The invention relates to connectors that facilitate electrical connections between electronic devices and auxiliary devices.
Audio connectors for electronic devices used in military or other government sectors are typically designed with five or six electrical contact pins and must also meet the MIL-DTL-55116 specifications as designated by the U.S. government. Audio connectors include receptacle connectors and plug connectors. The audio receptacle connectors are connected on an outer front or other surface of the electronic device (e.g., a military radio) and connect with corresponding plug connectors that connect (e.g., via a cable) to an auxiliary device such as a phone handset or headset to facilitate the transfer of audio signals between the two devices.
A six pin audio receptacle connector that meets MIL-DTL-55116 specifications is depicted in
The outer shell 4 of the connector 2 includes a plurality of J-shaped slots or J-slots 10 which are aligned to engage with corresponding bayonet pins 48 disposed on an interior surface portion of the shell 42 of a corresponding plug connector 40 as depicted in
It is desirable to provide a connector meeting MIL-DTL-55116 specifications and which is further configured to transfer additional signals or provide further functionality in addition to the transfer of audio signals between electronic devices.
In accordance with the present invention, a connector is provided that facilitates an electrical connection between an electronic device and another device.
In one embodiment, the connector comprises an outer shell including a front surface that terminates at a front side of the connector, the front side of the connector being configured to mate with another connector, an inner core at least partially disposed within the outer shell and including a front surface that is recessed within the outer shell, and a plurality of electrical connecting elements at least partially disposed within the inner core and extending from the front surface of the inner core. The plurality of electrical connecting elements includes a first set of electrical connecting elements and a second set of at least one electrical connecting element, and the first set of electrical connecting elements comprises five connecting elements arranged in a pentagon pattern where each connecting element is located at a point defined by two intersecting lines of the pentagon pattern.
In accordance with another embodiment of the invention, a method of connecting a first connector with a second connector is provided, where the first connector comprises an outer shell including a front surface that terminates at a front side of the first connector, an inner core at least partially disposed within the outer shell and including a front surface that is recessed within the outer shell, and a plurality of electrical contact pins at least partially disposed within the inner core and extending from the front surface of the inner core, the plurality of electrical contact pins including a first set of contact pins and a second set of at least one contact pin, the first set of contact pins comprising five contact pins arranged in a pentagon pattern where each contact pin is located at a point defined by two intersecting lines of the pentagon pattern, and the second connector comprises an outer shell including a front surface that terminates at a front side of the second connector, an inner core at least partially disposed within the outer shell and including a front surface that is recessed within the outer shell, and a plurality of electrical convex bump contacts at least partially extending from the front surface of the inner core, the plurality of electrical convex bump contacts including a first set of bump contacts, the first set of bump contacts comprising five bump contacts arranged in a pentagon pattern where each bump contact is located at a point defined by two intersecting lines of the pentagon pattern. The method comprises inserting the front side of the outer shell of the first connector into the outer shell of the second connector, aligning the second connector with the first connector such that the pentagon pattern of bump contacts of the second connector is offset from the pentagon pattern of contact pins of the first connector, and rotating the second connector in relation to the first connector to mate the connectors together and engage each contact pin of the first connector with a corresponding bump contact of the second connector. Each contact pin of the first connector engages and achieves an electrical contact with only the corresponding bump contact and no other bump contact of the second connector during rotational movement of the second connector to achieve mating between the first and second connectors.
The connector of the present invention includes a number of useful features including, without limitation, additional functionalities in relation to conventional audio connectors meeting MIL-DTL-55116 specifications while also enabling connections with standard five or six pin audio plug connectors.
The above and still further features and advantages of the present invention will become apparent upon consideration of the following detailed description of a specific embodiment thereof, particularly when taken in conjunction with the accompanying drawings wherein like reference numerals in the various figures are utilized to designate like components.
In accordance with the present invention, electrical connectors are provided that facilitate electrical connections between an electronic device and one or more different auxiliary devices that connect with the electronic device. An electrical receptacle connector is connected with the electrical device to facilitate connection with a corresponding plug connector connected with a cable or other device so as to permit exchange of analog and/or digital signals (e.g., audio or radio signals, communication and/or control signals) and/or the transfer of electrical power between the electronic device and the auxiliary device connected to the electronic device.
The connectors of the present invention are particularly suited for use as modified connectors of the conventional five or six pin audio connector configured to meet the MIL-DTL-55116 specifications as designated by the U.S. government. The connectors of the present invention include one or more additional electrical contacts (e.g., additional contact pins and/or contact bumps) to facilitate the transfer of additional signals using the connectors.
In particular, the connectors of the present invention can have a configuration that is a modification of a five or six pin audio receptacle connector such as previously described and depicted in
The connectors of the present invention are suitable for use with a number of different electronic devices, in particular military radios and other military electronic equipment that require audio connectors meeting MIL-DTL-55116 specifications.
Example embodiments of a receptacle connector and corresponding plug connector of the present invention that include an eleven electrical contact configuration are depicted in
The outer shell can be constructed of any suitably rigid materials, such as stainless steel, while the inner core is preferably constructed of a suitable insulator polymer or plastic material such as a molded resin (e.g., polybutylene terephthalate). The electrical contact pins are constructed of a suitable electrically conductive material such as copper or a copper alloy which may be plated with any one or more of gold, tin or nickel.
The electrical contact pins of the receptacle connector 102 include a first set of contact pins and a second set of contact pins. The first set of contact pins includes six contact pins 107, 108 that are aligned in a manner similar to the embodiment depicted in
The second set of contact pins includes five pins 109 that are arranged in the core 106 such that each additional pin 109 is aligned between two contact pins 108 but at a greater radial distance from the central pin 107 and also the center of the inner core in relation to any of contact pins 108. The five contact pins 109 of the second set are also aligned in a geometric pattern of a pentagon, where the five contact pins are located at points at which imaginary lines forming the pentagon pattern intersect (see
Some or all of the contact pins 107, 108, 109 have a spring loaded configuration in which the pin is spring biased outward from the front side 111 of the inner core 106 but is movable a predetermined distance into the inner core (i.e., movable in a longitudinal direction of the inner core), for example, upon engagement with a bump contact of a corresponding plug connector. For example, each of contact pins 107, 108 of the first set can be spring biased in this manner, while contact pins 109 of the second set are fixed and non-movable with respect to the inner core 106. Alternatively, all of the contact pins 107, 108, 109 can be spring biased to move into or out of the inner core 106. Any other combination of spring loaded and fixed contact pins can also be provided for the receptacle connector. The spring mechanism for each pin is disposed within the core 106 and can be the same or substantially similar to a spring loaded contact pin for audio connectors meeting MIL-DTL-55116 specifications.
Referring to
A plurality (e.g., three) J-shaped grooves or J-slots 110 are disposed along an outer periphery and near the front side of the outer shell 104 at circumferentially spaced locations from each other. Each J-shaped slot 110 includes a first portion extending along the outer periphery from the front side and in a longitudinal direction of the outer shell 104 to a second portion that extends along the outer periphery of the outer shell in a direction transverse and at a suitable angle (e.g., about 90°) to the first portion. The J-slots 110 are suitably aligned along the outer shell 104 and suitably dimensioned to engage with corresponding bayonet pins disposed on a plug connector that connects with connector 102 (as described below).
The outer shell 104 of receptacle connector 102 has a generally cylindrical configuration with a stepped outer contour and increasing external dimensions in a direction from the front side to the rear side or base of the connector (as shown in
A plug connector 140 which mates or connects with connector 102 is depicted in
The inner core 144 includes eleven convex electrical bump contacts 147, 148, 149 that are aligned along the front side of the inner core in a geometric configuration that is substantially similar to the alignment of contact pins 107, 108, 109 along the front side 111 of the inner core 106 of receptacle connector 102. In particular, a first set of bump contacts includes five bump contacts 148 that are aligned in a geometric pattern of a pentagon, where the five bump contacts are located at points at which imaginary lines forming the pentagon pattern intersect, with a sixth bump contact 147 of the first set being disposed at a central location within the pentagon pattern formed by the five bump contacts 148 (see
The electrical bump contacts are constructed of a suitable electrically conductive material such as copper or a copper alloy which may be plated with any one or more of gold, tin or nickel. The bump contacts 147, 148, 149 of the plug connector 140 are coupled with electrical connections that extend through the inner core to a rear side of the plug connector to facilitate connection with electrical contacts of an auxiliary device.
Like the contact pins of the receptacle connector, some or all of the bump contacts can also have a spring loaded configuration in which the bump contact is spring biased outward from the front side 145 of the inner core 144 but is movable a predetermined distance into the inner core (i.e., movable in a longitudinal direction of the inner core). The bump contacts of the plug connector can also have other configurations that facilitate engagement and making electrical contact with the contact pins of the receptacle connector.
The outer shell 142 of the plug connector 140 includes a plurality of bayonet pins 158 (e.g., three bayonet pins) disposed along an internal periphery of the outer shell between the front side 145 of the inner core 144 and the front end of the outer shell. The bayonet pins 158 are further spaced from each other and suitably aligned and dimensioned to engage with the J-slots disposed along the outer shell 104 of receptacle connector 102 when the plug connector 140 mates with the receptacle connector 102.
The outer shell 142 of the plug connector 140 has a generally cylindrical configuration and includes an alignment indicator in the form of a raised portion 150 with a notch 153 extending along the raised portion, where the raised portion 150 is disposed along an outer peripheral portion of the outer shell. It is noted that an alignment indicator can also be provided without a raised portion (e.g., providing a mark or other indicia to serve as the alignment indicator). The outer shell 104 of connector 102 can also include an alignment indicator along its outer periphery (e.g., in the form of notch 130 and/or a colored line as shown in
Connection of the receptacle connector with the plug connector is achieved by fitting outer shell 142 over outer shell 104 and aligning the bayonet pins 158 of the plug connector 140 with the corresponding J-slots 110 of the receptacle connector 102 (which can be easily enabled using the alignment indicators 153 and 130 of the connectors). The plug connector 140 is pushed toward receptacle connector 102 and then rotated slightly (e.g., in a clockwise direction) so that the bayonet pins 158 engage with and are seated in a locking relationship with J-slots 110.
When the plug connector 140 is aligned to connect with the receptacle connector 102 at the point at which the bayonet pins 158 initiate entry into J-slots 110, the geometric configuration of bump contacts 147, 148, 149 is offset by an angle of rotation (e.g., about 13°) from the geometric configuration of contact pins 107, 108, 109. During rotation of the bayonet pins in the J-slots, the bump contacts rotate with plug connector 140 so as to eventually make sliding contact with their corresponding contact pins as the bayonet pins become locked within the J-slots. As noted above, when the receptacle connector 102 includes spring loaded contact pins, these spring loaded contact pins are forced inward slightly into inner core 106 as their corresponding bump contacts slide into engagement with these contact pins. When the bayonet pins are locked within the J-slots and receptacle connector 102 is mated with plug connector 140, as shown in
The design of the connectors of the present invention facilitates the addition of a plurality of pins/bump contacts to enhance the functionality of the audio connectors while ensuring that no electrical shorting of any pins occurs during the mating connection of the connectors. In particular, the location, orientation and cross-sectional dimensions of the pins/bump contacts are suitably selected such that no contact (i.e., contact pin of the connector or bump contact of the plug connector) engages another contact apart from its corresponding contact during rotation of the plug connector with the receptacle connector in the mating connection. Thus, in the embodiment described above and depicted in
In addition, the receptacle connector with additional contact pins (e.g., nine pins, ten pins, eleven pins, etc.) is also compatible with five or six bump contact audio plug connectors that meet MIL-DTL-55116 specifications, where a mating connection between the receptacle connector of the invention and an audio plug connector meeting MIL-DTL-55116 specifications can be achieved without any electrical shorting between contact pins and bump contacts (i.e., no contact between a bump contact and any other contact pin other than the corresponding contact pin to which the bump contact is designed to engage with). Thus, the receptacle connector 102 of
The plug connector of the invention (e.g., the embodiment depicted in
The design of the connectors of the present invention that allow the addition of electrical contacts without electrical shorting is achieved in a number of different ways including, without limitation, aligning the contacts in suitable positions (such as the locations for contact pins/bump contacts described for the embodiments of
Alternatively, the connectors of the present invention can include electrical contacts having different diameters. For example, in an eleven pin receptacle connector, the first set of six pins (e.g., pins 107 and 108 as shown in
In addition, the standard five and six pin audio connectors meeting MIL-DTL-55116 specifications are designed such that the plug connector rotates about 18° with respect to the receptacle connector to achieve a mating connection. The connectors of the present invention are designed such that the plug connector rotates less than 18° (for example, the plug connector rotates about 13°) with respect to the receptacle connector to achieve a mating connection.
Other geometric electrical contact configurations for the connectors are also possible, such as the contact configurations for connectors as shown in
The plug connector of
In this embodiment, the electrical bump contacts are positioned in the same geometric pattern as the previously described plug connector. However, the bump contacts are positioned such that, when the alignment indicator 150/153 of plug connector 140-2 is aligned with the alignment indicator 130 of connector 102, the bump contacts and contact pins are aligned to engage with each other upon mating of the two connectors. Thus, there is no rotation of the inner core and bump contacts of the plug connector 140-2 with respect to the inner core and contact pins of the receptacle connector 102 during mating. Instead, the nut connector 160 of plug connector 140-2 is aligned such that bayonet pins 158 align with the J-slots 110, and the nut 160 is then rotated during mating to engage the bayonet pins within the J-slots and lock the connectors together. The receptacle connector 102 can also be modified to include a notch or groove on an inner peripheral portion of the outer shell 104 that serves as a keyway for a corresponding protrusion on the inner core of the plug connector such that, during mating of the connectors, the key of the plug connector engages with the keyway of the connector which in turn ensures appropriate alignment between contact pins and bump contacts.
The connectors of the present invention are suitable for use as audio connectors for a variety of devices meeting MIL-DTL-55116 specifications (e.g., U.S. military or other U.S. government electronic devices), where the connectors also facilitate the transfer of other signals in addition to audio signals from the device.
An example embodiment in which the connectors of the present invention can be used are as audio connectors for communication systems of the U.S. military which employ Single Channel Ground and Airborne Radio System or SINCGARS radio units such as an RT-1523F SINCGARS radio unit as shown in
In addition, the receptacle connector 102 can be connected with another plug connector, such as the types depicted in
Thus, the connectors of the present invention facilitate a wide range of connections between an electronic unit and other electronic devices configured for connection and interaction with the electronic unit. The number, pattern and sizes of electrical connecting elements (e.g., contact pins and bump contacts) on a receptacle connector or plug connector maximizes the number of electrical connecting elements that can be disposed within a given area of a connector and further expands the range of applications in which the connector can be used for transmitting analog signals (e.g., radio and/or audio signals), digital signals (e.g., control and/or other data signals), and/or providing electrical power from one unit connected to another unit. Further, the number, pattern and sizes of the electrical connecting elements on a receptacle connector and corresponding plug connector are suitably configured to permit rotation of the plug connector with respect to the receptacle connector during mating of the two connectors while preventing contact and shorting between electrical contacts during the mating process.
Having described exemplary embodiments of connectors to connect electronic devices, variations and changes will be suggested to those skilled in the art in view of the teachings set forth herein. It is therefore to be understood that all such variations, modifications and changes are believed to fall within the scope of the present invention as defined by the appended claims.