that while in Embodiment 1 described above, two non-signal contacts 17 are disposed between each differential signal contact pair CP and other differential signal contact pair CP, the present invention is not limited to this. As shown in
Further, it is not limited to use the signal contacts 16 constituting the differential signal contact pair CP, but as shown in
Further, while in Embodiment 1 described above, the plate body 18A of the ground plate 18 has three openings 18C between the plate front end section 18D and the plate back end section 18E, the number of openings 18C is not limited to three, and the plate body 18A of the ground plate 18 may have two or four or more openings 18C.
While, in the around plate 18 used in Embodiment 1 described above, as shown in
For example, as shown in
Also, as in a ground plate 22 shown in
Further, as in a ground plate 23 shown in
If the front end of the opening 22C is opened, as in the ground plate 22, a power supply contact 24 that is formed to be thicker than the signal contacts 16, for example, as shown in
Similarly, by using the ground plate 23 having the opening 23C with the both front and back ends being opened, it is also possible to easily increase the cross area of the power supply contact 24 to increase the current capacity.
It should be noted that, in case a ground plate in which no openings are formed is disposed adjacent to contacts, as in a prior art connector, when a certain contact is formed to be thick, in order to align the surface height of the contacts exposing outside of an insulator, the facing surface of the contacts comes close to the ground plate depending on the thickness, causing a potential short-circuiting. Therefore, it has been difficult to increase the current capacity by having a thicker power supply contact.
In this regard however, when insert-molding the ground plates 18 and 21-23 together with a resin used for forming the insulator 13, the ground plates 18 and 21-23 are required to have a certain necessary strength to prevent displacement or deformation against the injection pressure of the resin. Therefore, in terms of strength, the ground plates 18 and 21 in which the front ends of the openings 18C and 21C are closed are advantageous. In particular, since the ground plate 18 used in Embodiment 1 has three openings 18C disposed between the plate front end section 18D and the plate back end section 18E, the necessary strength can be ensured even if it is formed from a thin metal plate.
In the insulator 33, the ground plate 18 used in Embodiment 1 is held. As shown in
As shown in
The differential signal contact pair CP is formed of the two signal contacts 36 adjacent to each other, and two non-signal contacts 37 are disposed between each differential signal contact pair CP and other differential signal contact pair CP.
Therefore, there are no openings 18C in the plate body 18A at a location facing the signal contacts 16 on the contact array plane P1, and the signal contacts 36 on the contact array plane P3. The openings 18C are located in the plate body 18A at a portion facing the non-signal contacts 17 disposed between the signal contacts 16 and the signal contacts 16 on the contact array plane P1, and the non-signal contacts 37 disposed between the signal contacts 36 and the signal contacts 36 on the contact array plane P3.
Also,
The connector 31 is mounted on the substrate 19, as shown in
The counter connector is inserted into the counter connector housing section 12B of the metal shell 12, so that the contact sections 16A of the signal contacts 16 and the contact sections 17A of the non-signal contacts 17, and the contact sections 36A of the signal contacts 36 and the contact sections 37A of the non-signal contacts 37 are made to contact to the corresponding contacts of the counter connector, respectively, making the connector to be in fitting status, to allow power transmitting/receiving and signal transmission, and the like, to be performed to/from the external apparatuses.
At this time, as shown in
Further, since the two non-signal contacts 17 or 37 are disposed between each differential signal contact pair CP and other differential signal contact pair CP, and the openings 18C are formed in the plate body 18A at a portion facing the non-signal contacts 17 or 37, the occurrence of cross-talk between each differential signal contact pair CP and other differential signal contact pair CP through the ground plate 18 can be prevented even if the arranging pitch of the contacts is reduced and high speed signal transmission is performed.
It should be noted that, also in Embodiment 3, the number of the non-signal contacts 17 or 37 to be disposed between each differential signal contact pair CP and other differential signal contact pair CP is not limited to two, but one or three or more non-signal contacts 17 or 37 may be disposed between each differential signal contact pair CP and other differential signal contact pair CP.
In addition, the signal contacts 16 and 36 are not limited to those constituting the differential signal contact pair CP. For example, one or more non-signal contacts 17 may be disposed between one signal contact 16 and other signal contact 16, and one or more non-signal contacts 37 may be disposed between one signal contact 36 and other signal contact 36, and the openings 18C may be formed in the plate body 18A of the ground plate 18, at a location facing the non-signal contacts 17 and 37, thereby, high speed signal transmission can be achieved through the signal contacts 16 and 36, while suppressing the occurrence of cross-talk.
While, in Embodiment 3 described above, the contacts 14 arranged on the contact array plane P1 and the contacts 34 arranged on the contact array plane P3 are disposed symmetrically to each other with respect to the ground plane P2, symmetrical arrangement is not necessarily required. However, preferably, the non-signal contacts 17 and 37 are disposed at a location facing the openings 18C on the plate body 18A of the ground plate 18, and there are no openings 18C at a location facing the signal contacts 16 and 36.
Also in Embodiment 3, similar to Embodiment 2, various ground plates 21-23 shown in
The ground plate 48 has an approximately rectangular shape, as shown in
In addition, in the ground plate 48, a pair of lock receiving sections 48F is formed, protruding from the both side sections of the plate body 48A at the side of the plate front end section 48D, laterally, that is, protruding toward outside of the arranging direction of the contacts 14. These lock receiving sections 48F are adapted to catch the lock section of a counter connector when fitting into the counter connector, and are thicker than the plate body 48A, as shown in
The plate body 48A is then embedded in the insulator 43, with the plate body 48A facing and close to the contacts 14. The ground plate 48 is held by the insulator 43 so that the pair of plate legs 48B and the pair of lock receiving sections 48F are exposed from the insulator 43. As shown in
It should be noted that the openings 48C of the ground plate 48, similar to the openings 18C of the ground plate 18 in the connector 11 in Embodiment 1, are formed in a location facing the non-signal contacts 17 that are disposed between one signal contact 16 and other signal contact 16 among the contacts 14.
As shown in
For a simplicity purpose, the pair of plate legs 48B of the ground plate 48 is not shown in
In addition, by pulling the counter connector out of the connector in Embodiment 4, each lock section 51A is unlatched from the corresponding lock receiving section 48F to release the fitting status between the counter connector and the connector in Embodiment 4.
As described above, the lock receiving section 48F of the ground plate 48 has a thickness greater than the thickness of the plate body 48A.
High speed signal transmission can be achieved with high accuracy, regardless of the thickness of the plate body 48A, as long as the distance between the surface of the plate body 48A and the contacts 14 is kept to a certain necessary value, when disposing the plate body 48A. Therefore, by forming the plate body 48A to be thinner than the lock receiving section 48F, the size of the connector can be decreased.
On the other hand, the lock receiving section 48F may be formed to be thicker than the plate body 48A, so that a mechanical strength enough to catch the lock section 51A of the counter connector can be ensured. Also, when the thickness of the lock receiving section 48F is great enough, the latching between the lock receiving section 48F and the lock section 51A is ensured and fitting status can be maintained even if there is misalignment in a height direction with the lock section 51A of the counter connector. In addition, by forming the lock receiving section 48F to be thicker, the abrasion resistance of the lock receiving section 48F can be improved, and the stress concentration to the lock section 51A of the counter connector can be suppressed, and therefore, even if fitting and releasing operations are repeated to the counter connector, deterioration of the fitting retention performance caused by the lock section 51A can be prevented, thereby a longer life of the connector can be achieved.
Instead of the ground plate 48 shown in
That is, the central area of the plate body 68A in which openings 68C are disposed, is formed to be thin and other areas are formed to be thicker than the central area of the plate body 68A.
Even if such a ground plate 68 is used, the lock receiving sections 68F can catch the lock sections 51A of the counter connector and maintain fitting status with the counter connector.
It should be noted that while the ground plate 48 shown in
In addition, the ground plate 48 shown in
For example, a configuration may be achieved, as shown in
Even with such configuration, it is possible to maintain the fitting status to the counter connector by making the lock receiving sections 48F to catch the lock sections 51A of the counter connector.
Number | Date | Country | Kind |
---|---|---|---|
2014-140718 | Jul 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7670156 | Chen | Mar 2010 | B2 |
7758379 | Chen | Jul 2010 | B2 |
8968031 | Simmel et al. | Mar 2015 | B2 |
9281626 | Lin | Mar 2016 | B2 |
9331433 | Ueda | May 2016 | B2 |
Number | Date | Country |
---|---|---|
2008-041656 | Feb 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20160013599 A1 | Jan 2016 | US |