Information
-
Patent Grant
-
6764352
-
Patent Number
6,764,352
-
Date Filed
Tuesday, May 20, 200321 years ago
-
Date Issued
Tuesday, July 20, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Bradley; P. Austin
- Leon; Edwin A.
Agents
- Casella; Anthony J.
- Hespos; Gerald E.
-
CPC
-
US Classifications
Field of Search
US
- 439 752
- 439 595
- 439 596
- 439 912
- 439 744
-
International Classifications
-
Abstract
Properly inserted terminal fittings (40) are engaged and locked by locks (20) returned to their free states. A retainer (30) mounted into a housing (10) then enters deformation spaces (26) for the locks (20). The retainer (30) presses and deforms the locks (20) from their free states toward the terminal fittings (40). Thus, areas of engagement of the locks (20) and the terminal fittings (40) are increased. Additionally, the degree of the resilient deformation of the locks (20) in the inserting process of the terminal fittings (40) is low and resistance acting when the terminal fittings (40) are inserted is suppressed.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a connector for doubly locking terminal fittings.
2. Description of the Related Art
Japanese Unexamined Utility Model Publication No. 4-102576 discloses a connector that performs a function of doubly locking terminal fittings. This connector has a housing formed with cavities for receiving terminal fittings. Each terminal fitting is inserted into the cavity from behind and engages a resiliently deformable lock in the cavity. Forces exerted by the terminal fitting deform the lock. However, the lock resiliently returns to engage and lock the terminal fitting when the terminal fitting reaches a proper insertion position. A front retainer is assembled to the front of the housing in this state, and fasteners of the front retainer fit into deformation spaces for the locks to prevent the locks from deforming out of engagement with the terminal fittings. In this way, the locks directly fasten the terminal fittings and the front retainer indirectly fastens the terminal fittings by preventing the deformation of the locks.
A degree of deformation of the lock toward the deformation space in the above-described connector corresponds to an area of engagement of the lock with the terminal fitting. Accordingly, a larger degree of deformation of the locks may be provided to increase the area of engagement of the terminal fittings and the locks.
However, an increase in the degree of deformation of the lock in the inserting process of the terminal fitting results in an increase in the resilient restoring force that accumulates in the lock is increased. Friction between the lock and the terminal fitting increases accordingly. This leads to an increase in resistance against the insertion of the terminal fitting, and also to buckling of a wire if the inserting operation is performed by gripping the wire. As a result, smooth inserting operation of the terminal fitting is hindered.
The present invention was developed in view of the above problem and an object thereof is to improve the reliability of a terminal fitting locking function without reducing the insertion operability of a terminal fitting.
SUMMARY OF THE INVENTION
The invention relates to a connector with a housing formed with at least one cavity into which at least one terminal fitting is insertable. A lock is formed in each cavity and interferes with the terminal fitting in the process of inserting the terminal fitting into the cavity. The lock deforms during insertion of the terminal fitting into the cavity. However, the lock is restored resiliently to engage and lock the terminal fitting when the terminal fitting reaches or is close to a proper insertion position. The connector also includes a retainer to be assembled with the housing. The retainer presses and deforms the lock toward the corresponding terminal fitting when the retainer is fit into the deformation spaces. The area of engagement of the lock and the terminal fitting is increased by as much as the deformation of the lock caused by the retainer. Accordingly, the degree of the deformation of the lock during insertion of the terminal fittings is low and the resistance that acts when the terminal fitting is inserted is suppressed.
The lock preferably returns toward its free state and engages the terminal fitting to lock the terminal fitting when the terminal fitting reaches a proper insertion position. The lock preferably is pressed by the retainer and is deformed toward the corresponding terminal fittings from the free state when the retainer is fitted into the deformation space.
The retainer preferably enters the deformation space for the lock to prevent the lock from being deformed in a direction to be disengaged from the terminal fitting when the retainer is assembled with the housing.
The housing preferably has a plurality of cavities, and a wall forming a front end of each cavity preferably projects independently of the other cavities. The retainer may have engageable portions that engage and surround the walls forming the front ends of the cavities. Fittable portions are formed on the engageable portions of the retainer and fit into the deformation spaces.
The engageable portions of the retainer surround the walls forming the front ends of the cavities and make no loose movement with respect to the cavities or the terminal fittings inserted into the cavities. Thus, the fittable portions on the engageable portions can securely resiliently deform the locks toward the corresponding terminal fittings without loosely moving with respect to the cavities and/or the terminal fittings.
The fittable portions preferably are thrust into a space between the locks and a corresponding portion of the housing to deform the locks. Accordingly, the locks can be more deformed more reliably and with a greater force.
Each lock preferably is cantilevered forward and an extending end of each lock serves as a locking section engageable with the terminal fitting to lock the terminal fitting.
A lock could be formed with a catch for a disengagement jig, and the catch could extend from a locking section that engages with a terminal fitting. This catch could interfere with the outer surface of the terminal fitting to restrict a degree of resilient deformation of the lock when the lock is deformed from its free state. Contrary to this, the present preferred embodiment has locks that are cantilevered and the extending ends engage the terminal fittings. Thus, the locks have no part comparable to the catch that can interfere with the outer surfaces of the terminal fittings. Therefore, a large degree of deformation of the locks to engage the terminal fittings can be ensured.
Each lock preferably is cantilevered substantially forward and the retainer contacts the locks behind positions of engagement between the locks and the terminal fittings. Additionally, the housing and/or each terminal fitting preferably comprise a displacement preventing portion for preventing a locking section of the lock engageable with the terminal fitting from being displaced toward the corresponding terminal fitting.
A backward pulling force on a terminal fitting creates forces that could cause a lock to buckle so that a portion of the lock between its supporting point of resilient deformation and the position of engagement with the terminal fitting could bend toward the deformation space. However, the retainer of the subject invention contacts the lock from the side of the deformation space between the supporting position of resilient deformation and the position of engagement with the terminal fitting. Thus, the lock undergoes no buckling deformation and cannot bend toward the deformation space. Further, the extending end of the lock is prevented from a displacement in a direction away from the retainer and toward the terminal fitting. Therefore, the retainer is held in contact with the lock and a function of the retainer for preventing a buckling deformation cannot be degraded.
According to a further preferred embodiment, a movable surface substantially facing a side opposite from the deformation space is formed at a side of each lock. A sidewall forming the cavity and arranged along the side of the lock is formed with a receiving surface substantially facing the movable surface, and the movable surface is proximate to or substantially in contact with the receiving surface while the retainer resiliently deforms the locks toward the corresponding terminal fittings.
The cavities are exposed to outside via the clearances between the sidewalls and the sides of the locks. Thus, a leak or opening may occur between the terminal fittings inserted in the adjacent cavities. However, the movable surfaces of the locks come to be proximate to or in contact with the receiving surfaces of the sidewalls in the present invention. Thus, the clearances between the sidewalls and the locks are closed to prevent a leak.
The movable surface preferably is substantially parallel with or converging toward the receiving surfaces in the free unbiased state of the lock where it is not deformed.
The lock and/or the retainer preferably comprise at least one slanted guiding surface for guiding the lock into engagement with the terminal fitting.
The lock preferably has an inverted T-shaped cross section that is transversely symmetrical.
These and other objects, features and advantages of the present invention will become more apparent upon reading of the following detailed description of preferred embodiments and accompanying drawings. It should be understood that even though embodiments are separately described, single features thereof may be combined to additional embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a partial enlarged section showing a state where a retainer is mounted at a proper mount position in a connector according to a first embodiment of the invention.
FIG. 2
is a partial enlarged section showing a state where the retainer is mounted at a partial mount position.
FIG. 3
is an exploded section of the connector.
FIG. 4
is a section showing an intermediate stage of insertion of a terminal fitting into a housing.
FIG. 5
is a partial enlarged horizontal section showing a state where the retainer is mounted at the proper mount position.
FIG. 6
is a front view of the housing.
FIG. 7
is a partial enlarged perspective view showing a projecting portion forming a front end portion of a cavity.
FIG. 8
is a perspective view of the retainer.
FIG. 9
is a rear view of the retainer.
FIG. 10
is a partial enlarged section showing a state where a retainer is mounted at a proper mount position in a connector according to a second embodiment of the invention.
FIG. 11
is a partial enlarged section showing a state where the retainer is mounted at a partial mount position.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A connector according to a first embodiment of the invention is described with reference to
FIGS. 1
to
9
. In the following description, a mating side (e.g. left side in
FIGS. 1
to
4
) of the connector with a mating connector (not shown) is referred to as the front side. The connector of this embodiment is comprised of a housing
10
, a retainer
30
and terminal fittings
40
.
The housing
10
is made e.g. of a synthetic resin and cavities
11
are formed in the housing
10
to open in the opposite front and rear ends. The cavities
11
are arranged substantially side by side at upper and lower stages.
A front end of each cavity
11
at the upper stage is formed by left and right sidewalls
12
and a front wall
13
that couples the front ends of the opposite sidewalls
12
. A front end of each cavity
11
at the lower stage is formed by left and right sidewalls
12
, a front wall
13
that couples the front ends of the opposite sidewalls
12
, and a bottom wall
14
substantially continuous with the bottom edges of the sidewalls
12
and the front wall
13
. The walls forming the front end of each cavity
11
form a projection
15
that projects forward independently of the walls that form the front ends of the other cavities
11
, as shown in FIG.
7
. Each front wall
13
is formed with a tab hole
16
for permitting a tab
42
of the terminal fitting
40
to project out of the cavity
11
.
The upper area between the opposite sidewalls
12
of each projection
15
is open, and a lock
20
formed in the housing
10
substantially covers a rear portion of the opening from above. Slit-shaped clearances extend in forward and backward directions between the left and right side edges of the lock
20
and the upper edges of the sidewalls
12
. The upper surface of each sidewall
12
faces the lower surface of the corresponding side end of the lock
20
and defines a receiving surface
18
. This receiving surface
18
is substantially parallel with an inserting direction ID of the terminal fitting
40
into the cavity
11
. The receiving surface
18
also functions as a displacement-preventing portion for preventing a downward displacement of a locking section
23
at an extending front end of the lock
20
.
The locks
20
of the housing
10
cantilever forward substantially along the opening in the upper surface of the corresponding cavity
11
and are resiliently deformable up and down. Each lock
20
has a transversely symmetrical inverted T-shaped cross section when viewed from the front. Thus, each lock
20
has a thick portion
21
with a large vertical dimension at a widthwise middle and thin portions
22
with small vertical dimensions at the left and right sides of the thick portion
21
. The lower surfaces of the thick portion
21
and the thin portions
22
are substantially continuous and flush with each other across the lower surface of the lock
20
facing the terminal fitting
40
. However, the thick portion
21
projects more up than the thin portions
22
on the upper surface of the lock
20
.
The front bottom end of the lock
20
serves as the locking section
23
for engaging and locking the terminal fitting
40
. In a free unbiased state of the lock
20
, the locking section
23
projects down from the ceiling surface of the cavity
11
and into an insertion space for the terminal fitting
40
. Further, the upper surfaces of the thin portions
22
are sloped down to the front and serve as slanted guide surfaces
24
.
The lock
20
has a width substantially equal to a distance between the outer surfaces of the sidewalls
12
of the cavity
11
, and outer side surfaces of the thin portions
22
are substantially flush with the outer surfaces of the sidewalls
12
when viewed from the front. Movable surfaces
25
face down on the thin portions
22
of the lock
20
and are opposed to the receiving surfaces
18
of the sidewalls
12
. The movable surfaces
25
are substantially parallel with the receiving surfaces
18
in the free unbiased state of the lock
20
.
A deformation space
26
is defined above the lock
20
in each cavity
11
for permitting an upward deformation of the lock
20
. Each deformation space
26
opens at the front end of the housing
10
. The deformation spaces
26
for the locks
20
at the lower stage communicate with the cavities
11
at the upper stage in areas corresponding to the thick portions
21
of the locks
20
. The locks
20
at the lower stage are positioned to partition the cavities
11
at the upper stage and those at the lower stage.
The retainer
30
is made e.g. of a synthetic resin and is mountable into the housing
10
from the front along a mounting direction MD. The housing
10
is formed with a forwardly open mount space
27
that surrounds the projections
15
and the locks
20
. The retainer
30
is mountable at a proper mount position (see
FIGS. 1 and 5
) where the retainer
30
is accommodated fully in the mount space
27
and a partial mount position (see
FIGS. 2 and 4
) where the retainer
30
is retracted forward from the mount space
27
in a direction opposite to the mounting direction MD.
Engageable portions
31
are formed at the rear side of the retainer
30
and are individually engageable with the respective projections
15
without shaking in vertical and/or transverse directions. Each engageable portion
31
is substantially a rectangular tube and is engageable in substantially surrounding relationship with the corresponding projection
15
. The projections
15
are arrayed vertically and transversely. Thus, the engageable portions
31
define a lattice when seen as an aggregate (see FIG.
9
).
Each engageable portion
31
has fittable portions
32
corresponding to the thin portions
22
of each lock
20
. The fittable portions
32
form a part of the engageable portion
31
surrounding the projection
15
. Slanted pressing surfaces
33
are formed on the lower surfaces of the fittable portions
32
and substantially correspond to the slanted guide surfaces
24
of the lock
20
.
The engageable portion
31
is formed with an escaping groove
34
for avoiding an interference with the thick portion
21
of the lock
20
. Further, through holes
35
are formed in the retainer
30
and substantially correspond to the tab holes
16
of the cavities
11
for permitting insertion of the tabs
42
of the terminal fittings
40
.
The fittable portions
32
are spaced forward from the locks
20
when the retainer
30
is at the partial mount position. However, the fittable portions
32
fit into the respective deformation spaces
26
when the retainer
30
is pushed in the mounting direction MD to the proper mount position. The fittable portions
32
fit into the deformation spaces
26
at the upper stage thrust themselves between the ceiling surfaces of the deformation spaces
26
and the upper surfaces of the thin portions
22
of the locks
20
and the slanted pressing surfaces
33
of the retainer
30
press the slanted guide surfaces
24
of the locks
20
down toward the respective terminal fitting
40
. The fittable portions
32
fit into the deformation spaces
26
at the lower stage thrust themselves between the bottom end surfaces of the side walls
12
of the cavities
11
at the upper stage and the upper surfaces of the thin portions
22
and the slanted pressing surfaces
33
of the retainer
30
press the slanted guide surfaces
24
of the locks
20
down toward the respective terminal fitting
40
. In this way, the respective locks
20
are pressed down to positions more toward the terminal fittings
40
from their free unbiased states, and are prevented from being deformed in the deformation direction DD toward the deformation spaces
26
up and away from the terminal fitting
40
.
Each terminal fitting
40
is formed by bending, folding and/or embossing a metallic plate material stamped or cut out into a specified shape and is narrow and long in forward and backward directions. A substantially rectangular tube
41
is defined at substantially the longitudinal middle of the terminal fitting
40
. A tab
42
extends forward from the rectangular tube
41
, and a connecting portion
43
is at the rear end of the terminal fitting
40
for crimped, bent or folded connection with a wire
44
or connection with a wire
44
by insulation displacement, soldering, welding or the like. The terminal fitting
40
is inserted into the corresponding cavity
11
from behind and along the insertion direction ID.
An upper cut-away portion
45
extends over substantially the entire width of a part of the upper plate of the rectangular tube
41
. Side cut-away portions
46
are formed at the upper ends of the left and right side plates of the rectangular tube
41
at locations aligned with the upper cut-away portion
45
. The front edges of the cut-away portions
45
,
46
serve as a fastener
47
engageable with the locking section
23
of the corresponding lock
20
. The substantially horizontally extending upper edges of the side cut-away portions
46
serve as displacement preventing portions
48
for preventing a displacement of the locking section
23
at the extending end of the lock
20
toward the terminal fitting
40
. The displacement preventing portions
48
of the terminal fittings
40
are at substantially the same height as the receiving surfaces
18
of the sidewalls
12
of the cavities
11
. With the terminal fitting
40
inserted in the cavity
11
, the height of the upper plate of the rectangular tube
41
is higher than the lower surface of unbiased the lock
20
(see FIGS.
1
and
2
).
The connector is assembled by mounting the retainer
30
in the mounting direction MD to the partial mount position in the housing
10
. In this partially mounted state, the fittable portions
32
are spaced forward from the front ends of the lock
20
, as shown in
FIG. 2
, and hence the locks
20
can deform toward the deformation spaces
26
. The terminal fittings
40
then are inserted in the inserting direction ID into each cavity
11
. The front end of the upper surface of the substantially rectangular tube
41
contacts the lower surface of the lock
20
when the terminal fitting
40
approaches a proper insertion position. Further insertion of the terminal fitting
40
deforms the lock
20
resiliently up in the deformation direction DD and into the deformation space
26
(see FIG.
4
).
The lock
20
resiliently moves down in a direction opposite the deformation direction DD when the terminal fitting
40
reaches the proper insertion position and the locking section
23
at the front end of the lock
20
projects into the cut-away portions
45
,
46
of the rectangular tube
41
to engage the fastening portion
47
from behind. Thus the lock
20
engages the terminal fitting
40
and prevents the terminal fitting
40
from moving loosely back. Additionally, the rectangular tube
41
engages the front wall
13
of the cavity
11
to prevent the terminal fitting
40
from moving forward beyond the proper insertion position.
The lock
20
is substantially in its free unbiased state when the terminal fitting
40
reaches the proper insertion position and vertical clearances are defined between the locking section
23
of the lock
20
and the displacement preventing portions
48
of the terminal fitting
40
and between the locking section
23
and the receiving surfaces
18
. These vertical dimensions of the clearances permit the lock
20
to be deformed down in a direction substantially opposite the deformation direction DD.
The retainer
30
is pushed in the mounting direction MD from the partial mount position to the proper mount position shown in
FIG. 1
after all of the terminal fittings
40
have been inserted. The fittable portions
32
enter the respective deformation spaces
26
in the process of pushing the retainer
30
in the mounting direction MD and the slanted pressing surfaces
33
of the fittable portions contact the slanted guide surfaces
24
of the locks
20
. The retainer
30
then is pushed further and the slanted pressing surfaces
33
press the slanted guide surfaces
24
down toward the corresponding terminal fitting
40
. As a result, the locks
20
are deformed forcibly from their free unbiased states in a direction opposite the deformation direction DD and toward the terminal fittings
40
. Thus, the deformed locks
20
take a posture inclined down to the front distal ends. This displacement of each lock
20
increases a vertical dimension of an area of engagement between the locking section
23
of the lock
20
and the fastening portion
47
of the terminal fitting
40
as compared to a case where the lock
20
is left in its free state (compare FIGS.
1
and
2
). The lock
20
has the thin portions
22
pressed from above by the fittable portions
32
. Thus, the lock
20
is prevented from being deformed up in the deformation direction DD toward the deformation space
26
and is held engaged with the terminal fitting
40
. In this way, the terminal fitting
40
is locked doubly and is prevented securely from coming out.
After the retainer
30
is pushed to the proper mount position, the engageable portions
31
are fit substantially around the respective projecting portions
15
to substantially surround the projecting portions
15
without shaking in vertical and/or transverse directions. Accordingly, the retainer
30
and the fittable portions
32
formed on the engageable portions
31
securely push the locks
20
down to their proper positions without being loosely moved in vertical and/or transverse directions with respect to the housing
10
and the terminal fittings
40
.
A backward pulling force could act on the terminal fitting
40
while the lock
20
is engaged with the terminal fitting
40
. Such a force could tend to buckle the lock
20
so that a portion of the lock
20
between the locking section
23
and a supporting point at the rear end of the lock
20
could bulge out toward the deformation space
26
. However, the retainer
30
of the subject invention presses the locks
20
and inclines the locks
20
down to the front. Thus, the fittable portions
32
of the retainer
30
contacts the upper surfaces of the locks
20
at positions behind the locking sections
23
and forward from the supporting points at the rear ends of the locks
20
. Accordingly, the locking sections
23
of the locks
20
are held substantially in contact with the receiving surfaces
18
and the displacement preventing portions
48
and are prevented from downward displacements. Thus, even if a backward pulling force acts on the terminal fitting
40
and the locking section
23
, there is no possibility that the lock
20
will buckle.
As described above, areas of engagement of the locks
20
and the terminal fittings
40
are increased by as much as the resilient deformation since the locks
20
in their free states are deformed toward the terminal fittings
40
with the fittable portions
32
of the retainer
30
fit into the deformation spaces
26
. Thus, larger areas of engagement of the terminal fittings
40
and the locks
20
can be ensured while the degree of the resilient deformation of the locks
20
in the inserting process of the terminal fittings
40
, i.e. resistance resulting from friction between the terminal fittings
40
and the locks
20
when the terminal fittings
40
are inserted is substantially suppressed. In other words, the reliability of the function of locking the terminal fittings
40
is improved without reducing the insertion operability of the terminal fittings
40
.
The walls that form the front ends of the cavities
11
form the projections
15
that project independently of the other cavities
11
. The retainer
30
is formed with the engageable portions
31
that engage and surround the projections
15
without shaking, and the engageable portions
31
are formed with the fittable portions
32
. This prevents the fittable portions
32
from making loose movements with respect to the cavities
11
and the terminal fittings
40
, thereby enabling them to deform the locks
20
securely toward the terminal fittings
40
.
A lock formed could have a catch for a disengagement jig. The catch could extend from a lock that is engageable with a terminal fitting, and may interfere with the outer surface of the terminal fitting to restrict a degree of resilient deformation of the lock when the lock is deformed resiliently from in its free state. However, in this embodiment, the locks
20
are cantilevered and the locking sections
23
engageable with the terminal fittings
40
are formed at their extending ends. Thus, the locks
20
have no part comparable to the catches that can interfere with the outer surfaces of the terminal fittings
40
. Therefore, a large degree of resilient deformation of the locks
20
to engage the terminal fittings
40
can be ensured.
A second embodiment of the invention is described with reference to
FIGS. 10 and 11
. The second embodiment differs from the first embodiment in the construction of movable surfaces
51
at the opposite side ends of each lock
50
. The moving surfaces
25
of the locks
20
are substantially parallel with the receiving surfaces
18
of the housing
10
in the free state of the locks
20
where they are not resiliently deformed in the first embodiment. However, the movable surfaces
51
of the second embodiment are sloped up to the front. Accordingly, in the free state of the lock
50
, a vertical distance between the receiving surfaces
18
and the movable surfaces
51
increases toward the front extending end of the lock
50
. With the fittable portions
32
of the retainer
30
fitted into the deformation spaces
26
and the locks
50
forcibly resiliently deformed toward the terminal fittings
40
, the movable surfaces
51
are substantially parallel with the receiving surfaces
18
. Further, the movable surfaces
51
are proximate to the receiving surfaces
18
while defining a small clearance to the receiving surfaces
18
.
As also described in the first embodiment, the front ends of the cavities
11
are exposed to outside via the clearances between the receiving surfaces
18
at the upper ends of the side walls
12
and the movable surfaces
51
at the opposite sides of the locks
50
. Thus, a leak may occur between the terminal fittings
40
of the adjacent cavities
11
by these clearances. However, in the second embodiment, the movable surfaces
51
of the locks
50
are proximate to the receiving surfaces
18
over substantially their entire length while the locks
50
are resiliently deformed toward the terminal fittings
40
by the retainer
30
. Thus, the clearances between the sidewalls
12
and the locks
50
are substantially closed, thereby preventing leaks.
Upon forming the movable surfaces
51
oblique to the receiving surfaces
18
, the thickness of the locks
50
is increased toward the rear ends as compared to the locks
20
of the first embodiment. Thus, the strength of the locks
50
is enhanced by as much as the increased thickness.
Small clearances still remain between the movable surfaces
51
and the receiving surfaces
18
when the retainer
30
in the second embodiment deforms the locks
50
. However, wide areas of the movable surfaces
51
excluding a supporting point of resilient deformation (rear end) of the lock
50
may be held substantially in contact with the receiving surface
18
.
Since the other construction is similar or the same as in the first embodiment, no description is given on the structure, functions and the effects thereof by identifying it by the same reference numerals.
The invention is not limited to the above described and illustrated embodiment. For example, the following embodiments are also embraced by the technical scope of the present invention as defined by the claims. Beside the following embodiments, various changes can be made without departing from the scope and spirit of the present invention as defined by the claims.
The retainer is mounted into the housing from the front in the foregoing embodiments. However, the invention is also applicable to connectors where a retainer is mounted in a direction that intersects the inserting direction ID of the terminal fittings.
The walls that form the front ends of the cavities project like towers independently of the other cavities in the foregoing embodiments. However, the invention is also applicable to connectors in which adjacent cavities are partitioned by common partition walls.
A male connector with male terminal fittings and tabs is described in the foregoing embodiments. However, the invention is also applicable to connectors with female terminal fittings and no male tab.
The extending ends of the locks engage the terminal fittings in the foregoing embodiments. However, a projection may be formed behind the extending end of the lock and this projection may engage the terminal fitting.
The locks are wider than the cavities and face the side walls of the cavities in the foregoing embodiments. However, the locks may have a narrower width and may be accommodated in the cavities according to the invention.
Claims
- 1. A connector, comprising:a housing formed with at least one cavity into which at least one terminal fitting is insertable in an inserting direction, a resiliently deformable lock for each said cavity, the resiliently deformable lock having a free state in which at least a portion of the lock projects at least partially into the cavity and the lock being configured to be deformed by the terminal fitting away from the cavity and into a deformation space in the process of inserting the terminal fitting into the cavity, the lock returning resiliently to the free state after the terminal fitting substantially reaches a proper insertion position and being configured for engaging and locking the terminal fitting when the terminal fitting substantially reaches the proper insertion position; and a retainer to be assembled with the housing, the retainer being configured to fit into the deformation space and to press and resiliently deform the lock from the free state and away from the deformation space toward the corresponding terminal fitting.
- 2. The connector of claim 1, wherein the retainer enters the deformation spaces for the lock to prevent the lock from being deformed in a direction to be disengaged from the terminal fittings when the retainer is assembled with the housing.
- 3. The connector of claim 1, wherein the lock is a cantilever and has an extending end that defines a locking surface engageable with the terminal fitting to lock the terminal fitting.
- 4. The connector of claim 1, wherein the housing has a plurality of cavities, a movable surface facing a side substantially opposite from the deformation space is formed at an end of each lock, a side wall forming each of the cavities and arranged along a side of the respective lock being formed with a receiving surface facing the movable surface, and the movable surface being substantially in contact with the receiving surface while the retainer resiliently deforms the locks toward the corresponding terminal fittings.
- 5. The connector of claim 1, wherein the lock and the retainer comprise at least one slanted guiding surface for guiding the lock into engagement with the terminal fitting.
- 6. The connector of claim 1, wherein the lock has an inverted T-shaped cross-section.
- 7. The connector of claim 1, wherein the housing has a plurality of cavities, a wall forming a front end of each cavity projects independently of the other of said cavities, the retainer being formed with engageable portions engaging and surrounding the wall forming the front ends of the cavities.
- 8. The connector of claim 7, wherein fittable portions are formed on the engageable portions of the retainer and are fittable into the deformation spaces.
- 9. A connector, comprising:a housing formed with a plurality of cavities into which a corresponding plurality of terminal fittings are insertable along an inserting direction, a wall forming a front end of each said cavity and projecting independently of the other of said cavities, a resiliently deformable lock in each said cavity and configured to be deformed by the terminal fitting into a deformation space in the process of inserting the terminal fitting into the cavity, the lock being configured for engaging and locking the terminal fitting when the terminal fitting substantially reaches a proper insertion position; and a retainer to be assembled with the housing, the retainer being formed with engageable portions engaging and surrounding the wall forming the front ends of the cavities, the retainer further having fittable portions formed on the engageable portions of the retainer and fittable into the deformation spaces, wherein the fittable portions are thrust into a space between the respective lock and a corresponding portion of the housing to deform the lock resiliently toward the corresponding terminal fitting.
- 10. A connector, comprising:a housing having a plurality of cavities into which a corresponding plurality of terminal fittings are insertable along an inserting direction, each of said cavities having a resiliently deformable lock, wherein each of said locks is a cantilever, and each of said locks being configured to be deformed by the terminal fitting into a deformation space in the process of inserting the terminal fitting into the cavity, each said lock being configured for engaging and locking the respective terminal fitting when the terminal fitting substantially reaches a proper insertion position; and a retainer to be assembled with the housing, the retainer being configured to fit into the deformation space for contacting the locks behind positions of engagement between the locks and the terminal fittings for pressing and resiliently deforming the lock towards the corresponding terminal fitting, the housing and each terminal fitting comprising a displacement preventing portion for preventing a locking section of the lock engageable with the terminal fitting from being displaced toward the corresponding terminal fitting.
- 11. A connector, comprising:a housing formed with a plurality of cavities into which a corresponding plurality of terminal fittings are insertable along an inserting direction, a resiliently deformable lock in each said cavity and configured to be deformed by the respective terminal fitting into a deformation space in the process of inserting the terminal fitting into the cavity, each said lock being configured for engaging and locking the corresponding terminal fitting when the corresponding terminal fitting substantially reaches a proper insertion position, each said lock having a movable surface facing a side substantially opposite from the deformation space, each said cavity having a side wall arranged along a side of the respective lock, the side wall having a receiving surface facing the movable surface, wherein the movable surface is substantially parallel with the receiving surfaces when the respective lock is in an undeformed free state; and a retainer to be assembled with the housing, the retainer being configured to fit into the deformation space and to press and resiliently deform the lock from the undeformed free state towards the corresponding terminal fitting, wherein the movable surface is substantially in contact with the receiving surface when the retainer resiliently deforms the lock towards the corresponding terminal fittings.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2002-149636 |
May 2002 |
JP |
|
US Referenced Citations (5)
Foreign Referenced Citations (1)
Number |
Date |
Country |
4-102576 |
Apr 1992 |
JP |