This application claims priority to Taiwan Application Serial Number 101219195, filed Oct. 4, 2012 and Taiwan Application Serial Number 101219197, filed Oct. 4, 2012, which are incorporated herein by reference in their entireties.
1. Technical Field
The invention relates to a connecting structure. More particularly, the invention relates to a board-side connector mounted onto a circuit board and a wire-side connector plugged with the board-side connector.
2. Description of Related Art
A wire-side connector is mounted to an end portion of a cable wire and configured for plugging with a corresponding board-side connector mounted to a circuit board of one electrical appliance, so as to achieve mutual transmission of electric power and signal between the cable wire and the electrical appliance.
A conventional wire-side connector primarily includes a transmission main body, and a metal shell and a plastic case that cover the exterior of the transmission main body in order. The transmission main body has a plastic frame and multiple terminals inserted to the plastic frame, and each terminal is soldered to each discrete core wire of the cable wire. The metal shell has an electric shielding function, such that an electromagnetic wave of a signal transmitted by the transmission main body is not mutually interfered with an external electromagnetic wave. A top surface of the plastic case has a buckle piece with a single supporting point, configured for buckling with a buckle hole configured at a corresponding position of the board-side connector. When used, the wire-side connector is plugged into the interior of the board-side connector, and the transmission of the signals and the electric power between the two connectors is achieved through the contact between the transmission bodies configured in the two connectors, and a plugging relation between the two connectors is maintained as the buckle piece with the single supporting point configured in the wire-side connector is buckled to the buckle hole of the board-side connector.
However, the above-described conventional wire-side connector has the following disadvantages in structure: (1) the buckle piece of the above-described conventional wire-side connector is the buckle piece with a single supporting point, which means that one end of the buckle piece is connected to the top surface of the plastic case, and the other end of the buckle piece is suspended, the structural strength of this type of the buckle piece with the single supporting point is fragile and easy to be damaged, and a bonding strength between the buckle piece with the single supporting point and the buckle hole of the board-side connector is also weak; (2) for each discrete core wire between the end portion of the cable wire and the transmission main body, no object is configured to carry and fix these discrete core wires, and geometry, relative distance, position and dimension of each discrete core wire are presented in an unstable state as the buckle piece with the single supporting point is suspended, which affects the stability of signal transmission; (3) an accommodating space of the plastic case is fixed and only cable wires with a single wire diameter can be received therein, which limits select and use of cable wires with different wire diameters; and (4) the entire plastic case is a plastic injection molded member made of the same material, and for convenience of plugging with the board-side connector, the plastic case is usually a rigid plastic case, which means a plugging end (for plugging with the board-side connector) and a cable wire jointing end (for fixing the end portion of the cable wire) respectively located at two ends of the plastic case both are rigid plastic materials, while the rigid cable wire jointing end will limit a winding curvature of the cable wire, which relatively increases the space occupied by the cable wire and the wire-side connector thereof.
The board-side connector is mounted onto a circuit board of an electrical appliance and configured for plugging with a corresponding wire-side connector mounted to a cable wire, so as to mutually transmit the electric power and signals between the cable wire and the electrical appliance.
A conventional board-side connector primarily includes a transmission main body and a metal outer shell covering the exterior of the transmission main body. The transmission main body has a plastic pedestal and multiple terminals inserted to the plastic pedestal. The transmission main body has a elastic contacting arm contacted with an inner wall of the metal outer shell for grounding. The metal outer shell has an electric shielding function, such that an electromagnetic wave of a signal transmitted by the transmission main body is not mutually interfered with an external electromagnetic wave. The metal outer shell has multiple welding feet, which are mechanically welded and fixed to fixing holes on the circuit board. The multiple terminals of the transmission main body are electrically welded to multiple circuit through holes configured in the circuit board, so as to achieve an electrical connection between the transmission main body and the circuit board lines.
However, the above-described conventional board-side connector has the following disadvantages in structure: (1) the conventional board-side connector only has the metal outer shell as a single layer of electric shielding structure, and a shielding effect for the external electromagnetic wave is not perfect; (2) the elastic contacting arm of the conventional board-side connector is contacted with the metal outer shell at a single position, and the number of contact points thereof is small and an impedance cannot be reduced effectively, so that an electric shielding effect of the metal outer shell is affected; (3) the multiple welding feet of the metal outer shell are welded to the circuit board in a single shaft flat direction, and the single shaft welding cannot provide a strong bonding force between the metal outer shell and the circuit board, which is not sufficient for resisting pulling, pushing and twisting forces when the wire-side connector is plugged into or out from the board-side connector, so that stability of an electrical contact between two connectors is affected.
The applicability of the conventional board-side connector and the conventional wire-side connector are poor due to the above reasons.
The invention is directed to provide a wire-side connector having a solid buckle structure.
The invention is further directed to provide a wire-side connector, which can keep geometry, a relative distance and position, and a dimension of each discrete core wire of a cable wire in a stable state, so as to enhance the stability of signal transmission.
The invention is also directed to provide a wire-side connector, which can receive cable wires with different wire diameters, so as to enhance selecting flexibility for the cable wires with different wire diameters.
The invention is also directed to provide a wire-side connector, which can increase a winding curvature of a cable wire, save space, and enhance the convenience for use.
According to one of the purposes described above, an aspect of the invention provides a wire-side connector, which is mounted to an end portion of a cable wire and configured for plugging with a board-side connector, wherein the cable wire has multiple discrete core wires, and each discrete core wire has a rear section, a middle section and a front section in order from an inner end to an outer end of the cable wire; the wire-side connector including a transmission main body having a plastic frame and multiple terminals inserted to the plastic frame, wherein each terminal has a docking end and a wiring end, which are respectively protruded at a front end and a rear end of the plastic frame, and each wiring end is soldered to the front section of each discrete core wire; a clamp cage having multiple clamp slots, each of which clamps the middle section of each discrete core wire; a metal bottom shell fixed to the plastic frame of the transmission main body and carried at bottom surfaces of the transmission main body, the clamp cage and each discrete core wire, wherein a top surface of the metal bottom shell has a cover body and an opening, and the cover body covers the top surface of the transmission main body; a metal top shell covering the opening, and the metal top shell has a fixing ring, which clamps a periphery of the end portion of the cable wire; an external mold compound enclosing the periphery of the end portion of the cable wire and the fixing ring by a molding process; and a plastic case secured to the external mold compound, wherein the plastic case has a frame body surrounding an accommodating chamber, and the metal bottom shell, the metal top shell and the external mold compound are received in the accommodating chamber, and the top surface of the frame body is configured with a thin sheet with double supporting points, which means that both ends of the thin sheet are fixed with the top surface of the frame body, a gap exists between the middle of the thin sheet and the top surface of the frame body, and the top surface of the thin sheet has a buckle body. The thin sheet with the double supporting points and the buckle body can strengthen the mechanical strength of these members, and provide a stable buckling force; and furthermore, a configuration of the clamp cage can keep a geometry, a relative distance and position, and a dimension of each discrete core wire of the cable wire in a stable state.
According to an embodiment of the invention, the front end of the buckle body is formed as an inclined wall, and the rear end of the buckle body is formed as a vertical retaining wall. The inclined wall of the buckle body is used for guiding the buckle body to be smoothly buckled to the buckle hole of the board-side connector; and the vertical retaining wall of the buckle body is used for abutting against the inner wall of the buckle hole after the buckle body is buckled and positioned, so as to prevent loose between the buckle body and the buckle hole.
According to an embodiment of the invention, the top surface of the thin sheet is configured with a press protrusion body at a rear position of the buckle body, which is used for pushing down and then pulling out the buckle body.
According to an embodiment of the invention, a concave-down part is formed at the bottom surface of the rear end portion of the accommodating chamber. Accordingly, partial heights of the external mold compound and a first internal mold compound can be extended for receiving cable wires with different wire diameters, so as to enhance the selecting flexibility for the cable wires with different wire diameters.
According to an embodiment of the invention, the wire-side connector further includes a first internal mold compound, which encloses the rear section of each discrete core wire by a molding process. Accordingly, the geometry, the relative distance and position, and the dimension of each discrete core wire are solidified and fixed at the front section of each discrete core wire.
According to an embodiment of the invention, the wire-side connector further includes a second internal mold compound, which encloses the front section of each discrete core wire and the wiring end of each terminal by a molding process. Accordingly, the geometry, the relative distance and position, and the dimension of each discrete core wire are solidified and fixed again at the rear section of each discrete core wire.
According to an embodiment of the invention, each of two opposite sidewalls of the metal bottom shell is configured with a first buckle hole, and each of two opposite sidewalls of the plastic frame of the transmission main body is configured with a first buckle body, which is buckled to the first buckle hole. As such, the metal bottom shell and the transmission main body are fixed with each other, and the metal bottom shell covers the exterior of the plastic frame of the transmission main body.
According to an embodiment of the invention, each of two opposite sidewalls of the metal top shell is configured with a second buckle hole, and each of two opposite sidewalls of the metal bottom shell is configured with a second buckle body, which is buckled to the second buckle hole. As such, the metal top shell and the metal bottom shell are fixed with each other, and the metal top shell covers the top surfaces of the clamp cage, the first internal mold compound and the second internal mold compound.
According to an embodiment of the invention, each of two opposite sidewalls of the plastic case each is configured with a third buckle hole, and each of two opposite sidewalls of the external mold compound is configured with a third buckle body, which is buckled to the third buckle hole. As such, the plastic case and the external mold compound are fixed with each other.
According to an embodiment of the invention, the external mold compound is a soft external mold compound, and the plastic case is a hard plastic case. Accordingly, the external mold compound as an elastic body can absorb an external force generated by bending and twisting of the cable wire, such that the cable wire can be winded adjacent to the wire-side connector, so as to increase the winding curvature of the cable wire and save the mounting space thereof.
The invention is directed to provide a board-side connector having a double electric shielding effect.
The invention is further directed to provide a board-side connector, which can enhance an electric shielding effect.
The invention is also directed to provide a board-side connector, which can be bonded tightly with a circuit board.
According to one of the above-described purposes, an aspect of the invention provides a board-side connector for plugging with a wire-side connector. The board-side connector includes a plastic frame pedestal having a frame body surrounding an accommodating chamber, wherein an opening and a mounting hole are provided respectively at a front end and a rear end of the accommodating chamber; a metal outer shell covering the exterior of the plastic frame pedestal, wherein the metal outer shell has at least one first welding foot at the bottom of each opposite side of the metal outer shell; a metal inner shell mounted to the mounting hole of the plastic frame pedestal and protruding into the accommodating chamber, wherein the metal inner shell has at least one elastic contacting arm at a top of a rear end of the metal inner shell and at least one second welding foot at two opposite sides of the rear end of the metal inner shell, and the elastic contacting arm contacts a top inner wall of the metal outer shell; and a transmission main body mounted to the interior of the metal inner shell, wherein the transmission main body has a plastic frame and multiple terminals inserted to the plastic frame and protruded from the rear end of the plastic frame, and the terminals each have a downward-bent outer part. Double electric shielding effects are generated because the transmission main body is shielded by the metal inner shell and the metal outer shell of the board-side connector such that the external electromagnetic wave can be effectively shielded.
According to an embodiment of the invention, the board-side connector further includes a retainer, wherein the retainer is located at the rear end of the plastic frame pedestal and contained in the interior of the metal outer shell and configured with inserting holes, positions and quantity of the inserting holes correspond to the terminals, and an outer end portion of each terminal passes through the inserting holes and is bent downward. Each terminal is retained at a stable position according to the retainer.
According to an embodiment of the invention, the elastic contacting arm is configured with a cutting groove along a longitudinal direction thereof, so as to divide the elastic contacting arm into a first side elastic contacting arm and a second side elastic contacting arm. The quantity of contact points between the metal inner shell and the metal outer shell is increased accordingly, so as to reduce the impedance and increase the electric shielding effect.
According to an embodiment of the invention, the first welding foot is a flat vertical direction welding foot, and the second welding foot is a flat lateral direction welding foot perpendicular to the flat vertical direction welding foot. Through the welding feet perpendicular to each other, a very strong welding fastness is provided between the board-side connector and the circuit board.
According to an embodiment of the invention, each of two opposite sidewalls of the plastic frame pedestal is configured with a first buckle slot, and each of two opposite sidewalls of the metal outer shell is with a first buckle sheet, which is buckled to the first buckle slot. The assembly of the metal outer shell and the plastic frame pedestal is achieved accordingly.
According to an embodiment of the invention, each of two opposite sidewalls of the plastic frame of the transmission main body is configured with a second buckle slot, and each of two opposite sidewalls of the metal inner shell is configured with a second buckle sheet, which is buckled to the second buckle slot. The assembly of the transmission main body and the metal inner shell is achieved accordingly.
According an embodiment of the invention, a positioning hole is configured at a front end of a top wall of the plastic frame pedestal for buckling and positioning when the board-side connector is plugged into the wire-side connector.
In order to make the foregoing as well as other aspects, features, advantages and embodiments of the invention more apparent, the accompanying drawings are described as follows:
Referring to
Board-side Connector
Referring to
The transmission main body 242 has a plastic frame 244 and multiple terminals 250 inserted to the plastic frame and protruded outside the rear end of the plastic frame. Each of the terminals has a downward-bent outer part 252 for electrically welding to circuit through holes 260, and positions and numbers thereof correspond to the circuit through holes 260 of the circuit board 258. The transmission main body 242 is used for inserting with a corresponding male-terminal transmission main body of the wire-side connector 20 for a circuit transmission of the signal and electric power.
The transmission main body 242 is mounted to the interior of the metal inner shell 226. For the transmission main body 242, the metal inner shell 226 has a first electric shielding effect; and that is, the metal inner shell 226 can be used for insulating the electromagnetic wave of the circuit of the transmission main body 242 from mutually interfering with the electromagnetic wave outside the electric shield.
In an embodiment of the combination of the transmission main body 242 and the metal inner shell 226, each of two opposite sidewalls 246 of the plastic frame 244 of the transmission main body 242 is configured with a second buckle slot 248, and each of two opposite sidewalls 238 of the metal inner shell 226 is configured with a second buckle sheet 240, which is buckled to the second buckle slot 248 of the transmission main body 242. The combination of the metal inner shell 226 and the transmission main body 242 is achieved accordingly, and the metal inner shell 226 covers the exterior of the plastic frame 244 of the transmission main body 242.
The plastic frame pedestal 200 has a frame body 202 surrounding an accommodating chamber 204. An opening 206 and a mounting hole 208 are respectively provided at the front end and the rear end of the accommodating chamber 204. The opening 206 is used for receiving a main body of the wire-side connector 20 in the accommodating chamber 204 accordingly. The mounting hole 208 is used for mounting the following metal inner shell 226 and the transmission main body 242. The plastic frame pedestal 200 is used for insulation of the exterior of the transmission main body 242. Additionally, a positioning hole 216 is configured at the front end of a top wall 214 of the plastic frame pedestal 200. When the wire-side connector 20 is plugged into the board-side connector 950 of the invention, the positioning hole 216 is used for buckling and positioning the buckle body configured in the wire-side connector 20.
The metal outer shell 226 covers the exterior of the plastic frame pedestal 200, as a second electric shield of the transmission main body 242, so as to insulate the electromagnetic wave of the circuit of the transmission main body 242 from mutually interfering with the electromagnetic wave outside the electric shield again accordingly. Therefore, the board-side connector 950 according to an embodiment of the invention has multiple-layered electric shielding to ensure that the signal and electric power transmitted through the transmission main body 242 is not interfered by an external electromagnetic wave. For example, the board-side connector 950 has two-layered electric shielding in the embodiment.
In an embodiment of the combination of the metal outer shell 218 and the plastic frame pedestal 200, each of two opposite sidewalls 210 of the plastic frame pedestal 200 is configured with a first buckle slot 212, and each of two opposite sidewalls 222 of the metal outer shell 218 is configured with a first buckle sheet 224, which is buckled to the first buckle slot 212 of the plastic frame pedestal 200. The combination of the metal outer shell 218 and the plastic frame pedestal 200 is achieved accordingly, and the metal outer shell 218 covers the exterior of the plastic frame pedestal 200.
Additionally, two first welding feet 220 are provided at the bottoms of each sides of the metal outer shell 218 for mechanically welding and fixing to a first fixing hole 262 configured at the corresponding position of the circuit board 258. In one embodiment, the first welding foot 220 is a flat longitudinal welding foot flatly extending in a longitudinal direction that is the same as a plugging direction of the wire-side connector 20.
The metal inner shell 226 and the transmission main body 242 inside the metal inner shell 226 are mounted to the mounting hole 208 of the plastic frame pedestal 200 and protruded toward the accommodating chamber 204. Two elastic contacting arms 228 are provided at the top of the rear end of the metal inner shell 226, which contact a top inner wall of the metal outer shell 218. Each of the elastic contacting arms 228 is configured with a cutting groove 234 along the longitudinal direction thereof, so as to divide each elastic contacting arm 228 into a first side elastic contacting arm 230 and a second side elastic contacting arm 232 respectively. Accordingly, when the elastic contacting arm 228 of the metal inner shell 226 is compressed under stress in the interior of the metal outer shell 226, double contact points are formed between the metal inner shell 226 and the metal outer shell 218 for electric shielding, so as to reduce the impedance and increase the electric shielding effect.
Additionally, two second welding feet 236 are provided at opposite sides of the rear end of the metal inner shell 226 for mechanically welding and fixing to a second fixing hole 264 configured at the corresponding position of the circuit board 258. In one embodiment, the second welding foot 236 is a flat lateral foot flatly extending in a lateral direction perpendicular to the plugging direction of the wire-side connector 20. That is, the second welding foot 236 in the flat lateral direction and the first welding foot 210 in the flat vertical direction are perpendicular to each other. When the two welding feet perpendicular to each other are respectively welded and fixed to the circuit board 258, the welding fastness between the whole board-side connector 950 and the circuit board can be achieved. The fastness can resist pulling, pushing and twisting forces when the wire-side connector 20 is plugged to the board-side connector 950, and in addition to the stable structure thereof, a fine quality is retained for the electric contact between the two connectors.
The retainer 254 is located at the rear end of the plastic frame pedestal 200 and contained in the interior of the metal outer shell 218 and configured with inserting holes 256 having the positions and quantity corresponding to each terminal 250 of the transmission main body 242, and an outer part 252 of each terminal 250 is bent downward after passing through the inserting holes 256. Each terminal 250 can be retained at a stable position through the retainer 254.
For the transmission main body, the board-side connector 950 according to an embodiment of the invention has the double electric shielding effect by the means of the metal inner shell and the metal outer shell thereof, and thus the external electromagnetic wave can be shielded effectively. Furthermore, the double numbers of contact points are formed in the local area that the metal inner shell is mutually contacted with the metal outer shell to reduce the impedance, so as to increase the electric shielding effect; moreover, the metal inner shell and the metal outer shell are welded and fixed to the circuit board respectively through the second welding foot and the first welding foot perpendicular to each other, wherein after the welding feet perpendicular to each other are welded and fixed to the circuit board, a very strong welding fastness is provided, and any operating force generated by plugging with or from the wire-side connector 20 can be resisted to retain the fine quality of the electric contact between the two connectors. The above descriptions actually reach the creative purposes of the invention.
Wire-side Connector
Referring to
The wire-side connector 20 according to an embodiment of the invention includes a transmission main body 100, a clamp cage 140, a first internal mold compound 300, a second internal mold compound 400, a metal bottom shell 500, a metal top shell 600, an external mold compound 700 and a plastic case 800.
Referring to
Referring to
Referring to
Referring to
In one embodiment of fixing the metal bottom shell 500 to the plastic frame 110 of the transmission main body 100, each of two opposite sidewalls 530 of the metal bottom shell 500 is configured with a first buckle hole 531, and each of two opposite sidewalls 130 of the plastic frame 110 of the transmission main body 100 is configured with a first buckle body 131, which is buckled to the first buckle hole 531 of the metal bottom shell 500. As such, the assembly of the metal bottom shell 500 and the transmission main body 100 is achieved, and the metal bottom shell 500 covers the exterior of the plastic frame 110 of the transmission main body 100.
Referring to
In one embodiment of covering the metal top shell 600 to the opening 520 of the metal bottom shell 500, each of two opposite sidewalls 620 of the metal top shell 600 is configured with a second buckle hole 621, and each of two opposite sidewalls 530 of the metal bottom shell 500 is configured with a second buckle body 532, which is buckled to the second buckle hole 621 of the metal top shell 600. As such, the metal top shell 600 is secured to the metal bottom shell 500 through covering, and the metal top shell 600 covers the top surfaces of the clamp cage 140, the first internal mold compound 300 and the second internal mold compound 400. Furthermore, the metal shell body formed by the metal bottom shell 500 and the metal top shell 600 has an electric shielding effect for the transmission main body 100; and that is, the metal bottom shell 500 and the metal top shell 600 can insulate the electromagnetic wave of the loop of the transmission main body 100 from mutually interfering with the electromagnetic wave outside the electric shielding.
Referring to
Referring to
In one embodiment of fixing the plastic case 800 to the external mold compound 700, each of two opposite sidewalls 870 of the plastic case 800 is configured with a third buckle hole 871, and each of two opposite sidewalls 710 of the external mold compound 700 is configured with a third buckle body 711, which is buckled to the third buckle hole 871 of the plastic case 800. As such the plastic case 800 is fixed to the external mold compound 700.
Referring to
The top surface of the thin sheet 830 has a buckle body 850, which is a wedge-shaped buckle body. An inclined wall 851 and a vertical retaining wall 852 are respectively formed as the front end and the rear end of the buckle body. When the wire-side connector 20 is plugged into the board-side connector 950, the inclined wall 851 of the buckle body 850 can guide the buckle body 850 to be smoothly buckled to the buckle hole 216 of the board-side connector 950; and when the buckle body 850 and the buckle hole 216 are buckled and positioned, the vertical retaining wall 852 of the buckle body 850 can abut against the inner wall of the buckle hole 216 for preventing the attachment between them from getting loose. Further, when the wire-side connector 20 is plugged into the board-side connector 950, a front portion of the transmission main body 100 of the wire-side connector 20 can be plugged into the plastic frame 244 as seen in
Referring to
The plastic case 800 is formed by plastic injection molding, which is the hard plastic case for buckling and positioning when plugged into the board-side connector 950. After the hard plastic case 800 is fixed to the above-described soft external mold compound 700, a structure with a front rigid body and a rear elastic body is formed, which has double effects. That is, the positioning crackle sound is generated at the moment that the plastic case 800 as the front rigid body is inserted to the board-side connector 950, which meets the authenticity of blind mating; and the external mold compound 700 as the elastic body covers at the end portion of the cable wire 900 and can absorb the external force generated by bending and twisting of the cable wire, such that the cable wire 900 can be winded adjacent to the wire-side connector 20, so as to increase the winding curvature of the cable wire, save the mounting space thereof and enhance the convenience of use.
For the wire-side connector 20 according to an embodiment of the invention, the thin sheet with the double supporting points structure and the buckle body can strengthen the mechanical strength of these members and provide the stable buckling force; furthermore, the configuration of the clamp cage, the first internal mold compound and the second internal mold compound keeps the geometry, the relative distance and position, and the dimension of each discrete core wire of the cable wire in the stable state to enhance the stability of the signal transmission; moreover, the design of the concave-down part of the accommodating chamber can extend the partial heights of the external mold compound and the first internal mold compound, and receive the cable wires with different wire diameters, so as to enhance the selecting flexibility for the cable wires with different wire diameters; and besides, the design of the plastic case and the external mold compound and the front rigid body and the rear elastic body thereof enables the external mold compound as the elastic body to absorb the external force generated by bending and twisting of the cable wire, such that the cable wire may be winded adjacent to the wire-side connector 20, so as to increase the winding curvature of the cable wire, save the mounting space thereof and enhance the convenience of use. The above descriptions actually reach the creative purposes of the invention.
The above connecting structure in accordance with the invention can be used for transferring data. For example, the connecting structure can be a high definition multimedia interface (HDMI) connector structure that can be used in a car, home or office, a mini HDMI connecting structure, a network cable connecting structure, a universal serial bus (USB) connecting structure, a mini USB connecting structure, a serial advanced technology attachment (SATA) connecting structure or an external serial advanced technology attachment (eSATA) connecting structure.
Although the invention has been described in detail with the above embodiments, the above description is only illustration of the invention, and is not used for limiting the implementing scope of the invention. Namely, simple equivalent variations and modifications made generally according to the claims and the description of the invention all fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
101219195 U | Oct 2012 | TW | national |
101219197 U | Oct 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6585528 | Lin et al. | Jul 2003 | B1 |
6929512 | Lai | Aug 2005 | B2 |
6997749 | Harubayashi | Feb 2006 | B1 |
7273397 | Watanabe et al. | Sep 2007 | B2 |
7357664 | Hsu | Apr 2008 | B2 |
7465183 | Hashiguchi et al. | Dec 2008 | B2 |
7549895 | Kondo et al. | Jun 2009 | B2 |
7690948 | Lung | Apr 2010 | B2 |
7824219 | Wang | Nov 2010 | B2 |
7828598 | Wang | Nov 2010 | B2 |
7837506 | Chiang et al. | Nov 2010 | B1 |
8100729 | Chen et al. | Jan 2012 | B2 |
8591259 | Wu | Nov 2013 | B2 |
8662927 | Yu et al. | Mar 2014 | B2 |
20060025014 | Spink | Feb 2006 | A1 |
20090253295 | Kameyama et al. | Oct 2009 | A1 |
20100022132 | Wang | Jan 2010 | A1 |
20100290743 | Liao et al. | Nov 2010 | A1 |
20130059472 | Saito | Mar 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140099824 A1 | Apr 2014 | US |