Information
-
Patent Grant
-
6733312
-
Patent Number
6,733,312
-
Date Filed
Thursday, July 18, 200222 years ago
-
Date Issued
Tuesday, May 11, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Luebke; Renee
- McCamey; Ann
Agents
- Casella; Anthony J.
- Hespos; Gerald E.
-
CPC
-
US Classifications
Field of Search
US
- 439 157
- 439 160
- 439 352
- 439 372
-
International Classifications
-
Abstract
A connector (20) has a housing (21) and a lever (35) on outer surfaces of the housing (21). The housing (21) has two first resilient pieces (43) and two second resilient pieces (44) engageable with the lever (35). The lever (35) is held at an initial position by engaging first holding projections (47) of the first resilient pieces (43) in first engaging holes (48) in arms (36) of the lever (35) and by engaging second holding projections (49) of the, second resilient pieces (44) with engaging pieces (50) on the arms (36). The lever (35) can be rotated toward a shelter position so that the second resilient pieces (44) deform inwardly. The second resilient pieces (44) are restored resiliently to engage the second holding projections (49) with the second engaging holes (51) in the arms (36) to hold the lever (35) at the shelter position.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a lever-type connector.
2. Description of the Related Art
A known lever-type connector is disclosed in U.S. Pat. No. 5,709,560 and includes male and female housings that are connectable with one another. A lever is mounted rotatably on the male housing and is formed with a cam groove. The female housing has a cam pin that is displaced along the cam groove as the lever is rotated for pulling the male and female housings together.
The male and female housings and the lever are molded at a molding site and are transported to an assembling site. The housings are connected at the assembly site with the lever mounted at the initial position on the male housing. However, the lever at the initial position projects from the male housing. Thus, there is a possibility that the lever will deform or break due to interference of another part with the projecting portion.
Consideration has been given to mounting the lever at a shelter position where a projecting amount of the lever from the male housing is small. Deformation of the lever and other undesired events are avoided if the lever is placed at the shelter position on the male housing before transportation. The lever is returned to the initial position after transportation to the assembling site so that the male and female housings can be connected.
Two holding means need to be provided between the lever and the housing to hold the lever respectively at the shelter position and the initial position. This leads to a more complicated construction of the connector.
The known lever has a resilient piece that engages an engaging portion on the male housing to hold the lever at the initial position. The resilient piece is deformed by a disengaging portion on the female housing and disengages from the engaging portion as the housings are connected.
The resilient piece is formed by a cut in the plate-shaped lever. However, it is difficult to prevent excessive deformation of the resilient piece, and the resilient piece may be damaged by another part during transportation.
Excessive deformation of the resilient piece could be prevented by: providing the resilient piece on the housing instead of on the lever; making the resilient piece deformable inwardly; and providing a receiving portion at a back side of the resilient piece. If the resilient piece is deformable inwardly, it is necessary to: make the housing with the resilient piece fit into a mating housing; provide a disengaging portion on an inner wall of the mating housing; and press the resilient piece in with the disengaging portion to disengage the resilient piece from the lever during connection of the housings.
The lever may open slightly outward due to a restoring force of the resilient piece when the lever rotates beyond the resilient piece that has been deformed by the disengaging portion. The open portion of the outwardly open lever interferes with the inner surface of the mating housing to hinder the rotation of the lever. As a result, the lever may not rotate smoothly.
The invention was developed in view of the above problem and an object is to provide a simple connector with improved overall operability.
SUMMARY OF THE INVENTION
The invention relates to a connector with a housing that is connectable with a mating housing. A movable member is mounted on the housing for movement between initial and end positions. The movable member has a cam groove that can engage a cam pin on the mating housing. The housings can be connected or separated by displacing the cam pin along the cam groove as the movable member is moved between the initial and end positions. An initial position holding means is provided for holding the movable member at the initial position, and a shelter position holding means is provided for holding the movable member at a shelter position. A projecting amount of the movable member from the outer surface of the housing at the shelter position is less than at the initial position. Additionally, the initial position holding means and the shelter position holding means are part of a common element. Accordingly, the construction of the connector is simplified.
The connector may be a lever-type connector, and the movable member may be a lever rotatably mounted on the housing. Thus, the housings are connected or separated by displacing the cam pin along the cam groove as the lever is rotated from the initial position toward the end position.
The lever may be mounted on the housing at the shelter position before the housing and the lever are transported to an assembling site. Accordingly, the lever is not likely to be damaged by interference with other parts during transportation. The lever may be moved from the shelter position to the initial position after the connector has been transported to the assembling site. The housings subsequently are connected to each other.
The common element for the initial position holding means and the shelter position holding means may comprise a deformable resilient piece integrally or unitarily formed with the housing. The lever is held at the initial position and the shelter position by engaging the resilient piece with an initial position engaging portion and a shelter position engaging portion, respectively.
Resilient pieces may be on opposite sides of the housing and may be resiliently deformable inwardly. Thus, the resilient pieces can be pressed from outer sides by fingers and can be deformed inwardly for disengagement from the initial position engaging portion. The lever then can be rotated easily from the initial position to the shelter position for transportation.
The initial position engaging portion may be near an outer end of a trace of movement of the movable member. Thus, a sufficient holding force for the movable member can be ensured and the movable member can be held securely at the initial position.
At least one of the resilient piece and the shelter position engaging portion has a slanted disengagement guiding surface to disengage the resilient piece from the shelter position engaging portion when a force of at least a specified magnitude acts on the movable member to move the movable member toward the initial position. Thus, the movable member is semi-locked at the shelter position, and can be returned easily from the shelter position to the initial position after transportation to the assembling site.
The resilient piece may comprise a reinforcing projection that projects opposite from a deforming direction of the resilient piece and that has a slanted surface with an inclination substantially continuous with the disengagement guiding surface. As a result, the holding force for the movable member is reinforced without degrading the movement operability of the movable member.
The shelter position and the end position of the movable member preferably are identical, and the movable member can be held at the shelter position and the end position by the shelter position holding means.
A detection sound creating means preferably is provided for creating a detection sound as the movable member strikes the housing. Thus, the movable member is not likely to be left at an intermediate position.
The housing may comprise at least one excessive deformation preventing means for preventing excessive deformation of the resilient piece. Accordingly, the resilient piece is not likely to be damaged even if other parts strike against the resilient piece during transportation.
The resilient piece preferably is formed by cutting an outer wall of the housing, and/or the excessive deformation preventing means is formed by a cut edge of the outer wall at a back side with respect to a deforming direction of the resilient piece. Thus, excessive deformation of the resilient piece can be prevented by the engagement of the deformed resilient piece with the cut edge of the outer wall.
The mating housing may comprises at least one disengaging portion for resiliently deforming the resilient piece and disengaging the resilient piece from the movable member by engaging the resilient piece as the housings are connected. Accordingly, the operability of the movable member is improved.
An escaping portion may be formed in a surface of the mating housing that faces the movable member for permitting the movable member to be opened outwardly as the movable member moves beyond the resilient piece.
When the housings are to be connected, the resilient piece is deformed resiliently inward and is disengaged from the lever by the disengaging portion. Thus, rotation of the lever from the initial position is permitted. When the lever is rotated beyond the resilient piece, the lever is subjected to a restoring force of the resilient piece and opens outwardly. However, the escaping portion in the surface of the housing facing the lever permits the opened lever to escape. Thus, the rotational operability of the lever is satisfactory.
These and other objects, features and advantages of the present invention will become more apparent upon reading of the following detailed description of preferred embodiments and accompanying drawings. It should be understood that even though embodiments are separately described, single features thereof may be combined to additional embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an exploded perspective view of a lever-type connector according to one embodiment of the invention.
FIG. 2
is a front view of a main housing.
FIG. 3
is a rear view of the main housing.
FIG. 4
is a section along
4
—
4
of FIG.
3
.
FIG. 5
is a section along
5
—
5
of FIG.
3
.
FIG. 6
is a section along
6
—
6
of FIG.
3
.
FIG.
7
(A) is a plan view showing a state before a lever is mounted on the main housing.
FIG.
7
(B) is a plan view showing the main housing, divided housings, and a lever.
FIG. 8
is a plan view showing an operation of mounting the lever at an initial position on the main housing.
FIG. 9
is a section along
9
—
9
of
FIG. 8
showing an operation of pressing two second resilient pieces.
FIG. 10
is a plan view showing a state where the lever is mounted at a shelter position on the main housing.
FIG. 11
is a section along
11
—
11
of FIG.
10
.
FIG. 12
is a plan view showing a state before divided housings are accommodated into the main housing.
FIG. 13
is a plan view partly in section showing a state before two connectors are connected.
FIG. 14
is a section along
14
—
14
of FIG.
13
.
FIG. 15
is a plan view partly in section showing a state at an initial stage of connection of the two connectors.
FIG.
16
(A) is a section along
16
A—
16
A of FIG.
15
.
FIG.
16
(B) is a section along
16
B—
16
B of
FIG. 15
showing a state where engaging pieces are opened outwardly due to restoring forces of second resilient pieces at an initial stage of rotation of the lever.
FIG. 17
is a plan view partly in section showing a state at an intermediate stage of the connection of the two connectors.
FIG. 18
is a plan view partly in section showing a state where the two connectors are completely connected.
FIG. 19
is a section along
19
—
19
of FIG.
18
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A lever-type connector according to the invention has a male connector
10
and a female connector
20
, as shown in
FIGS. 1
to
19
. The male housing
10
is formed integrally or unitarily with a junction box (not shown). The female connector
20
has a main housing
21
that accommodates divided housings
27
, and a lever
35
is mounted on the main housing
21
. The male and female connectors
10
and
20
are connectable with each other, and the sides of the connectors
10
,
20
that are to be connected with each other are referred to as the front.
The male connector
10
, as shown in
FIG. 1
, has a male housing
11
made e.g. of a synthetic resin. The male housing
11
is formed unitarily or integrally on the upper surface of the junction box and has a receptacle
12
that opens up toward a mating side. The receptacle
12
is dimensioned to receive the female connector
20
. Unillustrated male tab terminals project from the bottom surface of the male housing
11
, and two guide pieces
13
of substantially T-shaped cross section project up along a mating direction for guiding the female connector
20
into the receptacle
12
.
The receptacle
12
is a wide rectangular tube, with two long side walls and left and right end walls, as shown in FIG.
1
. Two round cam pins
14
project toward one another from inner surfaces of the longer walls near the left end wall and notches
15
are formed in front of the cam pins
14
by cutting the open front edges of the receptacle
12
. Opposed escaping recesses
16
are formed on the inner surfaces of the longer walls of the receptacle
12
near the right end in
FIG. 1
, and disengagement projections
17
are formed at right ends of the escaping recesses
16
near the front of the receptacle
12
. The front side of each disengagement projection
17
is slanted. The right wall of the receptacle
12
is shorter along the mating direction than the other walls, and a lock projection
18
is provided at the front end of the inner surface of the right wall.
The main housing
21
of the female connector
20
is made e.g. of a synthetic resin, and defines a wide box that is open to the rear. The inside of the main housing
21
is partitioned vertically to define three side-by-side accommodation chambers
22
for accommodating three divided housings
27
from behind, as shown in
FIGS. 1 and 3
. Two side-by-side cavities
23
are formed adjacent the right chamber
22
of the main housing
21
, as shown in
FIG. 3
, and female terminal fittings (not shown) connected with ends of wires are insertable from behind into the cavities
23
. As shown in
FIG. 2
, a front wall
24
of the main housing
21
has terminal insertion holes
25
at positions that permit insertion of mating male tab terminals during the connection of the two connectors
10
,
20
. The front wall
24
also has guide piece insertion holes
26
for permitting insertion of the guide pieces
13
.
Each divided housing
27
is made e.g. of a synthetic resin and has cavities
28
of different sizes, as shown in
FIG. 1
, for accommodating different types of female terminal fittings (not shown). The female terminal fittings can be held in the respective cavities
23
,
28
by terminal holding means. As shown in
FIG. 12
, a locking projection
29
is provided on each of the opposite outer side surfaces of each divided housing
27
. The locking projections
29
engage the front sides of engaging projections
30
(see
FIG. 3
) that project from the inner surface of each accommodation chamber
22
. Thus, each divided housing
27
is held in the main housing
21
. Forwardly open guide grooves (not shown) are formed in the middle and right divided housings
27
for receiving the guide pieces
13
of the male connector
10
.
Lever supports
32
are provided at back-left positions of the outer surfaces of longer walls
31
of the main housing
21
, as shown in
FIG. 7
, for rotatably supporting the lever
35
. Each lever support
32
is a block that is narrow and long in forward and backward directions, and the front and rear surfaces thereof are rounded. A disk-shaped flange
33
is at the projecting end of each lever support
32
for preventing the mounted lever
35
from moving toward the outer side. Rotation guiding ribs
34
are formed on the outer surface of each longer wall
31
. The ribs
34
are curved along a path of rotation of the lever
35
and are spaced apart in the azimuthal direction, such that one rib
34
is at the left side and two are at the right side with respect to the lever support
32
. The rotation of the lever
35
can be guided by holding the outer periphery of the lever
35
in sliding contact with the respective ribs
34
.
As shown in
FIG. 1
, the lever
35
is made e.g. of a synthetic resin and has two arms
36
with ends that are joined by a coupling
37
to define a bridge or gate shape. The lever
35
is mounted such that the opposite longer walls
31
of the main housing
21
are held between the arms
36
. The free ends of the arms
36
have bearing recesses
38
that are supported rotatably on the lever supports
32
from behind (see FIG.
8
). As shown in
FIG. 7
, each bearing recess
38
has an entrance with a width that substantially equals the shorter dimension of each lever support
32
. The back of each bearing recess
38
is substantially circularly generated and has a diameter substantially equal to the longer dimension of each lever support
32
.
Each arm
36
has a cam groove
39
that is engageable with the corresponding cam pin
14
of the male connector
10
. The cam groove
39
has a substantially spiral shape that gradually approaches the bearing recess
38
as it extends back from an entrance
39
a
. Specified areas of the outer periphery of the arm
36
at the left and right sides of the entrance
39
a
of the cam groove
39
define an arc having the bearing recess
38
as a center, and can be brought into sliding contact with the rotation guiding ribs
34
. The cam pins
14
can engage in the cam grooves
39
when the lever
35
is mounted on the main housing
21
at an initial position with the entrances
39
a
of the cam grooves
39
facing the front, as shown in FIG.
13
. The lever
35
then can be rotated clockwise so that the cam pins
14
displace along the cam grooves
39
to assist in the connection of the two connectors
10
,
20
. The connectors
10
,
20
are connected substantially completely when the lever
35
reaches an end position where the lever supports
32
are in the middle of back ends of the cam grooves
39
, as shown in FIG.
18
.
A resiliently deformable lock arm
40
is cantilevered from the middle of the coupling
37
of the lever
35
and is engageable with the lock projection
18
of the male connector
10
to hold the connectors
10
,
20
together when the lever
35
reaches the end position. A locking step
41
is formed at the free end of the lock arm
40
and is engageable with the rear surface of the lock projection
18
. Further, operable portions
42
are at opposite sides of the lock arm
40
at the rear end of the coupling
37
, and are used to rotate the lever
35
.
The lever
35
at the initial position projects away from the mating side of the main body
21
, as shown in
FIG. 13
, whereas the lever
35
at the end position is substantially along the housing main body
21
, as shown in FIG.
18
. As shown in
FIGS. 13 and 18
, the backward projection of the lever
35
from the main housing
21
is smaller at the end position than at the initial position. The end position is a shelter position (see
FIG. 10
) for the lever
35
during transportation, and a radial projection of the lever
35
from the outer surface of the housing
21
is smaller than at the initial position.
The female connector
20
has a holding means for holding the lever
35
at the initial position, the end position and/or the shelter position. The lever holding means comprise inwardly deformable first and second resilient pieces
43
and
44
at each of the opposite long walls
31
of the main housing
21
, as shown in
FIGS. 3 and 7
. The first and second resilient pieces
43
,
44
are backwardly extending cantilevers formed by cutting the longer walls
31
. As shown in
FIG. 3
, a first excessive deformation preventing portion
45
is provided at a cut edge of each longer wall
31
at the back side of the first resilient piece
43
with respect to a deforming direction. The first excessive deformation preventing portion
45
prevents excessive deformation of the first resilient piece
43
by engaging the first resilient piece
43
before the first resilient piece
43
is deformed excessively. A second excessive deformation preventing portion
46
is provided at a cut edge of each longer wall
31
at the back side of the second resilient piece
44
with respect to a deforming direction and has a function similar to the first excessive deformation preventing portion
45
.
Each first resilient piece
43
is between the two right rotation guiding ribs
34
, as shown in
FIG. 7
, and a first holding projection
47
projects outwardly from the free end of the first resilient piece
43
. The first holding projections
47
enter first engaging holes
48
in the arms
36
near the back ends of the cam grooves
39
and have front surfaces engaged with the front edges of the first engaging holes
48
, as shown in FIG.
8
. Thus, the lever
35
cannot rotate counterclockwise from the initial position away from the end position. The front surfaces of the first holding projections
47
are at acute angles to the outer surfaces of the longer walls
31
, as shown in
FIG. 4
, and are engaged firmly with the edges of the first engaging holes
48
. Rear surfaces of the first holding projections
47
are at obtuse angles to the outer surfaces of the longer walls
31
, so that resilient deformation of the first resilient pieces
43
is guided as the lever
35
is mounted.
The second resilient pieces
44
are longer and wider than the first resilient pieces
43
and are at the right ends of the longer walls
31
, as shown in FIG.
7
. Second holding projections
49
project from the outer surfaces of the free ends of the second resilient pieces
44
. The front surfaces of engaging pieces
50
project at positions of the arms
36
near the coupling
37
and engage the rear surfaces of the second holding projections
49
, as shown in
FIG. 8
, to prevent clockwise rotation of the lever
35
from the initial position. The rear surfaces of the second holding projections
49
are at acute angles to the outer surfaces of the longer walls
31
, as shown in
FIG. 5
, to engage the engaging pieces
50
firmly. The front surfaces of the engaging pieces
50
are slanted (see FIG.
14
). On the other hand, the front of each second holding projection
49
defines a disengagement guiding surface
49
a
at an obtuse angle to the outer surface of the longer walls
31
. Thus, the second resilient pieces
44
deform and disengage from the engaging pieces
50
as the disengagement projections
17
of the male connector
10
engage the front surfaces of the second holding projections
49
during the connection of the connectors
10
,
20
, (see FIG.
16
).
When the lever
35
is at the shelter or end position, the second holding projections
49
enter substantially rectangular second engaging holes
51
on the arms
36
between the engaging pieces
50
and the coupling portion
37
. As a result, the front and rear surfaces of the second holding projections
49
engage the front and rear edges of the second engaging holes
51
, as shown in
FIGS. 10 and 11
, to hold the lever
35
at the shelter or end position in cooperation with the lock arm
40
(see FIGS.
18
and
19
). A long narrow holding force reinforcing projection
52
extends along forward and backward directions and projects out at the right end of the outer surface of each second holding projection
49
to reinforce the holding force of the lever
35
. Thus, the holding force for the lever
35
at the end position can be reinforced without degrading the rotational operability of the lever
35
when the connectors are to be separated. Slanted surfaces
52
a
are formed on the front surfaces of the reinforcing projections
52
and have an inclination substantially continuous with the disengagement guiding surfaces
49
a
formed on the front surfaces of the second holding projections
49
. Thus, if the lever
35
is rotated toward the initial position from the shelter or end position by a force of a specified magnitude or larger, the second resilient pieces
44
automatically deform resiliently and disengage from the edges of the second engaging holes
51
. Accordingly, the holding of the lever
35
at the shelter or end position by the second resilient pieces
44
is semi-locking. The rear surfaces of the holding force reinforcing projections
52
are at obtuse angles to the outer surfaces of the housing main body
21
to facilitate rotation of the lever
35
from the initial position to the shelter or end position, and the rear ends thereof are continuous with the outer surfaces of the second holding projections
49
.
A striker
53
is formed over the entire width of the end of the coupling
37
opposite from the operable portions
42
and a meeting portion
54
projects from the right end of the housing
21
. The striker
53
strikes the meeting portion
54
as the lever
35
reaches the shelter or end position. A detection sound is created and the clockwise rotation of the lever
35
passed the shelter position and the end position is prevented when the striker
53
strikes against the meeting portion
54
. When the lever
35
reaches the end position during connection of the two connectors
10
,
20
, both operable portions
42
of the lever
35
strike against the front end surface of the receptacle
12
of the male connector
10
. An echoing space
55
opens forward at the left side of the meeting portion
54
of the main housing
21
, as shown in
FIGS. 2 and 6
, for amplifying the detection sound. Further, the operable portions
42
provided behind the striking portion
53
of the lever
35
are formed with laterally open echoing spaces
56
which have the same function as the echoing space
55
.
The escaping recesses
16
are formed in the inner surfaces of the receptacle
12
of the male connector
10
, as described above, and permit the lever
35
to be opened outwardly during the rotation. As shown in
FIG. 13
, each escaping recess
16
has a length that extends over the entire length of the receptacle
12
along forward and backward directions and a width that extends between the right end position of the corresponding second resilient piece
44
of the female connector
20
and a position spaced slightly left of the left end of the corresponding engaging piece
50
of the lever
35
located at the initial position.
The engaging pieces
50
move beyond the second resilient pieces
44
during rotation of the lever
35
from the initial position toward the end position, and are subjected to the restoring forces of the second resilient pieces
44
that have been pressed inwardly by the disengagement projections
17
. As a result, the engaging pieces
50
displace slightly outwardly as shown in FIG.
16
(B). The depth of the escaping recesses
16
is sufficient to let the opened engaging pieces
50
escape.
The male housings
11
and the junction boxes are molded at a molding site and the male tab terminals are inserted to produce the lever-type connector. The main housings
21
of the female connectors
20
, the divided housings
27
and the levers
35
also are molded at a molding site. The lever
35
is fitted on the main housing
21
from behind and is rotated temporarily to the initial position, as shown in
FIGS. 7 and 8
. The second resilient pieces
44
then are pressed by fingers from outer sides, as shown in
FIG. 9
, and deform inwardly to disengage from the engaging pieces
50
. The lever
35
then is rotated to the shelter position, as shown in FIG.
10
. As a result, the striking portion
53
of the lever
35
strikes against the meeting portion
54
of the main housing
21
and creates a detection sound to indicate that the lever
35
has reached the shelter position. Thereafter, the parts are packed in boxes and transported to an assembling site with the levers
35
at the shelter position on the main housings
21
. The ability to disengage the second resilient pieces
44
by pressing in with fingers helps to achieve good operability.
The projecting amount of the lever
35
from the main housing
21
is smaller at the shelter position than at the initial position. Thus, interference of the lever
35
with other parts during transportation can be avoided, and the lever
35
is not likely to be damaged. In addition, more parts can be packed efficiently in a limited space, thereby contributing to lower transportation costs. The lever
35
is held at the shelter position by the second holding projections
49
and the holding force reinforcing projections
52
of the resiliently restored second resilient pieces
44
engage the edges of the second engaging holes
51
, as shown in FIG.
11
. Thus, a sufficient holding force is ensured, and the lever
35
will not move from the shelter position during transportation.
The main housings
21
may strike each other during transportation due to vibration and one main housing
21
may interfere with the first and second resilient pieces
43
,
44
of another main housing
21
. However, the first excessive deformation preventing portions
45
are behind the first resilient pieces
43
with respect to their deforming direction and the second excessive deformation preventing portions
46
are behind the second resilient pieces
44
with respect to their deforming direction. Thus, the excessive deformation preventing portions
45
,
46
engage the respective resilient pieces
43
,
44
and prevent the resilient pieces
43
,
44
from experiencing a plastic deformation. Therefore, the resilient pieces
43
,
44
will not be damaged.
The female terminal fittings connected with the wires are inserted in the cavities
23
of the main housing
21
and in the cavities
28
of the divided housings
27
at the assembly site. The divided housings
27
then are inserted into the respective accommodation chambers
22
of the main housing
21
with the lever
35
at the shelter position, as shown in FIG.
12
. The divided housings
27
can be inserted smoothly because the coupling
37
of the lever
35
at the shelter position is retracted sideways from the accommodation chambers
22
. Thereafter, the lever
35
is rotated counterclockwise from the shelter position, and the second resilient pieces
44
are guided by the disengagement guiding surfaces
49
a
of the second holding projections
49
and the slanted surfaces
52
a
of the holding force reinforcing projections
52
. Thus, the second resilient pieces
44
deform resiliently and disengage from the edges of the second engaging holes
52
, and the lever
35
is returned to the initial position, as shown in FIG.
13
. The semi locking of the lever
35
by the second resilient pieces
44
achieves good operability. The engaging pieces
50
engage the second holding projections
49
of the second resilient pieces
44
to hold the lever
35
at the initial position with a sufficient holding force, as shown in
FIGS. 13 and 14
. Thus, displacement of the lever
35
from the initial position can be prevented before the connectors
10
,
20
are connected.
The assembled female connector
20
is fit lightly into the receptacle
12
of the male connector
10
from above and the cam pins
14
enter the entrances
39
a
of the cam grooves
39
, as shown in FIG.
15
. During this process, the disengagement projections
17
engage the second holding projections
49
. Thus, the second resilient pieces
44
deform inwardly and are guided by the disengagement guiding surfaces
49
a
out of engagement with the engaging pieces
50
, as shown in FIG.
16
. In this way, the lever
35
can rotate clockwise in direction R from the initial position. As the lever
35
is rotated, the cam pins
14
move along the cam grooves
39
, as shown in
FIG. 17
, and the connection of the two connectors
10
,
20
progresses. The connectors
10
,
20
are connected completely when the lever
35
reaches the end position, and the lock projection
18
engages the locking step
41
of the lock arm
40
, as shown in FIG.
18
. At this time, the second holding projections
49
enter the second engaging holes
51
and engage the front and rear edges of the second engaging holes
51
. The lock arm
40
and the second resilient pieces
44
lock the connectors
10
,
20
together. The striking portion
53
of the lever
35
strikes the meeting portion
54
of the main housing
21
to create a detection sound as the connectors
10
,
20
are connected completely. Thus, the lever
35
will not be left with the connectors
10
,
20
only partly connected. The escaping grooves
57
at the front and rear edges of the second engaging holes
51
of the arms
36
accommodate the disengagement projections
17
of the male connector
10
during the process of the connection and at the time of the complete connection.
The engaging pieces
50
may open outwardly as the lever
35
is rotated due to the restoring forces of the second resilient pieces
44
that have been deformed resiliently by the disengagement projections
17
, as shown in FIG.
16
(B). However, the escaping recesses
16
on the inner surfaces of the receptacle
12
face the engaging pieces
50
. Thus, the engaging pieces
50
can displace outwardly into the escaping recesses
16
, and the lever
35
can rotate smoothly without the opened engaging pieces
50
catching the inner surfaces of the receptacle
12
.
The connectors
10
,
20
can be separated for a maintenance or other reason by first deforming the lock arm
40
away from the lock projection
18
and then rotating the lever
35
counterclockwise from the end position to the initial position. The second resilient pieces
44
are guided by the disengagement guiding surfaces
49
a
of the second holding projections
49
, and are deformed automatically away from the edges of the second engaging holes
51
. The cam pins
14
move along the cam grooves
39
and toward the entrances
39
a
as the rotation progresses. Thus, the connectors
10
,
20
gradually separate and can be pulled apart when the lever
35
reaches the initial position.
As described above, the second resilient pieces
44
are used as the holding means for holding the lever
35
at two positions, i.e. the initial position, and the end or shelter position. Thus, the connector has a simple construction as compared to a case where the second resilient pieces
44
do not perform two functions. Further, as the lever
35
is rotated to connect the connectors
10
,
20
, the disengagement projections
17
deform the second resilient pieces
44
to cancel the holding by the second resilient pieces
44
, thereby taking advantage of the connecting operation. Thus, the rotational operability of the lever
35
is better than if engaged projections and recesses hold the lever
35
.
The second resilient pieces
44
are at opposite sides of the main housing
21
, and easily can be deformed inwardly by fingers. Thus, the lever
35
can be rotated easily to the shelter position for transportation. Further, the engaging pieces
50
for engaging the second resilient pieces
44
are near the outer end of the trace of rotation of the lever
35
. Thus, a sufficient holding force can be ensured for holding the lever
35
at the initial position.
The disengagement guiding surfaces
49
a
on the second resilient pieces
44
achieve semi-locking of the lever
35
at the shelter position. Thus, the lever
35
can be returned easily to the initial position at the assembly site. Furthermore, the second resilient pieces
44
have the holding force reinforcing projections
52
and the slanted surfaces
52
a
having an inclination continuous with the disengagement guiding surfaces
49
a
are formed on the holding force reinforcing projections
52
. Thus, the holding force for the lever
35
can be reinforced without degrading the rotational operability.
The connector is simplified further because the end position and the shelter position of the lever
35
are identical and the lever
35
is held at the two different positions by the second resilient pieces
44
. Further, movement of the lever
35
to the end position and the shelter position can be detected by the detection sound, and the lever
35
will not be left at an intermediate position.
As described above, the first and second resilient pieces
43
and
44
are provided by cutting the longer walls
31
of the main housing
21
. The cut edges of the longer walls
31
define the first and second excessive deformation preventing portions
45
,
46
at the back sides of the respective resilient pieces
43
,
44
. The excessive deformation preventing portions
45
,
46
prevent excessive deformation of the resilient pieces
43
,
44
. Therefore, the resilient pieces
43
,
44
are not likely to be damaged during transportation.
The engaging pieces
50
may open outwardly due to the restoring forces of the second resilient pieces
44
at the initial stage of the rotation of the lever
35
. However, the escaping recesses
16
permit the engaging pieces to escape. Therefore, the rotational operability of the lever
35
is satisfactory.
The present invention is not limited to the above described and illustrated embodiment. For example, the following embodiments are also embraced by the invention as defined by the claims. Beside the following embodiments, various changes can be made without departing from the scope and spirit of the present invention as defined by the claims.
Although the end position and shelter position of the lever are identical in the foregoing embodiment, they may be separate if there is a restriction due to the construction of the connector and how the connector is used.
Although the resilient pieces are used as the holding means for the lever in the foregoing embodiment, the lever may be held, for example, by engaging a projection on the main housing with a recess formed in the lever.
Although the male connector is integral or unitary with the junction box in the foregoing embodiment, a male connector for accommodating male terminal fittings connected with ends of wires may be connected with the female connector of the foregoing embodiment.
Although the lever is mounted on the female connector in the foregoing embodiment, the lever may be mounted on the male connector.
Although the main housings and the levers are transported separately in the foregoing embodiment, they may be packed and transported with the levers on the main housings. In such a case, if the levers are mounted at the end position on the main housings, the levers can cover the second resilient pieces and a projecting amount of the levers from the main housings is small as compared to a case where the levers are at the initial position.
Although the cut edges of the housing main body are the excessive deformation preventing means in the foregoing embodiment, excessive deformation preventing members separate from the housing main housing may be mounted on the main housing.
Although the invention has been described with reference to a lever rotatably mounted on the main housing it should be understood that the invention is also applicable to other types of movable members, e.g. a movable member being substantially linearly movable between the initial position and the end position. The movable member may move on any other kind of path or trace such as a non-linear path, an elliptical path, a parabolic path, etc.
Although the invention has been described with respect to a cam groove on the lever and a cam pin on the mating housing it should be understood that the invention is also applicable to a connector in which the lever has a cam pin and the mating housing has a cam groove.
Claims
- 1. A connector, comprising:a housing connectable with a mating housing, a movable member formed with a cam groove and movably mountable on the housing for movement between a shelter position, an initial position and an end position, the movable member defining projecting distances from the housing in each of said positions, the projecting distance of the movable member from the housing in the shelter position being less than the projecting distance of the movable member from the housing in the initial position, the housing and the mating housing being connected with and separated from each other by displacing a cam pin on the mating housing along the cam groove as the movable member is moved between the initial position and the end position, a first position holding means on the housing for selectively and releasably holding the movable member at either of the shelter and initial positions, end position holding means on the mating housing for holding the movable member at the end position.
- 2. The connector of claim 1, wherein the movable member is a lever rotatably mountable on the first housing.
- 3. The connector of claim 1, wherein the first position holding means comprises at least one resiliently deformable resilient piece unitarily formed with the housing, the movable member being held at the initial position and the shelter position by engagement of the resilient piece with a an initial position engaging portion and a shelter position engaging portion, respectively, on the movable member.
- 4. The connector of claim 3, wherein at least one of the resilient piece and the shelter position engaging portion is formed with a disengagement guiding surface slanted to guide a resilient deformation of the resilient piece away from the third-shelter position engaging portion when a force of at least a specified magnitude acts on the movable member to move the movable member toward the initial position.
- 5. The connector of claim 3, wherein the at least one resilient piece comprises two resilient pieces on opposite side surfaces of the housing and being resiliently deformable inwardly toward one another.
- 6. The connector of claim 5, wherein the first initial position engaging portion is near an outer end of a trace of movement of the movable member.
- 7. The connector of claim 1, wherein the shelter position and a end position of the movable member are substantially identical.
- 8. The connector of claim 7, further comprising a detection sound creating means at a portion where the movable member having reached the shelter position and the end position is struck against the housing for amplifying a detection sound as the movable member is struck against the housing.
- 9. A connector, comprising:a housing connectable with a mating housing, a movable member formed with a cam groove and movably mountable on the housing between first, second and third positions, the housing and the mating housing being connected with and separated from each other by displacing a cam pin on the mating housing along the cam groove as the movable member is moved between the first position and the second position, at least one resiliently deformable piece unitarily formed with the housing, the movable member being held at the first position and the third position by the engagement of the resilient piece with a first position engaging portion and a third position engaging portion, respectively, on the movable member, at least one of the resilient piece and the third position engaging portion being formed with a disengaging guiding surface slanted to guide a resilient deformation of the resilient piece away from the third position engaging portion when a force of at least a specified magnitude acts on the movable member to move the movable member toward the first position, and wherein the resilient piece comprises a holding force reinforcing projection projecting in a direction opposite from a deforming direction of the resilient piece and having a slanted surface continuous with the disengagement guiding surface.
- 10. A connector, comprising:a housing connectable with a mating housing, a movable member formed with a cam groove and movably mountable on the housing, the two housings being connected with and separated from each other by displacing a cam pin on the mating housing along the cam groove as the movable member is moved between a first position and a second position, at least one resilient piece formed on the housing and being resiliently deformable away from the housing for holding the movable member at the first position by engaging the movable member, and at least one excessive deformation preventing means for preventing an excessive deformation of the resilient piece away from the movable member.
- 11. The connector of claim 10, wherein the resilient piece is formed by cutting an outer wall of the housing, and the excessive deformation preventing means is formed by a cut edge of the outer wall left at a back side with respect to a deforming direction of the resilient piece (43;44).
- 12. The connector of claim 10, wherein a first position engaging portion engageable with the resilient piece when the movable member is at the first position is near an outer end of a trace of movement of the movable member.
Priority Claims (3)
Number |
Date |
Country |
Kind |
2001-220346 |
Jul 2001 |
JP |
|
2001-220347 |
Jul 2001 |
JP |
|
2001-220348 |
Jul 2001 |
JP |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
5709560 |
Hio |
Jan 1998 |
A |
6413105 |
Noro et al. |
Jul 2002 |
B2 |