This application claims the benefit of United Kingdom Patent Application Nos. 0220704.1, filed on Sep. 6, 2002; 0226895.1, filed on Nov. 19, 2002; 0304186.0, filed on Feb. 25, 2003; and 0312157.1, filed on May 28, 2003, which hereby is incorporated by reference in its entirety.
The present invention relates to improvements in roof structures and components, especially for conservatories. Other aspects of the invention are concerned with structural features of conservatories.
A first aspect of this invention relates to the construction of conservatories of the type in which glazed window frames are provided between an eaves beam and a sill, the eaves beam and the sill being in the form of extruded profiles, e.g. of a metal such as aluminium or aluminium alloy or of a plastics material.
One of the problems associated with the fabrication of such conservatories lies in the cutting of the extruded profiles to form comer joints. This is generally done by mitring of adjacent sections of the extruded profile. To ensure accuracy, the cutting is often done off-site (e.g. at factory premises) and the previously mitred profiles are then transported to the erection site. Another problem is the variation in the angles that may be required between adjacent eaves beam sections and/or sill sections.
A second aspect of the present invention relates to conservatory roof constructions and is particularly concerned with the interconnection of frame components in angular relationship with one another.
Interconnection arrangements for this purpose are already known—see for example GB Patent No. 2323107 (Ultraframe (UK) Limited) and European Patent Application No. 945561 (Rickmans Limited), the disclosures of which provide background information relating to the types of conservatory roof constructions that the present invention is concerned with.
The present invention seeks to provide an improved arrangement for interconnection of a jack rafter to a main beam of a roof.
The first aspect of the present invention seeks to provide a conservatory design which eliminates the need for the production of mitred joints between sections of the eaves beam profiles and also affords significant flexibility in terms of the angles at which adjacent eaves beam sections may be interconnected.
According to first aspect of the present invention there is provided a conservatory framework comprising an eaves structure from which the roof is supported, at least one corner and/or in-line joint in the eaves structure being formed by a two part connector which interconnects adjacent sections of the eaves structure, the two parts being angularly adjustable relative to one another about an axis which is substantially perpendicular to the longitudinal axis or axes of the sections.
In this way, the need to mitre the profiled sections is eliminated. Instead, each profiled section may be cut substantially at right angles relative to the length of the section and the connector parts may be adjusted to accommodate the angle at which the profile sections are to be interconnected.
The framework structure typically includes a sill for mounting one or more window frames located below the eaves structure.
Each connector part may be arranged to interfit with each profiled section in such a way that the two components (connector part and section) are telescopically interconnected, e.g. so that one component inserts into the other. The connector parts may all be of substantially the same shape and configuration.
Each connector part may be provided with at least one projection arranged to be located in superimposed relation with a projection or projections of a like connector. The projection may be a lug. Each connector part may be provided with at least one lug arranged to be located in superimposed relation with a lug or lugs of the second connector. Each connector part may have at least two lugs and the connector parts may be arranged with their projections in interdigitated relation. The lugs may be apertured so that the connector parts can be coupled together by a pin or rod passing through aligned apertures in the lugs of adjacent connector parts.
The projections associated with each connector part may be offset in such a way that two substantially identical connector parts can be linked with one part in inverted relation with the other so that the main bodies of the two parts can be in alignment while the lugs are in superimposed relation.
One feature of the invention resides in the use of the connectors to locate load-transmitting members which serve to transmit the weight of the roof in such a way that the window frames in use are largely relieved from carrying the weight of the roof.
Another feature of the invention resides in the use of the eaves beam connectors to mount the glazing bars of the roof, e.g. for tilting adjustment according to the desired pitch of the roof.
The connector parts may locate a male or female component of a coupling for tiltably connecting a glazing bar to the eaves structure. The load-transmitting member and/or the male or female coupling component is may be located by said projections. The component is may be in the form of a channel for tiltably receiving a male part associated with a glazing bar.
The invention also resides in a connector assembly comprising first and second connector parts for telescopic connection with eaves beam sections of a roof, the connectors parts having interdigitating projections with aligned apertures receiving a pin or rod about which the connectors can be angularly adjusted, the arrangement being such that two substantially identical connector parts can be linked with one part in inverted relation with the other so that the main bodies of the two parts are in alignment while the projections are in interdigitated relation.
The pin or rod may be provided at its upper end with one component of a male-female coupling. The lower half of the pin or rod may be provided with means for transmitting load.
According to a second aspect of the present invention there is provided a framework comprising first and second elongate frame members which are coupled together in angular relation relative to one another by a coupling arrangement, the coupling arrangement comprising a plate with an upstanding pivot post, channel means associated with and extending longitudinally of the first frame member for receiving the plate and maintaining it captive against separation from the first member in a direction generally transverse to its elongation, and an arm adapted to be coupled to the pivot post and to the second frame member.
A coupling arrangement suitable for use in the above defined framework may have one or more of the following features either alone or in any combination where the context admits:
The channel means may have an opening from which the pivot post projects in a direction generally transverse to the elongation of the first member. At least one of the sides bounding the opening of the channel means may be provided with a groove for reception of the plate. The plate may be introduced into the channel means from one end of the first member and then adjusted by sliding it along the channel means to the desired location at which the second frame member is to be coupled to the first.
Alternatively, the plate may be so dimensioned that, in one orientation, it can be passed through the opening of the channel means and then turned about the axis of the pivot post to a second orientation in which it bridges the channel means and is trapped against withdrawal through the opening (unless returned to said one orientation). This has the advantage that the pivot post can be immediately located at any desired position without having to insert the plate at one end of the first frame member and then slide it lengthwise along the channel means.
The plate may co-operate with the channel means in such a way that, when turned from said one orientation, resistance to turning in the opposite direction is developed. For instance, the co-operation between the channel means and the plate may involve a wedging or binding action or an interference fit. For example, sides of the plate may be shaped or provided with formations so that, as the sides ride over the channel means during rotation from said one orientation to the trapped orientation, such shaping and/or formations engage with the channel means and a wedging, binding or other mechanism is obtained which resists turning of the plate in the reverse direction.
The plate may be provided with a restraining means such that when the plate is inserted into the channel and turned to the trapped orientation, movement of the plate in a vertical direction (i.e. along the axis of the pivot post) causes the restraining means to closely fit with the sides of the opening of the channel means, thereby preventing any further turning of the plate and restraining the plate in the desired position.
The restraining means may comprise at least one projection. The plate may be provided with a number of projections positioned in angularly spaced relation around the post so as to co-operate with at least one of the sides of the channel means to effect restraint. The projection may be a raised platform, at least one ridge, at least one stud, or combinations thereof.
The platform may have dimensions such that at least one of the sides of the platform closely engages with at least one of the sides of the opening of the channel means, thereby restraining the plate in the desired position. The platform may have non-circular dimensions, for example, it may be elliptical, rectangular or square. The pivot post may be mounted on the raised platform.
The at least one ridge may be positioned on the plate so as to closely engage with at least one of the sides of the channel means. The ridge may have non-circular dimensions, for example, it may be oval, rectangular or square.
The coupling means may include an elongated slot means in at least one of the arm and the second member and fastening means insertable through the slot means. The at least one slot means may be of curved configuration. The arm may be coupled in face to face relation with a vertically disposed flat wall of the jack rafter.
The frame members may be extrusions, e.g. of a metal such as aluminium or an alloy thereof or a plastics material.
The first frame member may be a hip frame member of a conservatory roof and the second frame member may be a jack rafter extending between the hip frame member and the eaves beam of the roof.
The framework may include means for coupling together the arm and the second frame member in such a way as to allow upward and downward tilting of the second member relative to the first member.
A coupling arrangement according to said second aspect of the invention, optionally including any one or more of features a)–p) is considered to constitute an invention in its own right but may, if desired, be used in combination with a framework according to said first aspect of the invention.
Another aspect of the present invention seeks to provide an improved panel end fitting for accommodating roofing panels of different thicknesses, the roofing panels, of polycarbonate, polyvinyl chloride or glass for example, being supported by glazing bars.
According to this aspect of the present invention there is provided a roofing structure comprising at least one roofing panel supported by glazing bars and an end fitting including a first portion underlying one end of the roofing panel and a second portion which overlies the panel, the first and second portions being separate from one another and being connectable together to allow panels of different thicknesses to be accommodated between them.
According to this aspect of the present invention there is provided an end fitting for use with a roofing panel supported by glazing bars, the fitting including a first portion being adapted in use to underlie one end of a roofing panel and a second portion which is adapted in use to overly the panel, the first and second portions being separate from one another and being connectable together to allow panels of different thicknesses to be accommodated between them.
The first and second portions may be connectable together via interfitting male and female formations which allow adjustment of the first and second portions to accommodate panels of different thicknesses. One of the first and second portions may be provided with an end stop for co-operation with the roofing panel to prevent the panel from sliding downwardly. The end stop may be constituted by one of the formations for connecting together the first and second portions.
The male and female formations may be connectable in such a way that they are rendered captive against withdrawal of one from the other once properly connected with the roofing panel located there between. In this way, the male and female formations may interconnect with each other in such a way as to resist subsequent separation of the second portion from the first portion so as to prevent a would-be intruder from gaining access to the inside of the conservatory by lifting roof panel and entering through the roof.
For the avoidance of doubt, the phrase “captive against withdrawal” is not to be interpreted in a strict literal sense irrespective of the force exerted in attempting to withdraw the male formation; rather it is to be interpreted as meaning that withdrawal is not possible without damaging one or other formation or both, e.g. to the extent that it is no longer possible to reassemble them together with the male formation held captive within the female formation.
The male and female formations may interconnect with a latching or ratchet-type action. In one embodiment of the invention, the male formation comprises a pair of divergent legs for reception within the female formation, the legs co-operating in ratchet-like fashion with the female formation.
To afford additional security, wedge means may be insertable into the space between the legs to prevent inward flexing of the legs and hence withdrawal from the female formation. The end fitting may be arranged to be tiltably connected to a support structure of the roof. The support structure may be an eaves structure or it may comprise a central support associated with a valley region of the roof.
A gasket or weatherstrip may be carried by the fitting to co-operate with the underside of the roofing panel. The gasket or weatherstrip may be located inwardly of the end stop. The fitting may be provided with a water drainage channel located outwardly of the gasket or weatherstrip.
The first portion may be connectable to the support structure in such a way that it cannot be withdrawn in a direction perpendicular to the longitudinal axis of the support structure. For example, the first portion may be provided with an enlarged head which is slidably received within a longitudinally extending channel associated with the support structure but cannot be withdrawn through the open mouth of the channel.
In another expression of this aspect of the invention, the first portion may be connectable by push-fit registry of co-operating locating portions associated with the first portion and the support structure, e.g. as disclosed in published UK Patent Application No. 2378207 and pending UK Patent Application No. 0130631.5, the disclosures of which are incorporated herein by this reference.
Thus, one locating portion may include a pair of oppositely directed wing portions which can deflect towards one another to allow insertion through an entry opening of the other locating portion but which restore once inserted and block withdrawal of said one locating portion. The blocking action may be implemented by co-operation between the free ends of the wing portions and the margins of the entry opening, e.g. in such a way as to prevent deflection of the wing portions towards each other.
Said one locating portion may be provided on the first portion of the end fitting while the other locating portion may provided on the support structure, or vice versa. The locating portions may be of generally part-circular configuration, one male and the other female, and the arrangement may be such that the male part forms a knuckle fitting within the female part which may be a socket associated with the eaves structure. The end fitting may be of a plastics material or it may of a metal or metal alloy particularly one which may be extruded, e.g. aluminium.
The top may be sealed by means of a sealing arrangement, for example, a seal may exist in the form of a co-extruded gasket such as that disclosed in GB2283997.
The various aspects of the invention will now be described by way of example only with reference to the accompanying drawings, in which:
Framework Connectors
Referring firstly to
In the embodiment illustrated in
Currently the practice is to produce the joints by mitring the adjacent sections of the extruded profiles forming the eaves beam and the sill, which is time consuming and requires a significant degree of accuracy in cutting if well-fitting joints are to be achieved. For this reason, the sections of the extruded profiles are usually cut to size and mitred off-site and then delivered to the construction site. Also, in current designs, the weight of the roof structure is largely transmitted from the eaves beam to the sill and hence to the load-bearing wall 100 through the glazed window frames which are often fabricated from extruded PVC profiles. A feature of the present invention allows for elimination of mitring of the adjacent sections of the extruded profiles by employing separate connectors which provide the corner joints or in-line joints of the eaves beam and “squaring off” the ends of the extruded profiles by cutting them substantially at right angles to the length of the profile. Another feature of the present invention allows significant latitude in the angles at the joints between the eaves beam sections.
The connectors between adjacent sections of the eaves beam may be designed for the purpose of controlling the load-bearing characteristics of the conservatory framework and, in particular, to ensure that the window frames are largely relieved of load-bearing duties so far as the weight of the roof structure is concerned. In particular, the connectors may be designed to co-operate with vertical load-transmitting members 164 which transmit the weight of the roof structure to the load-bearing wall 100 thereby substantially by-passing the window frames. These load-transmitting members 164 are primarily located at the corners of the conservatory framework but, particularly where the framework involves relatively long spans of the eaves beam with the attendant possibility of “sagging”, they may also be located intermediate the corners by inclusion of the in-line connectors pairs in the eaves beam structure. In a modification, the load-transmitting members 164 may be arranged to transfer the weight of the roof directly to ground level rather than to the wall 100.
One example of a corner connector assembly for the joints E1 in the eaves beam structure is shown in
The lugs 122 are arranged in offset relation relative to the opposite faces 126, 128 of the body 120 so that the lugs 122 on one can be meshed or interdigitated with those on the other connector when the two connectors are brought together with one in inverted relation relative to the other as shown in
The device 132 includes one half of a male-female coupling for connecting the lower end of a glazing bar 110 to the eaves beam. In the illustrated embodiment, the device 132 is provided with the female part of the coupling and is in the form of a channel 134 which can be oriented, e.g. by rotation of the rod 130, so that it is substantially perpendicular to the bisector 136 of the angle included between the connectors 118 (see
The device 132 may also serve to transmit load to a load-transmitting member 164 which in turn may transmit the load exerted by the roof to the sill of the structure. The lower end of the rod 130 is arranged to be engaged with the upper end of the member 164 in order that load can be transmitted from the roof to the member 164. In
Although in the illustrated embodiment, the device for coupling the glazing bar to the connectors allows the bar to be tiltably adjusted, we do not exclude the possibility that it may be such that the bar is mounted at a fixed angle of tilt.
Coupling Arrangements
Referring to
Each component 10, 12 is formed as an extrusion and is of inverted T-shape comprising a central stem 14 with laterally projecting arms 16 on each side for use in supporting glazing or roofing sheets between the components. The upper ends of the stems 14 are adapted for use with cappings (not shown) which trap and effect sealing engagement with the sheets. In the case of the hip bar, the arms 16 include a base 18 and an upwardly directed wall 20 thereby forming a channel 22 on each side of the stem 14, the channel extending lengthwise of the extrusion and having an upwardly directed opening 24.
As shown in
In the illustrated embodiments, the arm 30 is provided with circular holes for reception of the bolts or other fasteners. However, in practice, to allow the pitch of the jack rafter to be adjusted according to requirements, the holes in the arm and also holes in the central stem of the 14 the jack rafter may be elongated and possibly curved so that the jack rafter 12 can be tilted upwardly or downwardly to the appropriate pitch while the bolts are in place and then retained at the desired angle of pitch by operating the fastener(s) to firmly secure the arm to the stem 14. To this end, the elongated holes or slots in the arm may be generally transverse relative to those in the stem 20 of the jack rafter.
The pivot post 26 is located on the hip bar 10 by the plate 28 which is trapped in the channel 22. In the illustrated embodiments, the plate is of generally rectangular shape with one pair of sides longer than the other, the short dimension being such that the plate 28 can be introduced into the channel 22 through the opening 24. After registering the plate 28 within the channel 22, it can then be turned through about 90 degrees so that its long dimension more than bridges the opening 24 thereby rendering the plate 28 captive to the channel 22. In the first illustrated embodiment (
When the plate 28 is received in this way within the channel 22, the pivot post 26 projects generally upwardly in a direction generally transverse to the elongation of the hip bar 10. To facilitate turning of the plate 28, its short sides are contoured in the manner shown in
The arm 30 is formed with a generally cylindrical sleeve 36 at one end for reception of the post 26. Means is provided for preventing lifting of the arm from the post, e.g. the post may be formed with a screw thread and a nut 38 may be provided for engagement with the thread to retain the arm 30 coupled to the post 26. The nut or other means may be used to fix or clamp the arm 30 in a desired angular relation when the appropriate positioning of the jack rafter has been obtained. The sense of the thread on the post may be such that tightening of the nut takes place in the same direction as turning of the plate 28 when moving it to the trapped position.
In order to reduce the relatively insignificant risk of the plate 28 becoming dislodged from the channel 22 as a result of somehow turning back in the reverse direction, it may be formed in such a way that a binding or wedging action is obtained during turning of the plate to the trapped orientation (
In the illustrated embodiments, the plate 28 is dimensioned so that it can be inserted through the openings 24 and then turned to render it captive to the hip bar. In a modification of the first embodiment, the plate may be insertable into the grooves 34 from one end of the hip bar and then adjusted to the desired position by sliding.
In the second illustrated embodiment (
Although the second embodiment is illustrated with a platform 29 located on the plate 28, it will be understood that the restraining function of the platform 29 may be implemented in other ways. For example, there may be one or more projections provided on the same side of the plate as the post and so arranged that free entry of the coupling arrangement into the channel can be effected in one orientation of the coupling arrangement and the projection(s) block rotation of the plate 28 once the latter has been rotated into the captive position and the arrangement has been raised to register the projection(s) with the channel mouth.
Panel End Fittings
Referring to
Associated with the lower or forward ends of the panels 410 is a 2-part end fitting 414 which may be manufactured as a plastics extrusion or a metal extrusion such as an aluminium or aluminium alloy extrusion. Each end fitting 414 extends between a pair of adjacent, spaced apart glazing bars and has at its forward end an upwardly projecting end stop 416 for co-operation with the associated panel end and also with a separate panel end cover 418 of the fitting. The cover and the end stop are substantially co-extensive with the fitting 414 and extend between the adjacent glazing bars.
The fitting 414 includes a base 420 which extends beneath and in spaced relation with the underside of the panel 410. At or adjacent its rearward edge, the fitting is provided with a downwardly directed projection 422 having a formation 424 for engagement with the eaves structure 412 in order to locate the end fitting. The nature of the engagement may be such that the fitting is able to tilt about the location of engagement in accordance with the intended pitch of the roof. In the illustrated embodiment, the engagement between the fitting 414 and the eaves structure 412 comprises interengageable male and female formations and to this end the formation 424 comprises an enlarged head which is trapped within a channel 428 which may be integral with the eaves structure 412. The head 424 and the channel 428 may be substantially co-extensive with the fitting in the lengthwise direction of the latter. The arrangement is such that the base of the fitting is assembled to the eaves structure by insertion of the formation 424 into the channel 428 at one end of the eaves structure and sliding the fitting lengthwise to the desired position. In this way, the fitting 414 is rendered captive to the eaves structure.
In a modification, instead of endwise/sliding engagement as shown in
The end stop 416 and the end cover 418 are arranged to be coupled together in such a way that the top wall 430 of the end cover can be brought into close overlying relation, e.g. contact with, the upper surface of the panel 410, while accommodating roof panels of different thicknesses, e.g. 25 mm and 35 mm. The cover 418 also includes a front wall which overlies the end of the roofing panel 410 and the end stop 416 so as to conceal them from view.
The coupling between the end stop 416 and the cover 418 may be such that, once engaged together, the end cover 418 is captive with the end stop and cannot be separated other than by use of force which results in breakage of one or both of the components. In the illustrated embodiment, the panel end cover 418 and the end stop 416 are provided with male and female formations 432, 434 which interfit with a latching or ratchet-type action. Thus, as shown, the male formation 432 may comprise a pair of divergent legs having lateral projections 436 which insert into a channel 434 having sawtooth-like projections 438 to provide a ratchet-type action which strongly resists withdrawal of the end cover 418 from the end stop 416 once the two components have been engaged with each other.
It will be understood that the formations 432, 434 will be designed to allow the extent of insertion of the legs 432 into the channel 432 to such an extent as to accommodate both 35 mm and 25 mm panel thicknesses. To increase the resistance to withdrawal of the end cover 418 from the end stop 416, a wedge may be provided for insertion into the channel 432 so as to be received between the legs 432 thereby blocking inward flexing of the same and preventing return movement of the legs out of the channel 434. Differently dimensioned wedges may be employed according to the thickness of the roofing panel to be accommodated.
The gap between the base 420 of the fitting and the underside face of the panel is bridged by a weatherstrip or gasket 440 which is separate from the fitting 414 and is engaged with the fitting at a suitable location, e.g. channel 442 as illustrated. To aid drainage of any water collecting within the fitting, the base 420 is configured with a channel 444 for collection of any water so that the water can flow lengthwise of the fitting (and the eaves structure) to a suitable collection point.
Referring now to
Each fitting 456 is provided with an end stop 466 for co-operation with the associated panel end and also with an end cover 468 of the fitting in the manner described above with reference to
The gap between the adjacent upturned sections 460 of the fittings is bridged by curved sections 472 which may be integral with the central support and are arranged so as not to impede tilting of the fittings 456. Capping 474 is provided at the upper end of the central support and covers 476 are provided for coupling to the undersides of the fittings 456 by co-operating formations 482, 484. In
Whilst endeavouring in the foregoing specification to draw attention to those features of the invention believed to be of particular importance, it should be understood that the Applicant claims protection in respect of any patentable feature or combination of features disclosed herein and/or shown in the drawings whether or not particular emphasis has been placed on such feature or features.
Number | Date | Country | Kind |
---|---|---|---|
0220704 | Sep 2002 | GB | national |
0226895 | Nov 2002 | GB | national |
0304186 | Feb 2003 | GB | national |
0312157 | May 2003 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4673308 | Reilly | Jun 1987 | A |
5515941 | Palmer et al. | May 1996 | A |
5678383 | Danielewicz | Oct 1997 | A |
5826380 | Wolfe | Oct 1998 | A |
5878802 | Richter et al. | Mar 1999 | A |
5937590 | Richardson | Aug 1999 | A |
6000176 | Lancaster | Dec 1999 | A |
6112493 | Rickman | Sep 2000 | A |
6223481 | Rickman | May 2001 | B1 |
6318047 | Richardson | Nov 2001 | B1 |
6553739 | Richardson | Apr 2003 | B1 |
20020110406 | Coles | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
9115826.5 | May 1992 | DE |
0989250 | Mar 2000 | EP |
2081355 | Feb 1982 | GB |
2247474 | Mar 1992 | GB |
2256880 | Dec 1992 | GB |
2323107 | Sep 1998 | GB |
2378207 | Feb 2003 | GB |
2378478 | Feb 2003 | GB |
Number | Date | Country | |
---|---|---|---|
20040045228 A1 | Mar 2004 | US |