The present invention concerns a connector for enabling fluid transfer between a first fluid container and a second fluid container, such as a syringe or needle protector. The present invention also concerns a fluid container comprising at least a part of such a connector.
Many medical connectors comprise a first component having a female luer-lock element that is arranged to be rigidly joined to a corresponding male luer-lock element of a second connector component that is attached to a medical line for example. The male luer lock element can thus be freely screwed into and unscrewed from the female luer-lock element. However, once the male luer-lock element has been screwed into the female luer-lock element of the connector, there is a risk that the connector components may be accidentally or inadvertently unscrewed, which could lead to the disconnection of the fluid line. This may entail a serious contamination risk for a patient and or any other person in the vicinity of the disconnected medical connector. Such a disconnection risk must especially be avoided when administering toxic fluid, such as cytostatic agents.
Some medical connectors are arranged so as to be non-disconnectable once they have been connected to a medical line for example. A disadvantage with such a connector is that it may induce an undesirable twist in the medical line when a second fluid container, such as a syringe or a needle protector, is secured to the connector in order to enable fluid transfer between the medical line and the second fluid container.
An object of the invention is to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. A further object of the present invention is to provide a safe and reliable connector for enabling fluid between a first fluid container and a second fluid container, such as a syringe or needle protector.
At least one of these objects is achieved by a connector that comprises a first component that is arranged to be connected to a first fluid container and a second component that is arranged to be connected to a second fluid container. The first component is arranged to be non-rotatably connected to the second component, or a part of the second component, and to a first fluid container before a second fluid container is connected to the second component and/or before a first fluid container is connected to the first component. The connector comprises a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component and/or once a first fluid container has been connected to the first element, which locking and rotation-enabling element enables the first component and the second component to rotate freely with respect to one another, i.e. rotate freely in one direction or a plurality of directions without hindrance, or to rotate freely in one direction or a plurality of directions for at least part of one revolution or any number of revolutions before it is prevented from rotating further. Once the locking and rotation-enabling element has been activated, it will not be possible to accidentally or inadvertently disconnect the first component from the second component, whereby the locking of the first and the second components is irreversible. According to an alternative embodiment of the present invention the first component is arranged to be disconnectable from the second component once the locking and rotation-enabling element has been activated, whereby the locking of the first and the second components is reversible.
The expressions “first fluid container” and “second fluid container” as used in this document are intended to mean any vessel that can at least temporarily contain a fluid, such as a vial, a medical line, a tube or an infusion fluid container, such as an infusion bottle or an infusion bag, a syringe or a needle protector device. The expression “a locking and rotation-enabling element that is arranged to be activated once a second fluid container has been connected to the second component and/or once a first fluid container has been connected to the first component” is intended to mean that the locking and rotation-enabling element is arranged to be activated either when one or both of the vessels that are to be connected to the connector. For example, if the locking and rotation-enabling element is arranged to be activated when it has been linearly, non-linearly or rotationally displaced a certain distance in for example the longitudinal direction of the connector, the connector may be arranged so that the connection of one or both of said vessels and/or the manual activation of a user may be required in order to displace the locking and rotation-enabling element the required distance.
It should be noted that the expression “the locking and rotation-enabling element” is intended to mean a single component or a plurality of components that are arranged to lock and to enable the rotation of the first component with respect to the second component.
The first and the second components of the connector according to the present invention may therefore be connected together so that they will not rotate with respect to each other until a second fluid container and/or a first fluid container is connected to the connector. On connection of a second fluid container and/or a first fluid container, the locking and rotation-enabling element will be activated and the first and the second components will then be able to rotate freely with respect to one another. The free rotation will clearly indicate to a user that a non-disconnectable connection has been made, i.e. that the first and the second components can not be separated without breaking the connector, using excessive force, or mis-using the connector. Furthermore, any undesired twists in the first fluid container or second fluid container may also be remedied by rotating the first and/or the second component of the connector.
According to an embodiment of the invention one of the first or second component comprises at least one protrusion that is arranged to become located in at least one corresponding cavity in the other of the first or second component or in the locking and rotation-enabling element, in order to connect the first component to the second component (or a part thereof) in a non-rotatable manner. The locking and rotation-enabling element is arranged to force the at least one protrusion out of the at least one corresponding cavity, whereby the first component and the second component are enabled to rotate freely with respect to one another when the at least one protrusion is forced out of the at least one corresponding cavity.
According to another embodiment of the invention the locking and rotation-enabling element is arranged to force the at least one protrusion out of the at least one corresponding cavity and into at least one slot, whereby the first component and the second component are enabled to rotate freely with respect to one another when the at least one protrusion is located in the at least one slot.
According to another embodiment of the invention the at least one protrusion comprises guide means, such as at least one guiding edge, that is arranged to guide the locking and rotation-enabling element with respect to the first component by ensuring that the protrusion of the first component remains in contact with the locking and rotation-enabling element while the first and second components are being connected together to facilitate the connection of the first component to the second component and ensure that the first and second components are connected correctly. The provision of such guide means may also simplify the manufacture of the first component thereby reducing manufacturing time and costs.
According to a further embodiment of the invention the locking and rotation-enabling element is arranged to be automatically activated when the second fluid container and/or first fluid container is/are connected to the connector. According to an embodiment of the invention the locking and rotation-enabling element is arranged to be automatically activated when it is directly or indirectly displaced by the second fluid container and/or the first fluid container when the second fluid container and/or the first fluid container is/are subsequently being connected to the connector, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity.
Alternatively, in the connector according to the present invention the locking and rotation-enabling element is arranged to be manually activated by a user after the second fluid container and/or first fluid container has/have been connected to the connector. According to an embodiment of the invention the locking and rotation-enabling element is arranged to be manually activated by a user that directly or indirectly causes it to be displaced after the second fluid container and/or first fluid container has/have been connected to the connector, whereby the displacement of the locking and rotation-enabling element forces the at least one protrusion out of the at least one cavity.
According to another embodiment of the invention the connector comprises a snap fit mechanism to connect the first component to the second component. A snap fit mechanism is a self-locking joint whose mating parts exert a cam action, flexing until one part slips past a raised lip on the other part, preventing their separation.
According to a further embodiment of the invention the first component is arranged to be screwed into the second component. Alternatively, the first component is arranged to be slid into the second component.
According to an embodiment of the invention the first component and/or the second component comprises at least one membrane. The membrane(s) of a second fluid container or a first fluid container may be pressed against the membrane(s) of the connector component to form a double/multiple membrane and a piercing member, such as a needle, may then penetrate the double/multiple membrane in order to achieve leak free fluid transfer. It should be noted that all of the membranes of a connector according to any of the embodiments of the present invention need not necessarily have the same mechanical and/or chemical properties and/or comprise the same material. Furthermore, one or more of said membranes may be at least partly coated in order to change/modify its mechanical and/or chemical properties. At least one membrane may for example comprise a chemically resistant coating.
According to another embodiment of the present invention the connector comprises sealing means, such as at least one o-ring or gasket, to ensure that a fluid-tight, leak-free connection is made between the first fluid container and the second fluid container.
The present invention also concerns a fluid container that comprises an integrally formed first component of a connector according to any of the embodiments of the invention. The connector according to the present invention may however be arranged to be connected to any fluid container.
The present invention will hereinafter be further explained by means of non-limiting examples with reference to the appended schematic figures where;
It should be noted that the drawings have not been drawn to scale and that the dimensions of certain features have been exaggerated for the sake of clarity.
The first component 12 is arranged to be non-rotatably connected to the second component 14 and to a first fluid container before a second fluid container is connected to the second component 14. The connector 10 comprises a locking and rotation-enabling element 16 that is arranged to be activated once a second fluid container has subsequently been connected to the second component 14. In the illustrated embodiment the locking and rotation-enabling element 16 constitutes part of the second component 14 and is non-rotatable, and slidably displaceable with respect to the second component 14. The locking and rotation-enabling element 16 enables the first component 12 and the second component 14 to rotate freely with respect to one another when it has been directly or indirectly activated (automatically or manually).
With reference to
When a second fluid container is connected to the second component 14 the locking and rotation-enabling element 16 will be slidably displaced downwards to the position shown in
When the locking and rotation-enabling element 16 is activated, it will be displaced downwards in
In the connector embodiment shown in
It should be noted that the connector 10 according to any of the embodiments of the inventions may comprise gripping means, such as a textured, coated or coarse surface, to make the connector easier to grip. The upper part of the first component 12 may for example comprise gripping means 11 at least in the position shown in
When the locking and rotation-enabling element 16 is activated, it will be displaced downwards in
Further modifications of the invention within the scope of the claims would be apparent to a skilled person. For example, the first component 12 and the second component 14 may be connected between any two vessels between which fluid transfer is desired. The first component 12 may be arranged to be connected to the second component 14 (or a part thereof such as a locking and rotation-enabling element 16) in any suitable manner. There are many ways of designing and arranging a locking and rotation-enabling element 16 to enable free rotation between the first component 12 and the second component 14 of the connector 10 once a second fluid container and/or a medical container has/have been connected to the connector. The design and arrangement shown in the figures merely provides one such example in order to illustrate the principle of the present invention. Furthermore, it should be noted that although it is easier to manufacture a locking and rotation-enabling element 16 that is directly activated by the connection of a second fluid container and/or a first fluid container to the connector 10, the connector may be provided with an additional mechanism to indirectly automatically or manually activate the locking and rotation-enabling element 16.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2011/050633 | 5/19/2011 | WO | 00 | 4/30/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/146012 | 11/24/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1844342 | Berman | Feb 1932 | A |
2010417 | Schwab | Aug 1935 | A |
2697438 | Hickey | Dec 1954 | A |
2717599 | Huber | Sep 1955 | A |
3064651 | Henderson | Nov 1962 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3308822 | De Luca | Mar 1967 | A |
3316908 | Burke | May 1967 | A |
3340671 | Loo | Sep 1967 | A |
3390677 | Razimbaud | Jul 1968 | A |
3448740 | Figge | Jun 1969 | A |
3542240 | Solowey | Nov 1970 | A |
3783895 | Weichselbaum | Jan 1974 | A |
3788320 | Dye | Jan 1974 | A |
3822700 | Pennington | Jul 1974 | A |
3938520 | Scislowicz et al. | Feb 1976 | A |
3976073 | Quick et al. | Aug 1976 | A |
4096860 | McLaughlin | Jun 1978 | A |
4296786 | Brignola | Oct 1981 | A |
D270568 | Armstrong | Sep 1983 | S |
4490139 | Huizenga et al. | Dec 1984 | A |
4516967 | Kopfer | May 1985 | A |
4564054 | Gustavsson | Jan 1986 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4576211 | Valentini et al. | Mar 1986 | A |
4581016 | Gettig | Apr 1986 | A |
4582223 | Kobe | Apr 1986 | A |
4588403 | Weiss et al. | May 1986 | A |
4600040 | Naslund | Jul 1986 | A |
4623343 | Thompson | Nov 1986 | A |
4629455 | Kanno | Dec 1986 | A |
4632673 | Tiitola et al. | Dec 1986 | A |
4636204 | Christopherson et al. | Jan 1987 | A |
4673010 | Prufer et al. | Jun 1987 | A |
4673400 | Martin | Jun 1987 | A |
4673404 | Gustavsson | Jun 1987 | A |
4737150 | Baeumle et al. | Apr 1988 | A |
4752287 | Kurtz et al. | Jun 1988 | A |
4759756 | Forman et al. | Jul 1988 | A |
4768568 | Fournier et al. | Sep 1988 | A |
4792329 | Schreuder | Dec 1988 | A |
4804015 | Albinsson | Feb 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4826492 | Magasi | May 1989 | A |
4834717 | Haber et al. | May 1989 | A |
4842585 | Witt | Jun 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4864717 | Baus, Jr. | Sep 1989 | A |
4872494 | Coccia | Oct 1989 | A |
4878897 | Katzin | Nov 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4898209 | Zbed | Feb 1990 | A |
4909290 | Coccia | Mar 1990 | A |
4932937 | Gustavsson et al. | Jun 1990 | A |
4944736 | Holtz | Jul 1990 | A |
4964855 | Todd et al. | Oct 1990 | A |
4982769 | Fournier et al. | Jan 1991 | A |
4994048 | Metzger | Feb 1991 | A |
4997083 | Loretti et al. | Mar 1991 | A |
5017186 | Arnold | May 1991 | A |
5041105 | D'Alo et al. | Aug 1991 | A |
5061264 | Scarrow | Oct 1991 | A |
5071413 | Utterberg | Dec 1991 | A |
5122116 | Kriesel et al. | Jun 1992 | A |
5122123 | Vaillancourt | Jun 1992 | A |
5137524 | Lynn et al. | Aug 1992 | A |
5158554 | Jepson et al. | Oct 1992 | A |
5176673 | Marrucchi | Jan 1993 | A |
5199947 | Lopez et al. | Apr 1993 | A |
5201725 | Kling | Apr 1993 | A |
5207658 | Rosen et al. | May 1993 | A |
5222486 | Vaughn | Jun 1993 | A |
5232109 | Tirrell et al. | Aug 1993 | A |
5254097 | Schock et al. | Oct 1993 | A |
5279576 | Loo et al. | Jan 1994 | A |
5279583 | Shober, Jr. et al. | Jan 1994 | A |
5279605 | Karrasch et al. | Jan 1994 | A |
5308347 | Sunago et al. | May 1994 | A |
5312366 | Vailancourt | May 1994 | A |
5328480 | Melker et al. | Jul 1994 | A |
5334163 | Sinnett | Aug 1994 | A |
5356406 | Schraga | Oct 1994 | A |
5385545 | Kriesel et al. | Jan 1995 | A |
5385547 | Wong et al. | Jan 1995 | A |
5389085 | D'Alessio et al. | Feb 1995 | A |
5405326 | Haber et al. | Apr 1995 | A |
5445630 | Richmond | Aug 1995 | A |
5447501 | Karlsson et al. | Sep 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5456676 | Nelson et al. | Oct 1995 | A |
5470522 | Thome et al. | Nov 1995 | A |
5478328 | Silverman et al. | Dec 1995 | A |
5478337 | Okamoto et al. | Dec 1995 | A |
5492531 | Post et al. | Feb 1996 | A |
5509911 | Cottone, Sr. et al. | Apr 1996 | A |
5514117 | Lynn | May 1996 | A |
5515871 | Bittner et al. | May 1996 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5593028 | Haber et al. | Jan 1997 | A |
5613954 | Nelson et al. | Mar 1997 | A |
5632735 | Wyatt et al. | May 1997 | A |
5647845 | Haber et al. | Jul 1997 | A |
5685866 | Lopez | Nov 1997 | A |
5752942 | Doyle et al. | May 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5766211 | Wood et al. | Jun 1998 | A |
5782872 | Muller | Jul 1998 | A |
5795336 | Romano et al. | Aug 1998 | A |
5817083 | Shemesh et al. | Oct 1998 | A |
5820609 | Saito | Oct 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5837262 | Golubev et al. | Nov 1998 | A |
5875931 | Py | Mar 1999 | A |
5879345 | Aneas | Mar 1999 | A |
5897526 | Vaillancourt | Apr 1999 | A |
5934510 | Anderson | Aug 1999 | A |
5984899 | D'Alessio et al. | Nov 1999 | A |
6063068 | Fowles et al. | May 2000 | A |
D427308 | Zinger | Jun 2000 | S |
6070623 | Aneas | Jun 2000 | A |
6071270 | Fowles et al. | Jun 2000 | A |
6090091 | Fowles et al. | Jul 2000 | A |
6113068 | Ryan | Sep 2000 | A |
6113583 | Fowles et al. | Sep 2000 | A |
6142446 | Leinsing | Nov 2000 | A |
6146362 | Turnbull et al. | Nov 2000 | A |
6209738 | Jansen et al. | Apr 2001 | B1 |
6221065 | Davis | Apr 2001 | B1 |
6245056 | Walker et al. | Jun 2001 | B1 |
D445501 | Niedospial, Jr. | Jul 2001 | S |
6253804 | Safabash | Jul 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6293595 | Marc et al. | Sep 2001 | B1 |
6387074 | Horppu et al. | May 2002 | B1 |
6453956 | Safabash | Sep 2002 | B2 |
6471674 | Emig et al. | Oct 2002 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6537263 | Aneas | Mar 2003 | B1 |
6571837 | Jansen et al. | Jun 2003 | B2 |
6591876 | Safabash | Jul 2003 | B2 |
6644367 | Savage et al. | Nov 2003 | B1 |
6685692 | Fathallah | Feb 2004 | B2 |
6715520 | Andreasson et al. | Apr 2004 | B2 |
6761286 | Py et al. | Jul 2004 | B2 |
D495416 | Dimeo et al. | Aug 2004 | S |
6786244 | Jones | Sep 2004 | B1 |
D506256 | Miyoshi et al. | Jun 2005 | S |
6960194 | Hommann et al. | Nov 2005 | B2 |
7000806 | Py et al. | Feb 2006 | B2 |
7080672 | Fournie et al. | Jul 2006 | B2 |
7281947 | Pescatore | Oct 2007 | B2 |
7297140 | Orlu et al. | Nov 2007 | B2 |
D570477 | Gallogly et al. | Jun 2008 | S |
D572820 | Gallogly et al. | Jul 2008 | S |
D577438 | Gallogly et al. | Sep 2008 | S |
D577822 | Gallogly et al. | Sep 2008 | S |
D582033 | Baxter et al. | Dec 2008 | S |
D605755 | Baxter et al. | Dec 2009 | S |
7703486 | Costanzo | Apr 2010 | B2 |
D616984 | Gilboa | Jun 2010 | S |
7744581 | Wallen et al. | Jun 2010 | B2 |
7975733 | Horppu et al. | Jul 2011 | B2 |
8287513 | Ellstrom et al. | Oct 2012 | B2 |
8539997 | Driftmeyer et al. | Sep 2013 | B2 |
20010021825 | Becker et al. | Sep 2001 | A1 |
20010025671 | Safabash | Oct 2001 | A1 |
20020002352 | Becker et al. | Jan 2002 | A1 |
20020082586 | Finley et al. | Jun 2002 | A1 |
20020127150 | Sasso | Sep 2002 | A1 |
20020177819 | Barker et al. | Nov 2002 | A1 |
20030010717 | Brugger et al. | Jan 2003 | A1 |
20030070726 | Andreasson et al. | Apr 2003 | A1 |
20030106610 | Roos et al. | Jun 2003 | A1 |
20030107628 | Fowles et al. | Jun 2003 | A1 |
20030199846 | Fowles et al. | Oct 2003 | A1 |
20030233083 | Houwaert et al. | Dec 2003 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040199139 | Fowles et al. | Oct 2004 | A1 |
20040215147 | Wessman et al. | Oct 2004 | A1 |
20050215977 | Uschold | Sep 2005 | A1 |
20060025747 | Sullivan et al. | Feb 2006 | A1 |
20060106360 | Wong | May 2006 | A1 |
20060111667 | Matsuura et al. | May 2006 | A1 |
20060157984 | Rome et al. | Jul 2006 | A1 |
20060186045 | Jensen et al. | Aug 2006 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070026703 | Taga et al. | Feb 2007 | A1 |
20070060841 | Henshaw | Mar 2007 | A1 |
20070088313 | Zinger et al. | Apr 2007 | A1 |
20070106244 | Mosler et al. | May 2007 | A1 |
20070179441 | Chevallier | Aug 2007 | A1 |
20070270759 | Pessin | Nov 2007 | A1 |
20070270778 | Zinger et al. | Nov 2007 | A9 |
20080045919 | Jakob et al. | Feb 2008 | A1 |
20080090445 | Luzbetak et al. | Apr 2008 | A1 |
20080103453 | Liversidge | May 2008 | A1 |
20080103485 | Kruger | May 2008 | A1 |
20080172039 | Raines | Jul 2008 | A1 |
20080223484 | Horppu | Sep 2008 | A1 |
20080277021 | Horppu et al. | Nov 2008 | A1 |
20080287920 | Fangrow et al. | Nov 2008 | A1 |
20080312634 | Helmerson et al. | Dec 2008 | A1 |
20090254042 | Gratwohl et al. | Oct 2009 | A1 |
20090259197 | Christiansen | Oct 2009 | A1 |
20090312717 | Christiansen | Dec 2009 | A1 |
20100137827 | Warren et al. | Jun 2010 | A1 |
20100185159 | Bagwell et al. | Jul 2010 | A1 |
20100204671 | Kraushaar et al. | Aug 2010 | A1 |
20100243099 | Yodfat | Sep 2010 | A1 |
20130304037 | Fangrow et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
200112863 | May 2001 | AU |
101360946 | Aug 2011 | CN |
101489607 | Sep 2012 | CN |
102946938 | Feb 2013 | CN |
102971039 | Mar 2013 | CN |
2005519 | Oct 1971 | DE |
0255025 | Feb 1988 | EP |
0259582 | Mar 1988 | EP |
0311787 | Jun 1992 | EP |
0285424 | Aug 1992 | EP |
0376629 | Mar 1995 | EP |
0803267 | Oct 1997 | EP |
0995453 | Apr 2000 | EP |
1060730 | Dec 2000 | EP |
0819442 | Apr 2003 | EP |
1484073 | Dec 2004 | EP |
1731128 | Dec 2006 | EP |
2757405 | Jun 1998 | FR |
2780878 | Jan 2000 | FR |
1579065 | Nov 1980 | GB |
4912690 | Feb 1974 | JP |
288664 | Jul 1990 | JP |
3030963 | Nov 1996 | JP |
2000167022 | Jun 2000 | JP |
2001505092 | Apr 2001 | JP |
2001198226 | Jul 2001 | JP |
2001293085 | Oct 2001 | JP |
200732673 | Feb 2007 | JP |
2009148561 | Jul 2009 | JP |
2009543630 | Dec 2009 | JP |
2009543631 | Dec 2009 | JP |
482670 | Apr 2002 | TW |
8404672 | Dec 1984 | WO |
8404673 | Dec 1984 | WO |
9003536 | Apr 1990 | WO |
9819724 | May 1998 | WO |
9927886 | Jun 1999 | WO |
9962578 | Dec 1999 | WO |
0005292 | Feb 2000 | WO |
0035517 | Jun 2000 | WO |
0053966 | Sep 2000 | WO |
0180928 | Nov 2001 | WO |
0202048 | Jan 2002 | WO |
0211794 | Feb 2002 | WO |
02064077 | Aug 2002 | WO |
02076540 | Oct 2002 | WO |
2005074860 | Aug 2005 | WO |
2006082350 | Aug 2006 | WO |
2006083333 | Aug 2006 | WO |
2006138184 | Dec 2006 | WO |
2008009646 | Jan 2008 | WO |
2008028305 | Mar 2008 | WO |
2008115102 | Sep 2008 | WO |
2008144447 | Nov 2008 | WO |
2009010998 | Jan 2009 | WO |
2010007422 | Jan 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20130218120 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/SE2010/050555 | May 2010 | US |
Child | 13698322 | US | |
Parent | 12784985 | May 2010 | US |
Child | PCT/SE2010/050555 | US |