The present disclosure is directed to connectors and, more specifically, to connectors for use with a single-twisted pair of conductors.
A single twisted pair of conductors can be used to transmit data and/or power over a communications network that includes, for example, computers, servers, cameras, televisions, and other electronic devices including those on the internet of things (IoT), etc. In the past, this has been performed through use of Ethernet cables and connectors which typically include four pairs of conductors that are used to transmit four differential signals. Differential signaling techniques, where each signal is transmitted over a balanced pair of conductors, are used because differential signals may be impacted less by external noise sources and internal noises sources, such as crosstalk, as compared to signals that are transmitted over unbalanced conductors. In Ethernet cables, the insulated conductors of each differential pair are tightly twisted about each other to form four twisted pairs of conductors, and these four twisted pairs may be further twisted about each other in a so-called “core twist.” A separator may be provided that is used to separate at least one of the twisted pairs from at least one other of the twisted pairs. The four twisted pairs and any separator may be enclosed in a protective jacket. Ethernet cables are connectorized with Ethernet connectors; a single Ethernet connector is configured to accommodate all four twisted pairs of conductors. However, it is possible that data and/or power transfer can be effectively supported through a singled twisted pair of conductors with its own more compact connector and cable. Accordingly, a connector design different from a standard Ethernet connector is needed.
A family of connectors to accommodate a single twisted pair of conductors is disclosed herein. The family of connectors includes a free connector, a fixed connector, and an adapter; the free and/or fixed connectors can be modified to accommodate various patch cord and mounting configurations. In certain embodiments, the one or more of the family of connectors adopts an RJ 45 style connector or RJ 45 style jack/receptacle configuration in a reduced footprint, e.g. one-half, one-third or one-quarter the size of a standard RJ 45 connector or jack/receptacle.
An aspect of the present disclosure is directed to a connector including an RJ 45 style connector housing and only first and second insulation piercing contacts. The RJ 45 style connector housing is one-half, one-third, or one-quarter the size of a standard RJ 45 connector. The first and second contacts are contained within the connector housing and are configured to be electrically coupled to a single twisted pair of conductors.
Another aspect of the present disclosure is directed to a connector that includes an RJ 45 style jack/receptacle body portion and only first and second contacts. The body portion includes a port. Further, the body portion is one-half, one-third, or one-quarter the size of a standard RJ 45 jack/receptacle. The first and second contacts are accessible via the port and are configured to be electrically coupled to a single twisted pair of conductors or to first and second contacts of a printed circuit board.
Another aspect of the present disclosure is directed to an adapter for coupling two single twisted pairs of conductors. The adapter includes a body portion having first and second ports. Each of the first and second ports includes only first and second contacts that are accessible via the ports. The first and second contacts or the first port are electrically coupled to the first and second contacts of the second port. Each of the first and second ports is configured to interface with a two-contact only connector.
Still another aspect of the present disclosure is directed to patch cord that includes a cable having a single pair of twisted conductors. Each of the conductors includes a first end and a second end. The first ends are coupled to an RJ 45 style connector or to an RJ 45 style jack/receptacle. Similarly, the second ends of the conductors are coupled to an RJ 45 style connector or to an RJ 45 style jack/receptacle. The RJ 45 style connector and the RJ 45 style jack/receptacle are one-half, one-third or one-quarter the size of a standard RJ 45 connector or jack/receptacle.
A family of connectors to accommodate a single twisted pair of conductors is disclosed herein. The family of connectors includes a free connector, a fixed connector, and an adapter; the free and/or fixed connectors can be modified to accommodate various patch cord and mounting configurations. In certain embodiments, the one or more of the family of connectors adopts an RJ 45 style connector or RJ 45 style jack/receptacle configuration in a reduced footprint, e.g. one-half, one-third or one-quarter the size of a standard RJ 45 connector or jack/receptacle.
Referring to
Referring to
Referring to
Referring once again to
The connector housing 102 of the free connector 100 includes an elongate body portion 110 having first and second side walls 112, 114 connected by upper and lower walls 116, 118, respectively, to establish a square or substantially square forward face 120. In certain embodiments, an exterior cross-sections of the connector housing 102 can assume a shape (e.g. round, oval, rectangular, triangular, hexagonal, etc.) that is different from a squared shape. The connector housing 102 further includes a channel 134 that extends from a rear face 132 toward the forward face 120; the channel 134 is configured to accommodate at least two insulated conductors (e.g. conductors 12, 14 of
The connector housing 102 includes a snap latch 136 on the upper wall 116 of the elongate body portion 110. The snap latch 136 can be positioned proximate the forward face 120 of the connector housing 102 as illustrated or can be positioned further rearward along the upper wall 116 as appropriate to enable a releasable interface or coupling with a corresponding fixed connector or adapter, described below.
Each of the two contacts 106a, 106b comprises a conductive pin contact having a two or three points 140 such that when the connector body 102 (with conductors inserted therein) is crimped within a crimping tool, the points 140 of the contacts 106a, 106b break through any insulation about the conductors (e.g. conductors 12, 14, see
The free connector 100 can be configured in a simplex form or combined in a duplex form similar to that available with LC fiber optic connectors (see
Still referring to
The body portion 302 includes first and second side walls 308, 310 connected by upper and lower walls 312, 314. The first and second side walls 308, 310, and the upper and lower walls 312, 314 frame an open forward portion 316 that presents a port 318 within the body portion 302 that is configured to receive the free connector 100. A notch 320 proximate the upper wall 312 is configured to interface with the snap latch 136 to removably retain the free connector 100.
Each of contacts 306a, 306b comprises a spring-loaded wire contact that is configured to electrically interface with the contacts 106a, 106b of the free connector 100, when the free connector 100 is received within the port 318 of the body portion 302 of the fixed connector 300. The fixed connector 300 can be configured with a wiring bank to receive a pair of conductors for wall-mounting or cable mounting. The fixed connector 300 can also be configured for circuit board mounting, for example, with the contacts 306a, 306b, extending through the lower wall 314.
As
In certain embodiments, the fixed connectors 300 can be configured in a simplex form or combined in a duplex form similar to that available with LC fiber optic connectors (see
It will also be appreciated that aspects of the above embodiments may be combined in any way to provide numerous additional embodiments. These embodiments will not be described individually for the sake of brevity.
While the present invention has been described above primarily with reference to the accompanying drawings, it will be appreciated that the invention is not limited to the illustrated embodiments; rather, these embodiments are intended to disclose the invention to those skilled in this art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. It will also be understood that the terms “tip” and “ring” are used to refer to the two conductors of a differential pair and otherwise are not limiting.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper”, “top”, “bottom” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity. As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising”, “includes” and/or “including” when used in this specification, specify the presence of stated features, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, operations, elements, components, and/or groups thereof.
Herein, the terms “attached”, “connected”, “interconnected”, “contacting”, “mounted” and the like can mean either direct or indirect attachment or contact between elements, unless stated otherwise.
Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application is being filed on Jun. 8, 2018 as a PCT International Patent Application and claims the benefit of U.S. Patent Application Ser. No. 62/516,739, filed on Jun. 8, 2017, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/036623 | 6/8/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62516739 | Jun 2017 | US |