Connectors for fluid containers

Information

  • Patent Grant
  • 8336587
  • Patent Number
    8,336,587
  • Date Filed
    Monday, April 23, 2012
    12 years ago
  • Date Issued
    Tuesday, December 25, 2012
    12 years ago
Abstract
This document provides connectors such as a connector for enabling fluid transfer between a first fluid container and a second fluid container, which connector comprises a first component that is arranged to be connected to a first fluid container and a second component that is arranged to be connected to a second fluid container. The first component can be non-rotatably connected to the second component before a second fluid container is connected to the second component and/or before a first fluid container is connected to the first component. The connector can comprise a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component, and/or once a first fluid container has been connected to the first component, which locking and rotation-enabling element enables the first component and the second component to rotate freely with respect to one another.
Description
TECHNICAL FIELD

The present invention concerns a connector for enabling fluid transfer between a first fluid container and a second fluid container, such as a syringe or needle protector. The present invention also concerns a fluid container comprising at least a part of such a connector.


BACKGROUND

Many medical connectors comprise a first component having a female luer-lock element that is arranged to be rigidly joined to a corresponding male luer-lock element of a second connector component that is attached to a medical line for example. The male luer lock element can thus be freely screwed into and unscrewed from the female luer-lock element. However, once the male luer-lock element has been screwed into the female luer-lock element of the connector, there is a risk that the connector components may be accidentally or inadvertently unscrewed, which could lead to the disconnection of the fluid line. This may entail a serious contamination risk for a patient and or any other person in the vicinity of the disconnected medical connector. Such a disconnection risk must especially be avoided when administering toxic fluid, such as cytostatic agents.


Some medical connectors are arranged so as to be non-disconnectable once they have been connected to a medical line for example. A disadvantage with such a connector is that it may induce an undesirable twist in the medical line when a second fluid container, such as a syringe or a needle protector, is secured to the connector in order to enable fluid transfer between the medical line and the second fluid container.


SUMMARY

An object of the invention is to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. A further object of the present invention is to provide a safe and reliable connector for enabling fluid between a first fluid container and a second fluid container, such as a syringe or needle protector.


At least one of these objects is achieved by a connector that comprises a first component that is arranged to be connected to a first fluid container and a second component that is arranged to be connected to a second fluid container. The first component is arranged to be non-rotatably connected to the second component, or a part of the second component, and to a first fluid container before a second fluid container is connected to the second component and/or before a first fluid container is connected to the first component. The connector comprises a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component and/or once a first fluid container has been connected to the first element, which locking and rotation-enabling element enables the first component and the second component to rotate freely with respect to one another, i.e. rotate freely in one direction or a plurality of directions without hindrance, or to rotate freely in one direction or a plurality of directions for at least part of one revolution or any number of revolutions before it is prevented from rotating further. Once the locking and rotation-enabling element has been activated, it will not be possible to accidentally or inadvertently disconnect the first component from the second component, whereby the locking of the first and the second components is irreversible. According to an alternative embodiment of the present invention the first component is arranged to be disconnectable from the second component once the locking and rotation-enabling element has been activated, whereby the locking of the first and the second components is reversible.


The expressions “first fluid container” and “second fluid container” as used in this document are intended to mean any vessel that can at least temporarily contain a fluid, such as a vial, a medical line, a tube or an infusion fluid container, such as an infusion bottle or an infusion bag, a syringe or a needle protector device. The expression “a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component and/or once a first fluid container has been connected to the first component” is intended to mean that the locking and rotation-enabling element is arranged to be activated either when one or both of the vessels that are to be connected to the connector. For example, if the locking and rotation-enabling element is arranged to be activated when it has been linearly, non-linearly or rotationally displaced a certain distance in for example the longitudinal direction of the connector, the connector may be arranged so that the connection of one or both of said vessels and/or the manual activation of a user may be required in order to displace the locking and rotation-enabling element the required distance.


It should be noted that the expression “the locking and rotation-enabling element” is intended to mean a single component or a plurality of components that are arranged to lock and to enable the rotation of the first component with respect to the second component.


The first and the second components of the connector according to the present invention may therefore be connected together so that they will not rotate with respect to each other until a second fluid container and/or a first fluid container is connected to the connector. On connection of a second fluid container and/or a first fluid container, the locking and rotation-enabling element will be activated and the first and the second components will then be able to rotate freely with respect to one another. The free rotation will clearly indicate to a user that a non-disconnectable connection has been made, i.e. that the first and the second components can not be separated without breaking the connector, using excessive force, or mis-using the connector. Furthermore, any undesired twists in the first fluid container or second fluid container may also be remedied by rotating the first and/or the second component of the connector.


According to an embodiment of the invention one of the first or second component comprises at least one protrusion that is arranged to become located in at least one corresponding cavity in the other of the first or second component or in the locking and rotation-enabling element, in order to connect the first component to the second component (or a part thereof) in a non-rotatable manner. The locking and rotation-enabling element is arranged to force the at least one protrusion out of the at least one corresponding cavity, whereby the first component and the second component are enabled to rotate freely with respect to one another when the at least one protrusion is forced out of the at least one corresponding cavity.


According to another embodiment of the invention the locking and rotation-enabling element is arranged to force the at least one protrusion out of the at least one corresponding cavity and into at least one slot, whereby the first component and the second component are enabled to rotate freely with respect to one another when the at least one protrusion is located in the at least one slot.


According to a further embodiment of the invention the locking and rotation-enabling element is arranged to be automatically activated when the second fluid container and/or first fluid container is/are connected to the connector. According to an embodiment of the invention the locking and rotation-enabling element is arranged to be automatically activated when it is directly or indirectly displaced by the second fluid container and/or the first fluid container when the second fluid container and/or the first fluid container is/are subsequently being connected to the connector, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity.


Alternatively, in the connector according to the present invention the locking and rotation-enabling element is arranged to be manually activated by a user after the second fluid container and/or first fluid container has/have been connected to the connector. According to an embodiment of the invention the locking and rotation-enabling element is arranged to be manually activated by a user that directly or indirectly causes it to be displaced after the second fluid container and/or first fluid container has/have been connected to the connector, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity.


According to another embodiment of the invention the connector comprises a snap fit mechanism to connect the first component to the second component. A snap fit mechanism is a self-locking joint whose mating parts exert a cam action, flexing until one part slips past a raised lip on the other part, preventing their separation.


According to a further embodiment of the invention the first component is arranged to be screwed into the second component. Alternatively, the first component is arranged to be slid into the second component.


According to an embodiment of the invention the first component and/or the second component comprises a membrane. The membrane of a second fluid container or a first fluid container may be pressed against the membrane of the connector component to form a double membrane and a piercing member, such as a needle, may then penetrate the double membrane in order to achieve leak free fluid transfer.


According to another embodiment of the present invention the connector comprises sealing means, such an o-ring or gasket, to ensure that a fluid-tight, leak-free connection is made between the first fluid container and the second fluid container.


The present invention also concerns a fluid container that comprises an integrally formed first component of a connector according to any of the embodiments of the invention. The connector according to the present invention may however be arranged to be connected to any fluid container.


In general, one aspect of the document features a connector for enabling fluid transfer between a first fluid container and a second fluid container, which connector comprises a first component that is arranged to be connected to a first fluid container and a second component that is arranged to be connected to a second fluid container, whereby the first component is arranged to be non-rotatably connected to the second component, or a part of the second component, and to a first fluid container before a second fluid container is connected to the second component and/or before a first fluid container is connected to the first component, characterized in that the connector comprises a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component, and/or once a first fluid container has been connected to the first component, which locking and rotation-enabling element enables the first component and the second component to rotate freely with respect to one another. One of the first or second components can comprise at least one protrusion that is arranged to become located in at least one corresponding cavity in the other of the first or second components or in the locking and rotation-enabling element, in order to connect the first component to the second component in a non-rotatable manner, and whereby the locking and rotation-enabling element is arranged to force the at least one protrusion out of the at least one corresponding cavity, whereby the first component and the second component are enabled to rotate freely with respect to one another when the at least one protrusion is forced out of the at least one corresponding cavity. The locking and rotation-enabling element can be arranged to force the at least one protrusion out of the at least one corresponding cavity and into at least one slot, whereby the first component and the second component are enabled to rotate freely with respect to one another when the at least one protrusion is located in the at least one slot. The locking and rotation-enabling element can be arranged to be automatically activated when the second fluid container is connected to the second component and/or once a first fluid container has been connected to the first component. The locking and rotation-enabling element can be arranged to be automatically activated when it is directly or indirectly displaced by the second fluid container when the second fluid container is subsequently being connected to the second component, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity and/or when it is directly or indirectly displaced by the first fluid container when the first fluid container is subsequently being connected to the first component, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity. The locking and rotation-enabling element can be arranged to be manually activated by a user after the second fluid container has been connected to the second component and/or when the first fluid container has been connected to the first component. The locking and rotation-enabling element can be arranged to be manually activated by a user that directly or indirectly causes it to be displaced after the second fluid container has been connected to the second component and/or the first fluid container has been connected to the first component, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity. The connector can comprise a snap fit mechanism to connect the first component to the second component or the fluid enabling element. The first component can be arranged to be screwed into the second component. The first component can be arranged to be slid into the second component. The second component and/or the first component can comprise a membrane. The connector can comprise sealing means to ensure that a fluid-tight, leak-free connection is made between the first fluid container and the second fluid container.


In another aspect, this document provides a fluid container comprising an integrally formed first component of a connector. The connector can be configured as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be further explained by means of non-limiting examples with reference to the appended schematic figures.



FIG. 1 shows an exploded view of a connector according to an embodiment of the invention.



FIG. 2 depicts a locking and rotation-enabling element of a connector according to an embodiment of the invention.



FIG. 3 shows a first component of a connector according to an embodiment of the invention.



FIG. 4 shows a first component connected to a locking and rotation-enabling element in a non-rotatable manner.



FIGS. 5 and 6 show a first component connected to a locking and rotation-enabling element in a manner that enables the first component to rotate freely with respect to the locking and rotation-enabling element.



FIG. 7 shows a connector according to an embodiment of the invention in which a first and second component are connected in a non-rotatable manner.



FIG. 8 shows a connector according to an embodiment of the invention in which a first and second component are connected in a rotatable manner.



FIGS. 9 and 10 show a second component of connector according to different embodiments of the invention.



FIGS. 11 and 12 show a fluid container comprising at least a component of a connector according to the present invention.





It should be noted that the drawings have not been drawn to scale and that the dimensions of certain features have been exaggerated for the sake of clarity.


DETAILED DESCRIPTION OF EMBODIMENTS


FIG. 1 shows an exploded view of a connector 10 for enabling fluid transfer between a first fluid container and a second fluid container. The connector 10 comprises a first component 12 that is arranged to be connected to a first fluid container and a second component 14 that is arranged to be connected to a second fluid container. The first and the second component 12 and 14 in the illustrated embodiment are tubular and comprise at least one fluid channel (not shown) through which fluid may flow through the connector. The connector 10 comprises an o-ring 15 to ensure that a fluid-tight, leak-free connection is made between the first fluid container and the second fluid container.


The first component 12 is arranged to be non-rotatably connected to the second component 14 and to a first fluid container before a second fluid container is connected to the second component 14. The connector 10 comprises a locking and rotation-enabling element 16 that is arranged to be activated once a second fluid container has subsequently been connected to the second component 14. In the illustrated embodiment the locking and rotation-enabling element 16 constitutes part of the second component 14 and is non-rotatable, and slidably displaceable with respect to the second component 14. The locking and rotation-enabling element 16 enables the first component 12 and the second component 14 to rotate freely with respect to one another when it has been directly or indirectly activated (automatically or manually).


With reference to FIGS. 1-3 the first component 12 comprises two levels of protrusions 18a and 18b. The lower level of protrusions 18b is arranged to become located in corresponding cavities 20 (whereby the turning force applied to the first component 12 will be transferred to the locking and rotation-enabling element 16) in the locking and rotation-enabling element 16 of the second component 14 in order to connect the first component 12 to the second component 14 in a non-rotatable manner. The upper level of protrusions 18a is arranged to become located adjacent to a row of protrusions 22 (shown in FIG. 1) on the locking and rotation-enabling element 16 in a snap fit manner for example.



FIG. 4 shows the first component 12 connected to the locking and rotation-enabling element 16, whereby the lower level of protrusions 18b is located in cavities 20 in the locking and rotation-enabling element 16.


When a second fluid container is connected to the second component 14 the locking and rotation-enabling element 16 will be slidably displaced downwards to the position shown in FIG. 5 and will force the lower level of protrusions 18b out of the cavities 20, whereby the first component 12 and locking and rotation-enabling element 16 (and consequently the second component 14) will then be able to rotate freely with respect to one another.



FIG. 6 shows the first component 12 in a position in which it has been rotated in the direction of the arrow in FIG. 6, whereby the cavities 20 in the locking and rotation-enabling element 16 are located slightly to the right of the lower level of protrusions 18b. It should be noted that the connector 10 may be arranged to also enable rotation in the direction opposite to the direction of the arrow in FIG. 6. According to an embodiment of the invention the connector 10 may comprise means to prevent the first component 12 and the second component 14 from returning to their unlocked position in which they cannot rotate with respect to one another. For example, in the embodiment illustrated in FIG. 6, the connector 10 may be provided with a spring-loaded mechanism 11 to prevent the protrusions 18b from being displaced back into the cavities 20.



FIG. 7 shows a cross section of the first component 12 and the second component 14 that includes the locking and rotation-enabling element 16, when the first component 12 and the second component 14 are connected in a non-rotatable manner with respect to one another, i.e. when the lower level of protrusions 18b is located in the cavities 20 in the locking and rotation-enabling element 16. The upper level of protrusions 18a rest against the protrusions 22 of the locking and rotation-enabling element 16. The connector shown in FIG. 7 comprises a slot 24 just below the lower level of protrusions 18b.


When the locking and rotation-enabling element 16 is activated, it will be displaced downwards in FIG. 7 to the position shown in FIG. 8. In this position the lower level of protrusions 18b will become located in the slot 24 and the upper level of protrusions 18a will no longer rest against the protrusions 22 of the locking and rotation-enabling element 16. The first component 12 will therefore be able to rotate freely with respect to the locking and rotation-enabling element 16 and consequently with respect to the second component 14. Furthermore, since the protrusions 22 of the locking and rotation-enabling element 16 are now located between the upper and lower levels of protrusions 18a and 18b, the first component 12 will remain permanently connected to the second component 14 and will preferably not be separable therefrom without breaking the connector 10, using excessive force or mis-using the connector 10. In the illustrated embodiment the second component 14 comprises a membrane 26 that may be placed in tight apposition against the membrane of a second fluid container, such as a needle protector, to ensure leak-free fluid transfer between the second fluid container and the second component 14.


In the connector embodiment shown in FIGS. 1-8, the locking and rotation-enabling element 16 is arranged to be directly and automatically activated when a second fluid container is connected to the second component 14. The connection of a second fluid container to the second component 14 namely causes the locking and rotation-enabling element 16 to be slidably displaced in a longitudinal direction (downwards in FIGS. 1-8) to enable the first component 12 to be freely rotatable with respect to the second component 14. Alternatively, such a slideable displacement may be achieved by a user manually activating a lever on the side of the connector for example once a second fluid container has been connected to the second component 14, which lever activates the locking and rotation-enabling element 16.



FIG. 9 shows a connector 10 comprising a snap fit mechanism 17. FIG. 10 shows that the second component 14 may be arranged to be screwed into a second fluid container. It should be noted that the first component 12 may also be arranged to be slid or screwed into a first fluid container. Furthermore, the first component 12 may be arranged to be slid or screwed into the second component 14 and the locking and rotation-enabling element 16 may be arranged to be displaced in a linear, non-linear or rotatable manner.



FIG. 11 shows a first fluid container 28, namely an infusion bag, comprising an integrally formed connector 10 according to the present invention. Such a connector 10 may alternatively be arranged to be temporarily or permanently connected to the infusion port or the injection port of a standard infusion bag.



FIG. 12 shows a first fluid container 28, namely an infusion bag, comprising an integrally formed first component 12 of a connector 10 according to the present invention. Such a first component 12 may alternatively be arranged to be temporarily or permanently connected to the infusion port or the injection port of a standard infusion bag.


Further modifications of the invention within the scope of the claims would be apparent to a skilled person. For example, the first component 12 and the second component 14 may be connected between any two vessels between which fluid transfer is desired. The first component 12 may be arranged to be connected to the second component 14 (or a part thereof such as a locking and rotation-enabling element 16) in any suitable manner. There are many ways of designing and arranging a locking and rotation-enabling element 16 to enable free rotation between the first component 12 and the second component 14 of the connector 10 once a second fluid container and/or a medical container has/have been connected to the connector. The design and arrangement shown in the figures merely provides one such example in order to illustrate the principle of the present invention. Furthermore, it should be noted that although it is easier to manufacture a locking and rotation-enabling element 16 that is directly activated by the connection of a second fluid container and/or a first fluid container to the connector 10, the connector may be provided with an additional mechanism to indirectly automatically or manually activate the locking and rotation-enabling element 16.

Claims
  • 1. A connector for enabling fluid transfer between a first fluid container and a second fluid container, which connector comprises a first component that is arranged to be connected to a first fluid container and a second component that is arranged to be connected to a second fluid container, whereby the first component is arranged to be reversibly connected to the second component, wherein the connector comprises a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component, or once a first fluid container has been connected to the first component, which locking and rotation-enabling element enables the first component and the second component to rotate freely with respect to one another.
  • 2. The connector of claim 1, wherein the locking and rotation-enabling element is arranged to be automatically activated when said second fluid container is connected to the second component.
  • 3. The connector of claim 1, wherein the locking and rotation-enabling element is arranged to be automatically activated when the first fluid container has been connected to the first component.
  • 4. The connector of claim 1, wherein the locking and rotation-enabling element is arranged to be manually activated by a user after the second fluid container has been connected to the second component.
  • 5. The connector of claim 1, wherein the locking and rotation-enabling element is arranged to be manually activated by a user after the first fluid container has been connected to the first component.
  • 6. The connector of claim 1, wherein the connector comprises a snap fit mechanism to reversibly connect the first component to the second component or the fluid enabling element.
  • 7. The connector of claim 1, wherein the first component is arranged to be reversibly screwed into the second component.
  • 8. The connector of claim 1, wherein the first component is arranged to be reversibly slid into the second component.
  • 9. The connector of claim 1, wherein the first component is arranged to be screwed into the first fluid container.
  • 10. The connector of claim 1, wherein the first component is arranged to be slid into the first fluid container.
  • 11. The connector of claim 1, wherein the second component is arranged to be screwed into the second fluid container.
  • 12. The connector of claim 1, wherein the second component is arranged to be slid into the second fluid container.
  • 13. The connector of claim 1, wherein the second component comprises a membrane.
  • 14. The connector of claim 1, wherein the first component comprises a membrane.
  • 15. The connector of claim 1, wherein the connector comprises a sealing element to ensure that a fluid-tight, leak-free connection is made between the first fluid container and the second fluid container.
  • 16. The connector of claim 1, further comprising a spring-loaded mechanism to prevent the first component and the second component to rotate freely with respect to one another.
  • 17. A fluid container comprising an integrally formed first component of a connector for enabling fluid transfer between the fluid container and a second fluid container, which connector comprises a second component that is arranged to be connected to the second fluid container, whereby the first component is arranged to be reversibly connected to the second component, wherein the connector comprises a locking and rotation-enabling element that is arranged to be activated once the second fluid container has been connected to the second component, which locking and rotation-enabling element enables the first component and the second component to rotate freely with respect to one another.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/784,985, filed on May 21, 2010, the entire contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (199)
Number Name Date Kind
1844342 Berman Feb 1932 A
2010417 Schwab Aug 1935 A
2697438 Hickey Dec 1954 A
2717599 Huber Sep 1955 A
3064651 Henderson Nov 1962 A
3071135 Baldwin et al. Jan 1963 A
3308822 De Luca Mar 1967 A
3316908 Burke May 1967 A
3340671 Loo Sep 1967 A
3390677 Razimbaud Jul 1968 A
3448740 Figge Jun 1969 A
3542240 Solowey Nov 1970 A
3783895 Weichselbaum Jan 1974 A
3788320 Dye Jan 1974 A
3822700 Pennington Jul 1974 A
3938520 Scislowicz et al. Feb 1976 A
3976073 Quick et al. Aug 1976 A
4096860 McLaughlin Jun 1978 A
4296786 Brignola Oct 1981 A
D270568 Armstrong Sep 1983 S
4490139 Huizenga et al. Dec 1984 A
4516967 Kopfer May 1985 A
4564054 Gustavsson Jan 1986 A
4573967 Hargrove et al. Mar 1986 A
4576211 Valentini et al. Mar 1986 A
4581016 Gettig Apr 1986 A
4582223 Kobe Apr 1986 A
4588403 Weiss et al. May 1986 A
4600040 Naslund Jul 1986 A
4623343 Thompson Nov 1986 A
4629455 Kanno Dec 1986 A
4632673 Tiitola et al. Dec 1986 A
4636204 Christopherson et al. Jan 1987 A
4673010 Prufer et al. Jun 1987 A
4673400 Martin Jun 1987 A
4673404 Gustavsson Jun 1987 A
4737150 Baeumle et al. Apr 1988 A
4752287 Kurtz et al. Jun 1988 A
4759756 Forman et al. Jul 1988 A
4768568 Fournier et al. Sep 1988 A
4792329 Schreuder Dec 1988 A
4804015 Albinsson Feb 1989 A
4822340 Kamstra Apr 1989 A
4826492 Magasi May 1989 A
4834717 Haber et al. May 1989 A
4842585 Witt Jun 1989 A
4850978 Dudar et al. Jul 1989 A
4864717 Baus, Jr. Sep 1989 A
4872494 Coccia Oct 1989 A
4878897 Katzin Nov 1989 A
4889529 Haindl Dec 1989 A
4898209 Zbed Feb 1990 A
4909290 Coccia Mar 1990 A
4932937 Gustavsson et al. Jun 1990 A
4944736 Holtz Jul 1990 A
4964855 Todd et al. Oct 1990 A
4982769 Fournier et al. Jan 1991 A
4994048 Metzger Feb 1991 A
4997083 Loretti et al. Mar 1991 A
5017186 Arnold May 1991 A
5041105 D'Alo et al. Aug 1991 A
5061264 Scarrow Oct 1991 A
5071413 Utterberg Dec 1991 A
5122116 Kriesel et al. Jun 1992 A
5122123 Vaillancourt Jun 1992 A
5137524 Lynn et al. Aug 1992 A
5158554 Jepson et al. Oct 1992 A
5176673 Marrucchi Jan 1993 A
5199947 Lopez et al. Apr 1993 A
5201725 Kling Apr 1993 A
5207658 Rosen et al. May 1993 A
5232109 Tirrell et al. Aug 1993 A
5254097 Schock et al. Oct 1993 A
5279576 Loo et al. Jan 1994 A
5279583 Shober, Jr. et al. Jan 1994 A
5279605 Karrasch et al. Jan 1994 A
5308347 Sunago et al. May 1994 A
5312366 Vailancourt May 1994 A
5328480 Melker et al. Jul 1994 A
5334163 Sinnett Aug 1994 A
5356406 Schraga Oct 1994 A
5385545 Kriesel et al. Jan 1995 A
5385547 Wong et al. Jan 1995 A
5389085 D'Alessio et al. Feb 1995 A
5405326 Haber et al. Apr 1995 A
5445630 Richmond Aug 1995 A
5447501 Karlsson et al. Sep 1995 A
5456675 Wolbring et al. Oct 1995 A
5470522 Thome et al. Nov 1995 A
5478328 Silverman et al. Dec 1995 A
5478337 Okamoto et al. Dec 1995 A
5492531 Post et al. Feb 1996 A
5514117 Lynn May 1996 A
5515871 Bittner et al. May 1996 A
5536259 Utterberg Jul 1996 A
5575780 Saito Nov 1996 A
5593028 Haber et al. Jan 1997 A
5613954 Nelson et al. Mar 1997 A
5632735 Wyatt et al. May 1997 A
5647845 Haber et al. Jul 1997 A
5685866 Lopez Nov 1997 A
5752942 Doyle et al. May 1998 A
5766147 Sancoff et al. Jun 1998 A
5766211 Wood et al. Jun 1998 A
5782872 Muller Jul 1998 A
5795336 Romano et al. Aug 1998 A
5817083 Shemesh et al. Oct 1998 A
5820609 Saito Oct 1998 A
5827262 Neftel et al. Oct 1998 A
5837262 Golubev et al. Nov 1998 A
5875931 Py Mar 1999 A
5879345 Aneas Mar 1999 A
5897526 Vaillancourt Apr 1999 A
5934510 Anderson Aug 1999 A
5984899 D'Alessio et al. Nov 1999 A
6063068 Fowles et al. May 2000 A
D427308 Zinger Jun 2000 S
6070623 Aneas Jun 2000 A
6071270 Fowles et al. Jun 2000 A
6090091 Fowles et al. Jul 2000 A
6113068 Ryan Sep 2000 A
6113583 Fowles et al. Sep 2000 A
6142446 Leinsing Nov 2000 A
6146362 Turnbull et al. Nov 2000 A
6209738 Jansen et al. Apr 2001 B1
6221065 Davis Apr 2001 B1
6245056 Walker et al. Jun 2001 B1
D445501 Niedospial, Jr. Jul 2001 S
6253804 Safabash Jul 2001 B1
6258078 Thilly Jul 2001 B1
6293595 Marc et al. Sep 2001 B1
6387074 Horppu et al. May 2002 B1
6453956 Safabash Sep 2002 B2
6471674 Emig et al. Oct 2002 B1
6517523 Kaneko et al. Feb 2003 B1
6537263 Aneas Mar 2003 B1
6571837 Jansen et al. Jun 2003 B2
6591876 Safabash Jul 2003 B2
6644367 Savage et al. Nov 2003 B1
6685692 Fathallah Feb 2004 B2
6715520 Andreasson et al. Apr 2004 B2
6761286 Py et al. Jul 2004 B2
D495416 Dimeo et al. Aug 2004 S
6786244 Jones Sep 2004 B1
D506256 Miyoshi et al. Jun 2005 S
6960194 Hommann et al. Nov 2005 B2
7000806 Py et al. Feb 2006 B2
7080672 Fournie et al. Jul 2006 B2
7281947 Pescatore Oct 2007 B2
7297140 Orlu et al. Nov 2007 B2
D570477 Gallogly et al. Jun 2008 S
D572820 Gallogly et al. Jul 2008 S
D577438 Gallogly et al. Sep 2008 S
D577822 Gallogly et al. Sep 2008 S
D582033 Baxter et al. Dec 2008 S
D605755 Baxter et al. Dec 2009 S
7703486 Costanzo Apr 2010 B2
D616984 Gilboa Jun 2010 S
7744581 Wallen et al. Jun 2010 B2
7975733 Horppu et al. Jul 2011 B2
20010021825 Becker et al. Sep 2001 A1
20010025671 Safabash Oct 2001 A1
20020002352 Becker et al. Jan 2002 A1
20020082586 Finley et al. Jun 2002 A1
20020127150 Sasso Sep 2002 A1
20020177819 Barker et al. Nov 2002 A1
20030010717 Brugger et al. Jan 2003 A1
20030070726 Andreasson et al. Apr 2003 A1
20030106610 Roos et al. Jun 2003 A1
20030107628 Fowles et al. Jun 2003 A1
20030199846 Fowles et al. Oct 2003 A1
20030233083 Houwaert et al. Dec 2003 A1
20040116858 Heinz et al. Jun 2004 A1
20040199139 Fowles et al. Oct 2004 A1
20040215147 Wessman et al. Oct 2004 A1
20050215977 Uschold Sep 2005 A1
20060025747 Sullivan et al. Feb 2006 A1
20060106360 Wong May 2006 A1
20060111667 Matsuura et al. May 2006 A1
20060157984 Rome et al. Jul 2006 A1
20060186045 Jensen Aug 2006 A1
20070021725 Villette Jan 2007 A1
20070060841 Henshaw Mar 2007 A1
20070088313 Zinger et al. Apr 2007 A1
20070106244 Mosler et al. May 2007 A1
20070179441 Chevallier Aug 2007 A1
20070270759 Pessin Nov 2007 A1
20070270778 Zinger Nov 2007 A9
20080045919 Jakob et al. Feb 2008 A1
20080103453 Liversidge May 2008 A1
20080103485 Kruger May 2008 A1
20080172039 Raines Jul 2008 A1
20080223484 Horppu Sep 2008 A1
20080287920 Fangrow et al. Nov 2008 A1
20080312634 Helmerson et al. Dec 2008 A1
20090254042 Gratwohl et al. Oct 2009 A1
20100137827 Warren et al. Jun 2010 A1
20100204671 Kraushaar et al. Aug 2010 A1
20100243099 Yodfat Sep 2010 A1
Foreign Referenced Citations (42)
Number Date Country
200112863 May 2001 AU
2005519 Oct 1971 DE
0255025 Feb 1988 EP
0259582 Mar 1988 EP
0285424 Oct 1988 EP
0311787 Apr 1989 EP
0376629 Jul 1990 EP
0803267 Oct 1997 EP
0819442 Jan 1998 EP
0995453 Apr 2000 EP
1060730 Dec 2000 EP
1484073 Dec 2004 EP
1731128 Dec 2006 EP
2757405 Jun 1998 FR
2780878 Jan 2000 FR
1579065 Nov 1980 GB
4912690 May 1972 JP
288664 Jul 1990 JP
3030963 Aug 1996 JP
2000167022 Jun 2000 JP
2001505092 Apr 2001 JP
2001293085 Oct 2001 JP
482670 Apr 2002 TW
WO-8404672 Dec 1984 WO
WO-8404673 Dec 1984 WO
WO-9003536 Apr 1990 WO
WO-9819724 May 1998 WO
WO-9927886 Jun 1999 WO
WO-9962578 Dec 1999 WO
WO-0005292 Feb 2000 WO
WO-0035517 Jun 2000 WO
WO-0180928 Nov 2001 WO
WO-0202048 Jan 2002 WO
WO-0211794 Feb 2002 WO
WO-02064077 Aug 2002 WO
WO-02076540 Oct 2002 WO
WO-2005074860 Aug 2005 WO
WO-2006082350 Aug 2006 WO
WO-2006083333 Aug 2006 WO
WO-2006138184 Dec 2006 WO
WO-2008028305 Mar 2008 WO
WO-2008115102 Sep 2008 WO
Related Publications (1)
Number Date Country
20120209238 A1 Aug 2012 US
Continuations (1)
Number Date Country
Parent 12784985 May 2010 US
Child 13453381 US