Consistent Interface for Campaign Business Object

Information

  • Patent Application
  • 20140278922
  • Publication Number
    20140278922
  • Date Filed
    March 15, 2013
    11 years ago
  • Date Published
    September 18, 2014
    10 years ago
Abstract
A business object model, which reflects data that is used during a given business transaction, is utilized to generate interfaces. This business object model facilitates commercial transactions by providing consistent interfaces that are suitable for use across industries, across businesses, and across different departments within a business during a business transaction. In some operations, software creates, updates, or otherwise processes information related to a campaign business object.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.


CROSS-REFERENCE TO RELATED APPLICATIONS

Some details of the subject matter of this specification are described in previously-filed U.S. patent application Ser. No. 11/803,178, entitled “Consistent Set of Interfaces Derived From a Business Object Model”, filed on May 11, 2007, which is hereby incorporated by reference.


TECHNICAL FIELD

The subject matter described herein relates generally to the generation and use of consistent interfaces (or services) derived from a business object model. More particularly, the present disclosure relates to the generation and use of consistent interfaces or services that are suitable for use across industries, across businesses, and across different departments within a business.


BACKGROUND

Transactions are common among businesses and between business departments within a particular business. During any given transaction, these business entities exchange information. For example, during a sales transaction, numerous business entities may be involved, such as a sales entity that sells merchandise to a customer, a financial institution that handles the financial transaction, and a warehouse that sends the merchandise to the customer. The end-to-end business transaction may require a significant amount of information to be exchanged between the various business entities involved. For example, the customer may send a request for the merchandise as well as some form of payment authorization for the merchandise to the sales entity, and the sales entity may send the financial institution a request for a transfer of funds from the customer's account to the sales entity's account.


Exchanging information between different business entities is not a simple task. This is particularly true because the information used by different business entities is usually tightly tied to the business entity itself. Each business entity may have its own program for handling its part of the transaction. These programs differ from each other because they typically are created for different purposes and because each business entity may use semantics that differ from the other business entities. For example, one program may relate to accounting, another program may relate to manufacturing, and a third program may relate to inventory control. Similarly, one program may identify merchandise using the name of the product while another program may identify the same merchandise using its model number. Further, one business entity may use U.S. dollars to represent its currency while another business entity may use Japanese Yen. A simple difference in formatting, e.g., the use of upper-case lettering rather than lower-case or title-case, makes the exchange of information between businesses a difficult task. Unless the individual businesses agree upon particular semantics, human interaction typically is required to facilitate transactions between these businesses. Because these “heterogeneous” programs are used by different companies or by different business areas within a given company, a need exists for a consistent way to exchange information and perform a business transaction between the different business entities.


Currently, many standards exist that offer a variety of interfaces used to exchange business information. Most of these interfaces, however, apply to only one specific industry and are not consistent between the different standards. Moreover, a number of these interfaces are not consistent within an individual standard.


SUMMARY

In a first aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more instances of campaign failed delivery status data, including error codes and/or error reasons for failures of e-mails sent to customers or contact persons in mailing campaigns. The first message includes a message package hierarchically organized as a campaign failed delivery status bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one outbound entity from an outbound package. Each outbound entity includes a mail system error code. The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.


Implementations can include the following. Each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID. Each outbound entity further includes at least one of the following: an object node sender technical ID, a customer universally unique identifier (UUID), a customer internal ID, a contact person UUID, a contact person internal ID, a mail system error code, and a communication data usage denied indicator.


In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more instances of campaign failed delivery status data, including error codes and/or error reasons for failures of e-mails sent to customers or contact persons in mailing campaigns, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as a campaign failed delivery status bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one outbound entity from an outbound package. Each outbound entity includes a mail system error code. The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.


Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.


In another aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more campaign outbounds. The first message includes a message package hierarchically organized as a campaign outbound bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one outbound entity from an outbound package. The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.


Implementations can include the following. Each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID. Each outbound entity further includes at least one of the following: an object node sender technical ID, a creation date time, a customer universally unique identifier (UUID), a customer internal ID, a contact person UUID, a contact person internal ID, a communication status code, a communication failure reason code, and a campaign execution communication channel type code.


In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more campaign outbounds, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as a campaign outbound bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one outbound entity from an outbound package. The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.


Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.


In another aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more sets of campaign reaction data, the data describing a reaction by a person or a company to a marketing campaign after the person or the company is contacted directly or because they respond to a campaign. The first message includes a message package hierarchically organized as a campaign reaction bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one inbound business transaction document reference entity from an inbound business transaction document reference package. The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.


Implementations can include the following. Each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID. Each inbound business transaction document reference entity includes a reaction tracking entity from a reaction tracking package.


In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more sets of campaign reaction data, the data describing a reaction by a person or a company to a marketing campaign after the person or the company is contacted directly or because they respond to a campaign, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as a campaign reaction bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one inbound business transaction document reference entity from an inbound business transaction document reference package. The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.


Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.


In another aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more instances of campaign mailing permission data, including subscriptions that control usage of customer contact data or contact person contact data for new marketing campaigns. The first message includes a message package hierarchically organized as a campaign mailing permission bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one outbound entity from an outbound package, and wherein each outbound entity includes a mailing permission denied indicator. The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.


Implementations can include the following. Each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID. Each outbound entity further includes at least one of the following: an object node sender technical ID, a customer universally unique identifier (UUID), a customer internal ID, a contact person UUID, and a contact person internal ID.


In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more instances of campaign mailing permission data, including subscriptions that control usage of customer contact data or contact person contact data for new marketing campaigns, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as a campaign mailing permission bundle maintain request sync message entity and a campaign package including at least one campaign entity. Each campaign entity includes at least one outbound entity from an outbound package, and wherein each outbound entity includes a mailing permission denied indicator. The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.


Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a flow diagram of the overall steps performed by methods and systems consistent with the subject matter described herein.



FIG. 2 depicts a business document flow for an invoice request in accordance with methods and systems consistent with the subject matter described herein.



FIGS. 3A-B illustrate example environments implementing the transmission, receipt, and processing of data between heterogeneous applications in accordance with certain embodiments included in the present disclosure.



FIG. 4 illustrates an example application implementing certain techniques and components in accordance with one embodiment of the system of FIG. 1.



FIG. 5A depicts an example development environment in accordance with one embodiment of FIG. 1.



FIG. 5B depicts a simplified process for mapping a model representation to a runtime representation using the example development environment of FIG. 5A or some other development environment.



FIG. 6 depicts message categories in accordance with methods and systems consistent with the subject matter described herein.



FIG. 7 depicts an example of a package in accordance with methods and systems consistent with the subject matter described herein.



FIG. 8 depicts another example of a package in accordance with methods and systems consistent with the subject matter described herein.



FIG. 9 depicts a third example of a package in accordance with methods and systems consistent with the subject matter described herein.



FIG. 10 depicts a fourth example of a package in accordance with methods and systems consistent with the subject matter described herein.



FIG. 11 depicts the representation of a package in the XML schema in accordance with methods and systems consistent with the subject matter described herein.



FIG. 12 depicts a graphical representation of cardinalities between two entities in accordance with methods and systems consistent with the subject matter described herein.



FIG. 13 depicts an example of a composition in accordance with methods and systems consistent with the subject matter described herein.



FIG. 14 depicts an example of a hierarchical relationship in accordance with methods and systems consistent with the subject matter described herein.



FIG. 15 depicts an example of an aggregating relationship in accordance with methods and systems consistent with the subject matter described herein.



FIG. 16 depicts an example of an association in accordance with methods and systems consistent with the subject matter described herein.



FIG. 17 depicts an example of a specialization in accordance with methods and systems consistent with the subject matter described herein.



FIG. 18 depicts the categories of specializations in accordance with methods and systems consistent with the subject matter described herein.



FIG. 19 depicts an example of a hierarchy in accordance with methods and systems consistent with the subject matter described herein.



FIG. 20 depicts a graphical representation of a hierarchy in accordance with methods and systems consistent with the subject matter described herein.



FIGS. 21A-B depict a flow diagram of the steps performed to create a business object model in accordance with methods and systems consistent with the subject matter described herein.



FIGS. 22A-F depict a flow diagram of the steps performed to generate an interface from the business object model in accordance with methods and systems consistent with the subject matter described herein.



FIG. 23 depicts an example illustrating the transmittal of a business document in accordance with methods and systems consistent with the subject matter described herein.



FIG. 24 depicts an interface proxy in accordance with methods and systems consistent with the subject matter described herein.



FIG. 25 depicts an example illustrating the transmittal of a message using proxies in accordance with methods and systems consistent with the subject matter described herein.



FIG. 26A depicts components of a message in accordance with methods and systems consistent with the subject matter described herein.



FIG. 26B depicts IDs used in a message in accordance with methods and systems consistent with the subject matter described herein.



FIGS. 27A-E depict a hierarchization process in accordance with methods and systems consistent with the subject matter described herein.



FIG. 28 illustrates an example method for service enabling in accordance with one embodiment of the present disclosure.



FIG. 29 is a graphical illustration of an example business object and associated components as may be used in the enterprise service infrastructure system of the present disclosure.



FIG. 30 illustrates an example method for managing a process agent framework in accordance with one embodiment of the present disclosure.



FIG. 31 illustrates an example method for status and action management in accordance with one embodiment of the present disclosure.



FIGS. 32-1 through 32-3 collectively depict an example Campaign object model.



FIG. 33 depicts an example Campaign Failed Delivery Status Bundle Maintain Request Sync message data type.



FIG. 34 depicts an example Campaign Outbound Bundle Maintain Request Sync message data type.



FIG. 35 depicts an example Campaign Reaction Bundle Maintain Request Sync message data type.



FIG. 36 depicts an example Campaign Mailing Permission Bundle Maintain Request Sync message data type.



FIGS. 37-1 through 37-6 collectively depict an example Campaign Failed Delivery Status Bundle Maintain Request Sync element structure.



FIGS. 38-1 through 38-7 collectively depict an example Campaign Outbound Bundle Maintain Request Sync element structure.



FIGS. 39-1 through 39-8 collectively depict an example Campaign Reaction Bundle Maintain Request Sync element structure.



FIGS. 40-1 through 40-6 collectively depict an example Campaign Mailing Permission Bundle Maintain Request Sync element structure.





DETAILED DESCRIPTION
A. Overview

Methods and systems consistent with the subject matter described herein facilitate e-commerce by providing consistent interfaces that are suitable for use across industries, across businesses, and across different departments within a business during a business transaction. To generate consistent interfaces, methods and systems consistent with the subject matter described herein utilize a business object model, which reflects the data that will be used during a given business transaction. An example of a business transaction is the exchange of purchase orders and order confirmations between a buyer and a seller. The business object model is generated in a hierarchical manner to ensure that the same type of data is represented the same way throughout the business object model. This ensures the consistency of the information in the business object model. Consistency is also reflected in the semantic meaning of the various structural elements. That is, each structural element has a consistent business meaning. For example, the location entity, regardless of in which package it is located, refers to a location.


From this business object model, various interfaces are derived to accomplish the functionality of the business transaction. Interfaces provide an entry point for components to access the functionality of an application. For example, the interface for a Purchase Order Request provides an entry point for components to access the functionality of a Purchase Order, in particular, to transmit and/or receive a Purchase Order Request. One skilled in the art will recognize that each of these interfaces may be provided, sold, distributed, utilized, or marketed as a separate product or as a major component of a separate product. Alternatively, a group of related interfaces may be provided, sold, distributed, utilized, or marketed as a product or as a major component of a separate product. Because the interfaces are generated from the business object model, the information in the interfaces is consistent, and the interfaces are consistent among the business entities. Such consistency facilitates heterogeneous business entities in cooperating to accomplish the business transaction.


Generally, the business object is a representation of a type of a uniquely identifiable business entity (an object instance) described by a structural model. In the architecture, processes may typically operate on business objects. Business objects represent a specific view on some well-defined business content. In other words, business objects represent content, which a typical business user would expect and understand with little explanation. Business objects are further categorized as business process objects and master data objects. A master data object is an object that encapsulates master data (i.e., data that is valid for a period of time). A business process object, which is the kind of business object generally found in a process component, is an object that encapsulates transactional data (i.e., data that is valid for a point in time). The term business object will be used generically to refer to a business process object and a master data object, unless the context requires otherwise. Properly implemented, business objects are implemented free of redundancies.


The architectural elements also include the process component. The process component is a software package that realizes a business process and generally exposes its functionality as services. The functionality contains business transactions. In general, the process component contains one or more semantically related business objects. Often, a particular business object belongs to no more than one process component. Interactions between process component pairs involving their respective business objects, process agents, operations, interfaces, and messages are described as process component interactions, which generally determine the interactions of a pair of process components across a deployment unit boundary. Interactions between process components within a deployment unit are typically not constrained by the architectural design and can be implemented in any convenient fashion. Process components may be modular and context-independent. In other words, process components may not be specific to any particular application and as such, may be reusable. In some implementations, the process component is the smallest (most granular) element of reuse in the architecture. An external process component is generally used to represent the external system in describing interactions with the external system; however, this should be understood to require no more of the external system than that able to produce and receive messages as required by the process component that interacts with the external system. For example, process components may include multiple operations that may provide interaction with the external system. Each operation generally belongs to one type of process component in the architecture. Operations can be synchronous or asynchronous, corresponding to synchronous or asynchronous process agents, which will be described below. The operation is often the smallest, separately-callable function, described by a set of data types used as input, output, and fault parameters serving as a signature.


The architectural elements may also include the service interface, referred to simply as the interface. The interface is a named group of operations. The interface often belongs to one process component and process component might contain multiple interfaces. In one implementation, the service interface contains only inbound or outbound operations, but not a mixture of both. One interface can contain both synchronous and asynchronous operations. Normally, operations of the same type (either inbound or outbound) which belong to the same message choreography will belong to the same interface. Thus, generally, all outbound operations to the same other process component are in one interface.


The architectural elements also include the message. Operations transmit and receive messages. Any convenient messaging infrastructure can be used. A message is information conveyed from one process component instance to another, with the expectation that activity will ensue. Operation can use multiple message types for inbound, outbound, or error messages. When two process components are in different deployment units, invocation of an operation of one process component by the other process component is accomplished by the operation on the other process component sending a message to the first process component.


The architectural elements may also include the process agent. Process agents do business processing that involves the sending or receiving of messages. Each operation normally has at least one associated process agent. Each process agent can be associated with one or more operations. Process agents can be either inbound or outbound and either synchronous or asynchronous. Asynchronous outbound process agents are called after a business object changes such as after a “create”, “update”, or “delete” of a business object instance. Synchronous outbound process agents are generally triggered directly by business object. An outbound process agent will generally perform some processing of the data of the business object instance whose change triggered the event. The outbound agent triggers subsequent business process steps by sending messages using well-defined outbound services to another process component, which generally will be in another deployment unit, or to an external system. The outbound process agent is linked to the one business object that triggers the agent, but it is sent not to another business object but rather to another process component. Thus, the outbound process agent can be implemented without knowledge of the exact business object design of the recipient process component. Alternatively, the process agent may be inbound. For example, inbound process agents may be used for the inbound part of a message-based communication. Inbound process agents are called after a message has been received. The inbound process agent starts the execution of the business process step requested in a message by creating or updating one or multiple business object instances. Inbound process agent is not generally the agent of business object but of its process component. Inbound process agent can act on multiple business objects in a process component. Regardless of whether the process agent is inbound or outbound, an agent may be synchronous if used when a process component requires a more or less immediate response from another process component, and is waiting for that response to continue its work.


The architectural elements also include the deployment unit. Each deployment unit may include one or more process components that are generally deployed together on a single computer system platform. Conversely, separate deployment units can be deployed on separate physical computing systems. The process components of one deployment unit can interact with those of another deployment unit using messages passed through one or more data communication networks or other suitable communication channels. Thus, a deployment unit deployed on a platform belonging to one business can interact with a deployment unit software entity deployed on a separate platform belonging to a different and unrelated business, allowing for business-to-business communication. More than one instance of a given deployment unit can execute at the same time, on the same computing system or on separate physical computing systems. This arrangement allows the functionality offered by the deployment unit to be scaled to meet demand by creating as many instances as needed.


Since interaction between deployment units is through process component operations, one deployment unit can be replaced by other another deployment unit as long as the new deployment unit supports the operations depended upon by other deployment units as appropriate. Thus, while deployment units can depend on the external interfaces of process components in other deployment units, deployment units are not dependent on process component interaction within other deployment units. Similarly, process components that interact with other process components or external systems only through messages, e.g., as sent and received by operations, can also be replaced as long as the replacement generally supports the operations of the original.


Services (or interfaces) may be provided in a flexible architecture to support varying criteria between services and systems. The flexible architecture may generally be provided by a service delivery business object. The system may be able to schedule a service asynchronously as necessary, or on a regular basis. Services may be planned according to a schedule manually or automatically. For example, a follow-up service may be scheduled automatically upon completing an initial service. In addition, flexible execution periods may be possible (e.g. hourly, daily, every three months, etc.). Each customer may plan the services on demand or reschedule service execution upon request.



FIG. 1 depicts a flow diagram 100 showing an example technique, perhaps implemented by systems similar to those disclosed herein. Initially, to generate the business object model, design engineers study the details of a business process, and model the business process using a “business scenario” (step 102). The business scenario identifies the steps performed by the different business entities during a business process. Thus, the business scenario is a complete representation of a clearly defined business process.


After creating the business scenario, the developers add details to each step of the business scenario (step 104). In particular, for each step of the business scenario, the developers identify the complete process steps performed by each business entity. A discrete portion of the business scenario reflects a “business transaction,” and each business entity is referred to as a “component” of the business transaction. The developers also identify the messages that are transmitted between the components. A “process interaction model” represents the complete process steps between two components.


After creating the process interaction model, the developers create a “message choreography” (step 106), which depicts the messages transmitted between the two components in the process interaction model. The developers then represent the transmission of the messages between the components during a business process in a “business document flow” (step 108). Thus, the business document flow illustrates the flow of information between the business entities during a business process.



FIG. 2 depicts an example business document flow 200 for the process of purchasing a product or service. The business entities involved with the illustrative purchase process include Accounting 202, Payment 204, Invoicing 206, Supply Chain Execution (“SCE”) 208, Supply Chain Planning (“SCP”) 210, Fulfillment Coordination (“FC”) 212, Supply Relationship Management (“SRM”) 214, Supplier 216, and Bank 218. The business document flow 200 is divided into four different transactions: Preparation of Ordering (“Contract”) 220, Ordering 222, Goods Receiving (“Delivery”) 224, and Billing/Payment 226. In the business document flow, arrows 228 represent the transmittal of documents. Each document reflects a message transmitted between entities. One of ordinary skill in the art will appreciate that the messages transferred may be considered to be a communications protocol. The process flow follows the focus of control, which is depicted as a solid vertical line (e.g., 229) when the step is required, and a dotted vertical line (e.g., 230) when the step is optional.


During the Contract transaction 220, the SRM 214 sends a Source of Supply Notification 232 to the SCP 210. This step is optional, as illustrated by the optional control line 230 coupling this step to the remainder of the business document flow 200. During the Ordering transaction 222, the SCP 210 sends a Purchase Requirement Request 234 to the FC 212, which forwards a Purchase Requirement Request 236 to the SRM 214. The SRM 214 then sends a Purchase Requirement Confirmation 238 to the FC 212, and the FC 212 sends a Purchase Requirement Confirmation 240 to the SCP 210. The SRM 214 also sends a Purchase Order Request 242 to the Supplier 216, and sends Purchase Order Information 244 to the FC 212. The FC 212 then sends a Purchase Order Planning Notification 246 to the SCP 210. The Supplier 216, after receiving the Purchase Order Request 242, sends a Purchase Order Confirmation 248 to the SRM 214, which sends a Purchase Order Information confirmation message 254 to the FC 212, which sends a message 256 confirming the Purchase Order Planning Notification to the SCP 210. The SRM 214 then sends an Invoice Due Notification 258 to Invoicing 206.


During the Delivery transaction 224, the FC 212 sends a Delivery Execution Request 260 to the SCE 208. The Supplier 216 could optionally (illustrated at control line 250) send a Dispatched Delivery Notification 252 to the SCE 208. The SCE 208 then sends a message 262 to the FC 212 notifying the FC 212 that the request for the Delivery Information was created. The FC 212 then sends a message 264 notifying the SRM 214 that the request for the Delivery Information was created. The FC 212 also sends a message 266 notifying the SCP 210 that the request for the Delivery Information was created. The SCE 208 sends a message 268 to the FC 212 when the goods have been set aside for delivery. The FC 212 sends a message 270 to the SRM 214 when the goods have been set aside for delivery. The FC 212 also sends a message 272 to the SCP 210 when the goods have been set aside for delivery.


The SCE 208 sends a message 274 to the FC 212 when the goods have been delivered. The FC 212 then sends a message 276 to the SRM 214 indicating that the goods have been delivered, and sends a message 278 to the SCP 210 indicating that the goods have been delivered. The SCE 208 then sends an Inventory Change Accounting Notification 280 to Accounting 202, and an Inventory Change Notification 282 to the SCP 210. The FC 212 sends an Invoice Due Notification 284 to Invoicing 206, and SCE 208 sends a Received Delivery Notification 286 to the Supplier 216.


During the Billing/Payment transaction 226, the Supplier 216 sends an Invoice Request 287 to Invoicing 206. Invoicing 206 then sends a Payment Due Notification 288 to Payment 204, a Tax Due Notification 289 to Payment 204, an Invoice Confirmation 290 to the Supplier 216, and an Invoice Accounting Notification 291 to Accounting 202. Payment 204 sends a Payment Request 292 to the Bank 218, and a Payment Requested Accounting Notification 293 to Accounting 202. Bank 218 sends a Bank Statement Information 296 to Payment 204. Payment 204 then sends a Payment Done Information 294 to Invoicing 206 and a Payment Done Accounting Notification 295 to Accounting 202.


Within a business document flow, business documents having the same or similar structures are marked. For example, in the business document flow 200 depicted in FIG. 2, Purchase Requirement Requests 234, 236 and Purchase Requirement Confirmations 238, 240 have the same structures. Thus, each of these business documents is marked with an “O6.” Similarly, Purchase Order Request 242 and Purchase Order Confirmation 248 have the same structures. Thus, both documents are marked with an “O1.” Each business document or message is based on a message type.


From the business document flow, the developers identify the business documents having identical or similar structures, and use these business documents to create the business object model (step 110). The business object model includes the objects contained within the business documents. These objects are reflected as packages containing related information, and are arranged in a hierarchical structure within the business object model, as discussed below.


Methods and systems consistent with the subject matter described herein then generate interfaces from the business object model (step 112). The heterogeneous programs use instantiations of these interfaces (called “business document objects” below) to create messages (step 114), which are sent to complete the business transaction (step 116). Business entities use these messages to exchange information with other business entities during an end-to-end business transaction. Since the business object model is shared by heterogeneous programs, the interfaces are consistent among these programs. The heterogeneous programs use these consistent interfaces to communicate in a consistent manner, thus facilitating the business transactions.


Standardized Business-to-Business (“B2B”) messages are compliant with at least one of the e-business standards (i.e., they include the business-relevant fields of the standard). The e-business standards include, for example, RosettaNet for the high-tech industry, Chemical Industry Data Exchange (“CIDX”), Petroleum Industry Data Exchange (“PIDX”) for the oil industry, UCCnet for trade, PapiNet for the paper industry, Odette for the automotive industry, HR-XML for human resources, and XML Common Business Library (“xCBL”). Thus, B2B messages enable simple integration of components in heterogeneous system landscapes. Application-to-Application (“A2A”) messages often exceed the standards and thus may provide the benefit of the full functionality of application components. Although various steps of FIG. 1 were described as being performed manually, one skilled in the art will appreciate that such steps could be computer-assisted or performed entirely by a computer, including being performed by either hardware, software, or any other combination thereof.


B. Implementation Details

As discussed above, methods and systems consistent with the subject matter described herein create consistent interfaces by generating the interfaces from a business object model. Details regarding the creation of the business object model, the generation of an interface from the business object model, and the use of an interface generated from the business object model are provided below.


Turning to the illustrated embodiment in FIG. 3A, environment 300 includes or is communicably coupled (such as via a one-, bi- or multi-directional link or network) with server 302, one or more clients 304, one or more or vendors 306, one or more customers 308, at least some of which communicate across network 312. But, of course, this illustration is for example purposes only, and any distributed system or environment implementing one or more of the techniques described herein may be within the scope of this disclosure. Server 302 comprises an electronic computing device operable to receive, transmit, process and store data associated with environment 300. Generally, FIG. 3A provides merely one example of computers that may be used with the disclosure. Each computer is generally intended to encompass any suitable processing device. For example, although FIG. 3A illustrates one server 302 that may be used with the disclosure, environment 300 can be implemented using computers other than servers, as well as a server pool. Indeed, server 302 may be any computer or processing device such as, for example, a blade server, general-purpose personal computer (PC), Macintosh, workstation, Unix-based computer, or any other suitable device. In other words, the present disclosure contemplates computers other than general purpose computers as well as computers without conventional operating systems. Server 302 may be adapted to execute any operating system including Linux, UNIX, Windows Server, or any other suitable operating system. According to one embodiment, server 302 may also include or be communicably coupled with a web server and/or a mail server.


As illustrated (but not required), the server 302 is communicably coupled with a relatively remote repository 335 over a portion of the network 312. The repository 335 is any electronic storage facility, data processing center, or archive that may supplement or replace local memory (such as 327). The repository 335 may be a central database communicably coupled with the one or more servers 302 and the clients 304 via a virtual private network (VPN), SSH (Secure Shell) tunnel, or other secure network connection. The repository 335 may be physically or logically located at any appropriate location including in one of the example enterprises or off-shore, so long as it remains operable to store information associated with the environment 300 and communicate such data to the server 302 or at least a subset of plurality of the clients 304.


Illustrated server 302 includes local memory 327. Memory 327 may include any memory or database module and may take the form of volatile or non-volatile memory including, without limitation, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), removable media, or any other suitable local or remote memory component. Illustrated memory 327 includes an exchange infrastructure (“XI”) 314, which is an infrastructure that supports the technical interaction of business processes across heterogeneous system environments. XI 314 centralizes the communication between components within a business entity and between different business entities. When appropriate, XI 314 carries out the mapping between the messages. XI 314 integrates different versions of systems implemented on different platforms (e.g., Java and ABAP). XI 314 is based on an open architecture, and makes use of open standards, such as eXtensible Markup Language (XML)™ and Java environments. XI 314 offers services that are useful in a heterogeneous and complex system landscape. In particular, XI 314 offers a runtime infrastructure for message exchange, configuration options for managing business processes and message flow, and options for transforming message contents between sender and receiver systems.


XI 314 stores data types 316, a business object model 318, and interfaces 320. The details regarding the business object model are described below. Data types 316 are the building blocks for the business object model 318. The business object model 318 is used to derive consistent interfaces 320. XI 314 allows for the exchange of information from a first company having one computer system to a second company having a second computer system over network 312 by using the standardized interfaces 320.


While not illustrated, memory 327 may also include business objects and any other appropriate data such as services, interfaces, VPN applications or services, firewall policies, a security or access log, print or other reporting files, HTML files or templates, data classes or object interfaces, child software applications or sub-systems, and others. This stored data may be stored in one or more logical or physical repositories. In some embodiments, the stored data (or pointers thereto) may be stored in one or more tables in a relational database described in terms of SQL statements or scripts. In the same or other embodiments, the stored data may also be formatted, stored, or defined as various data structures in text files, XML documents, Virtual Storage Access Method (VSAM) files, flat files, Btrieve files, comma-separated-value (CSV) files, internal variables, or one or more libraries. For example, a particular data service record may merely be a pointer to a particular piece of third party software stored remotely. In another example, a particular data service may be an internally stored software object usable by authenticated customers or internal development. In short, the stored data may comprise one table or file or a plurality of tables or files stored on one computer or across a plurality of computers in any appropriate format. Indeed, some or all of the stored data may be local or remote without departing from the scope of this disclosure and store any type of appropriate data.


Server 302 also includes processor 325. Processor 325 executes instructions and manipulates data to perform the operations of server 302 such as, for example, a central processing unit (CPU), a blade, an application specific integrated circuit (ASIC), or a field-programmable gate array (FPGA). Although FIG. 3A illustrates a single processor 325 in server 302, multiple processors 325 may be used according to particular needs and reference to processor 325 is meant to include multiple processors 325 where applicable. In the illustrated embodiment, processor 325 executes at least business application 330.


At a high level, business application 330 is any application, program, module, process, or other software that utilizes or facilitates the exchange of information via messages (or services) or the use of business objects. For example, application 330 may implement, utilize or otherwise leverage an enterprise service-oriented architecture (enterprise SOA), which may be considered a blueprint for an adaptable, flexible, and open IT architecture for developing services-based, enterprise-scale business solutions. This example enterprise service may be a series of web services combined with business logic that can be accessed and used repeatedly to support a particular business process. Aggregating web services into business-level enterprise services helps provide a more meaningful foundation for the task of automating enterprise-scale business scenarios Put simply, enterprise services help provide a holistic combination of actions that are semantically linked to complete the specific task, no matter how many cross-applications are involved. In certain cases, environment 300 may implement a composite application 330, as described below in FIG. 4. Regardless of the particular implementation, “software” may include software, firmware, wired or programmed hardware, or any combination thereof as appropriate. Indeed, application 330 may be written or described in any appropriate computer language including C, C++, Java, Visual Basic, assembler, Perl, any suitable version of 4GL, as well as others. For example, returning to the above mentioned composite application, the composite application portions may be implemented as Enterprise Java Beans (EJBs) or the design-time components may have the ability to generate run-time implementations into different platforms, such as J2EE (Java 2 Platform, Enterprise Edition), ABAP (Advanced Business Application Programming) objects, or Microsoft's .NET. It will be understood that while application 330 is illustrated in FIG. 4 as including various sub-modules, application 330 may include numerous other sub-modules or may instead be a single multi-tasked module that implements the various features and functionality through various objects, methods, or other processes. Further, while illustrated as internal to server 302, one or more processes associated with application 330 may be stored, referenced, or executed remotely. For example, a portion of application 330 may be a web service that is remotely called, while another portion of application 330 may be an interface object bundled for processing at remote client 304. Moreover, application 330 may be a child or sub-module of another software module or enterprise application (not illustrated) without departing from the scope of this disclosure. Indeed, application 330 may be a hosted solution that allows multiple related or third parties in different portions of the process to perform the respective processing.


More specifically, as illustrated in FIG. 4, application 330 may be a composite application, or an application built on other applications, that includes an object access layer (OAL) and a service layer. In this example, application 330 may execute or provide a number of application services, such as customer relationship management (CRM) systems, human resources management (HRM) systems, financial management (FM) systems, project management (PM) systems, knowledge management (KM) systems, and electronic file and mail systems. Such an object access layer is operable to exchange data with a plurality of enterprise base systems and to present the data to a composite application through a uniform interface. The example service layer is operable to provide services to the composite application. These layers may help the composite application to orchestrate a business process in synchronization with other existing processes (e.g., native processes of enterprise base systems) and leverage existing investments in the IT platform. Further, composite application 330 may run on a heterogeneous IT platform. In doing so, composite application may be cross-functional in that it may drive business processes across different applications, technologies, and organizations. Accordingly, composite application 330 may drive end-to-end business processes across heterogeneous systems or sub-systems. Application 330 may also include or be coupled with a persistence layer and one or more application system connectors. Such application system connectors enable data exchange and integration with enterprise sub-systems and may include an Enterprise Connector (EC) interface, an Internet Communication Manager/Internet Communication Framework (ICM/ICF) interface, an Encapsulated PostScript (EPS) interface, and/or other interfaces that provide Remote Function Call (RFC) capability. It will be understood that while this example describes a composite application 330, it may instead be a standalone or (relatively) simple software program. Regardless, application 330 may also perform processing automatically, which may indicate that the appropriate processing is substantially performed by at least one component of environment 300. It should be understood that automatically further contemplates any suitable administrator or other user interaction with application 330 or other components of environment 300 without departing from the scope of this disclosure.


Returning to FIG. 3A, illustrated server 302 may also include interface 317 for communicating with other computer systems, such as clients 304, over network 312 in a client-server or other distributed environment. In certain embodiments, server 302 receives data from internal or external senders through interface 317 for storage in memory 327, for storage in DB 335, and/or processing by processor 325. Generally, interface 317 comprises logic encoded in software and/or hardware in a suitable combination and operable to communicate with network 312. More specifically, interface 317 may comprise software supporting one or more communications protocols associated with communications network 312 or hardware operable to communicate physical signals.


Network 312 facilitates wireless or wireline communication between computer server 302 and any other local or remote computer, such as clients 304. Network 312 may be all or a portion of an enterprise or secured network. In another example, network 312 may be a VPN merely between server 302 and client 304 across wireline or wireless link. Such an example wireless link may be via 802.11a, 802.11b, 802.11g, 802.20, WiMax, and many others. While illustrated as a single or continuous network, network 312 may be logically divided into various sub-nets or virtual networks without departing from the scope of this disclosure, so long as at least portion of network 312 may facilitate communications between server 302 and at least one client 304. For example, server 302 may be communicably coupled to one or more “local” repositories through one sub-net while communicably coupled to a particular client 304 or “remote” repositories through another. In other words, network 312 encompasses any internal or external network, networks, sub-network, or combination thereof operable to facilitate communications between various computing components in environment 300. Network 312 may communicate, for example, Internet Protocol (IP) packets, Frame Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, and other suitable information between network addresses. Network 312 may include one or more local area networks (LANs), radio access networks (RANs), metropolitan area networks (MANs), wide area networks (WANs), all or a portion of the global computer network known as the Internet, and/or any other communication system or systems at one or more locations. In certain embodiments, network 312 may be a secure network associated with the enterprise and certain local or remote vendors 306 and customers 308. As used in this disclosure, customer 308 is any person, department, organization, small business, enterprise, or any other entity that may use or request others to use environment 300. As described above, vendors 306 also may be local or remote to customer 308. Indeed, a particular vendor 306 may provide some content to business application 330, while receiving or purchasing other content (at the same or different times) as customer 308. As illustrated, customer 308 and vendor 306 each typically perform some processing (such as uploading or purchasing content) using a computer, such as client 304.


Client 304 is any computing device operable to connect or communicate with server 302 or network 312 using any communication link. For example, client 304 is intended to encompass a personal computer, touch screen terminal, workstation, network computer, kiosk, wireless data port, smart phone, personal data assistant (PDA), one or more processors within these or other devices, or any other suitable processing device used by or for the benefit of business 308, vendor 306, or some other user or entity. At a high level, each client 304 includes or executes at least GUI 336 and comprises an electronic computing device operable to receive, transmit, process and store any appropriate data associated with environment 300. It will be understood that there may be any number of clients 304 communicably coupled to server 302. Further, “client 304,” “business,” “business analyst,” “end user,” and “user” may be used interchangeably as appropriate without departing from the scope of this disclosure. Moreover, for ease of illustration, each client 304 is described in terms of being used by one user. But this disclosure contemplates that many users may use one computer or that one user may use multiple computers. For example, client 304 may be a PDA operable to wirelessly connect with external or unsecured network. In another example, client 304 may comprise a laptop that includes an input device, such as a keypad, touch screen, mouse, or other device that can accept information, and an output device that conveys information associated with the operation of server 302 or clients 304, including digital data, visual information, or GUI 336. Both the input device and output device may include fixed or removable storage media such as a magnetic computer disk, CD-ROM, or other suitable media to both receive input from and provide output to users of clients 304 through the display, namely the client portion of GUI or application interface 336.


GUI 336 comprises a graphical user interface operable to allow the user of client 304 to interface with at least a portion of environment 300 for any suitable purpose, such as viewing application or other transaction data. Generally, GUI 336 provides the particular user with an efficient and user-friendly presentation of data provided by or communicated within environment 300. For example, GUI 336 may present the user with the components and information that is relevant to their task, increase reuse of such components, and facilitate a sizable developer community around those components. GUI 336 may comprise a plurality of customizable frames or views having interactive fields, pull-down lists, and buttons operated by the user. For example, GUI 336 is operable to display data involving business objects and interfaces in a user-friendly form based on the user context and the displayed data. In another example, GUI 336 is operable to display different levels and types of information involving business objects and interfaces based on the identified or supplied user role. GUI 336 may also present a plurality of portals or dashboards. For example, GUI 336 may display a portal that allows users to view, create, and manage historical and real-time reports including role-based reporting and such. Of course, such reports may be in any appropriate output format including PDF, HTML, and printable text. Real-time dashboards often provide table and graph information on the current state of the data, which may be supplemented by business objects and interfaces. It should be understood that the term graphical user interface may be used in the singular or in the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Indeed, reference to GUI 336 may indicate a reference to the front-end or a component of business application 330, as well as the particular interface accessible via client 304, as appropriate, without departing from the scope of this disclosure. Therefore, GUI 336 contemplates any graphical user interface, such as a generic web browser or touchscreen, that processes information in environment 300 and efficiently presents the results to the user. Server 302 can accept data from client 304 via the web browser (e.g., Microsoft Internet Explorer or Netscape Navigator) and return the appropriate HTML or XML responses to the browser using network 312.


More generally in environment 300 as depicted in FIG. 3B, a Foundation Layer 375 can be deployed on multiple separate and distinct hardware platforms, e.g., System A 350 and System B 360, to support application software deployed as two or more deployment units distributed on the platforms, including deployment unit 352 deployed on System A and deployment unit 362 deployed on System B. In this example, the foundation layer can be used to support application software deployed in an application layer. In particular, the foundation layer can be used in connection with application software implemented in accordance with a software architecture that provides a suite of enterprise service operations having various application functionality. In some implementations, the application software is implemented to be deployed on an application platform that includes a foundation layer that contains all fundamental entities that can used from multiple deployment units. These entities can be process components, business objects, and reuse service components. A reuse service component is a piece of software that is reused in different transactions. A reuse service component is used by its defined interfaces, which can be, e.g., local APIs or service interfaces. As explained above, process components in separate deployment units interact through service operations, as illustrated by messages passing between service operations 356 and 366, which are implemented in process components 354 and 364, respectively, which are included in deployment units 352 and 362, respectively. As also explained above, some form of direct communication is generally the form of interaction used between a business object, e.g., business object 358 and 368, of an application deployment unit and a business object, such as master data object 370, of the Foundation Layer 375.


Various components of the present disclosure may be modeled using a model-driven environment. For example, the model-driven framework or environment may allow the developer to use simple drag-and-drop techniques to develop pattern-based or freestyle user interfaces and define the flow of data between them. The result could be an efficient, customized, visually rich online experience. In some cases, this model-driven development may accelerate the application development process and foster business-user self-service. It further enables business analysts or IT developers to compose visually rich applications that use analytic services, enterprise services, remote function calls (RFCs), APIs, and stored procedures. In addition, it may allow them to reuse existing applications and create content using a modeling process and a visual user interface instead of manual coding.



FIG. 5A depicts an example modeling environment 516, namely a modeling environment, in accordance with one embodiment of the present disclosure. Thus, as illustrated in FIG. 5A, such a modeling environment 516 may implement techniques for decoupling models created during design-time from the runtime environment. In other words, model representations for GUIs created in a design time environment are decoupled from the runtime environment in which the GUIs are executed. Often in these environments, a declarative and executable representation for GUIs for applications is provided that is independent of any particular runtime platform, GUI framework, device, or programming language.


According to some embodiments, a modeler (or other analyst) may use the model-driven modeling environment 516 to create pattern-based or freestyle user interfaces using simple drag-and-drop services. Because this development may be model-driven, the modeler can typically compose an application using models of business objects without having to write much, if any, code. In some cases, this example modeling environment 516 may provide a personalized, secure interface that helps unify enterprise applications, information, and processes into a coherent, role-based portal experience. Further, the modeling environment 516 may allow the developer to access and share information and applications in a collaborative environment. In this way, virtual collaboration rooms allow developers to work together efficiently, regardless of where they are located, and may enable powerful and immediate communication that crosses organizational boundaries while enforcing security requirements. Indeed, the modeling environment 516 may provide a shared set of services for finding, organizing, and accessing unstructured content stored in third-party repositories and content management systems across various networks 312. Classification tools may automate the organization of information, while subject-matter experts and content managers can publish information to distinct user audiences. Regardless of the particular implementation or architecture, this modeling environment 516 may allow the developer to easily model hosted business objects 140 using this model-driven approach.


In certain embodiments, the modeling environment 516 may implement or utilize a generic, declarative, and executable GUI language (generally described as XGL). This example XGL is generally independent of any particular GUI framework or runtime platform. Further, XGL is normally not dependent on characteristics of a target device on which the graphic user interface is to be displayed and may also be independent of any programming language. XGL is used to generate a generic representation (occasionally referred to as the XGL representation or XGL-compliant representation) for a design-time model representation. The XGL representation is thus typically a device-independent representation of a GUI. The XGL representation is declarative in that the representation does not depend on any particular GUI framework, runtime platform, device, or programming language. The XGL representation can be executable and therefore can unambiguously encapsulate execution semantics for the GUI described by a model representation. In short, models of different types can be transformed to XGL representations.


The XGL representation may be used for generating representations of various different GUIs and supports various GUI features including full windowing and componentization support, rich data visualizations and animations, rich modes of data entry and user interactions, and flexible connectivity to any complex application data services. While a specific embodiment of XGL is discussed, various other types of XGLs may also be used in alternative embodiments. In other words, it will be understood that XGL is used for example description only and may be read to include any abstract or modeling language that can be generic, declarative, and executable.


Turning to the illustrated embodiment in FIG. 5A, modeling tool 340 may be used by a GUI designer or business analyst during the application design phase to create a model representation 502 for a GUI application. It will be understood that modeling environment 516 may include or be compatible with various different modeling tools 340 used to generate model representation 502. This model representation 502 may be a machine-readable representation of an application or a domain specific model. Model representation 502 generally encapsulates various design parameters related to the GUI such as GUI components, dependencies between the GUI components, inputs and outputs, and the like. Put another way, model representation 502 provides a form in which the one or more models can be persisted and transported, and possibly handled by various tools such as code generators, runtime interpreters, analysis and validation tools, merge tools, and the like. In one embodiment, model representation 502 maybe a collection of XML documents with a well-formed syntax.


Illustrated modeling environment 516 also includes an abstract representation generator (or XGL generator) 504 operable to generate an abstract representation (for example, XGL representation or XGL-compliant representation) 506 based upon model representation 502. Abstract representation generator 504 takes model representation 502 as input and outputs abstract representation 506 for the model representation. Model representation 502 may include multiple instances of various forms or types depending on the tool/language used for the modeling. In certain cases, these various different model representations may each be mapped to one or more abstract representations 506. Different types of model representations may be transformed or mapped to XGL representations. For each type of model representation, mapping rules may be provided for mapping the model representation to the XGL representation 506. Different mapping rules may be provided for mapping a model representation to an XGL representation.


This XGL representation 506 that is created from a model representation may then be used for processing in the runtime environment. For example, the XGL representation 506 may be used to generate a machine-executable runtime GUI (or some other runtime representation) that may be executed by a target device. As part of the runtime processing, the XGL representation 506 may be transformed into one or more runtime representations, which may indicate source code in a particular programming language, machine-executable code for a specific runtime environment, executable GUI, and so forth, which may be generated for specific runtime environments and devices. Since the XGL representation 506, rather than the design-time model representation, is used by the runtime environment, the design-time model representation is decoupled from the runtime environment. The XGL representation 506 can thus serve as the common ground or interface between design-time user interface modeling tools and a plurality of user interface runtime frameworks. It provides a self-contained, closed, and deterministic definition of all aspects of a graphical user interface in a device-independent and programming-language independent manner. Accordingly, abstract representation 506 generated for a model representation 502 is generally declarative and executable in that it provides a representation of the GUI of model representation 502 that is not dependent on any device or runtime platform, is not dependent on any programming language, and unambiguously encapsulates execution semantics for the GUI. The execution semantics may include, for example, identification of various components of the GUI, interpretation of connections between the various GUI components, information identifying the order of sequencing of events, rules governing dynamic behavior of the GUI, rules governing handling of values by the GUI, and the like. The abstract representation 506 is also not GUI runtime-platform specific. The abstract representation 506 provides a self-contained, closed, and deterministic definition of all aspects of a graphical user interface that is device independent and language independent.


Abstract representation 506 is such that the appearance and execution semantics of a GUI generated from the XGL representation work consistently on different target devices irrespective of the GUI capabilities of the target device and the target device platform. For example, the same XGL representation may be mapped to appropriate GUIs on devices of differing levels of GUI complexity (i.e., the same abstract representation may be used to generate a GUI for devices that support simple GUIs and for devices that can support complex GUIs), the GUI generated by the devices are consistent with each other in their appearance and behavior.


Abstract representation generator 504 may be configured to generate abstract representation 506 for models of different types, which may be created using different modeling tools 340. It will be understood that modeling environment 516 may include some, none, or other sub-modules or components as those shown in this example illustration. In other words, modeling environment 516 encompasses the design-time environment (with or without the abstract generator or the various representations), a modeling toolkit (such as 340) linked with a developer's space, or any other appropriate software operable to decouple models created during design-time from the runtime environment. Abstract representation 506 provides an interface between the design time environment and the runtime environment. As shown, this abstract representation 506 may then be used by runtime processing.


As part of runtime processing, modeling environment 516 may include various runtime tools 508 and may generate different types of runtime representations based upon the abstract representation 506. Examples of runtime representations include device or language-dependent (or specific) source code, runtime platform-specific machine-readable code, GUIs for a particular target device, and the like. The runtime tools 508 may include compilers, interpreters, source code generators, and other such tools that are configured to generate runtime platform-specific or target device-specific runtime representations of abstract representation 506. The runtime tool 508 may generate the runtime representation from abstract representation 506 using specific rules that map abstract representation 506 to a particular type of runtime representation. These mapping rules may be dependent on the type of runtime tool, characteristics of the target device to be used for displaying the GUI, runtime platform, and/or other factors. Accordingly, mapping rules may be provided for transforming the abstract representation 506 to any number of target runtime representations directed to one or more target GUI runtime platforms. For example, XGL-compliant code generators may conform to semantics of XGL, as described below. XGL-compliant code generators may ensure that the appearance and behavior of the generated user interfaces is preserved across a plurality of target GUI frameworks, while accommodating the differences in the intrinsic characteristics of each and also accommodating the different levels of capability of target devices.


For example, as depicted in example FIG. 5A, an XGL-to-Java compiler 508A may take abstract representation 506 as input and generate Java code 510 for execution by a target device comprising a Java runtime 512. Java runtime 512 may execute Java code 510 to generate or display a GUI 514 on a Java-platform target device. As another example, an XGL-to-Flash compiler 508B may take abstract representation 506 as input and generate Flash code 526 for execution by a target device comprising a Flash runtime 518. Flash runtime 518 may execute Flash code 516 to generate or display a GUI 520 on a target device comprising a Flash platform. As another example, an XGL-to-DHTML (dynamic HTML) interpreter 508C may take abstract representation 506 as input and generate DHTML statements (instructions) on the fly which are then interpreted by a DHTML runtime 522 to generate or display a GUI 524 on a target device comprising a DHTML platform.


It should be apparent that abstract representation 506 may be used to generate GUIs for Extensible Application Markup Language (XAML) or various other runtime platforms and devices. The same abstract representation 506 may be mapped to various runtime representations and device-specific and runtime platform-specific GUIs. In general, in the runtime environment, machine executable instructions specific to a runtime environment may be generated based upon the abstract representation 506 and executed to generate a GUI in the runtime environment. The same XGL representation may be used to generate machine executable instructions specific to different runtime environments and target devices.


According to certain embodiments, the process of mapping a model representation 502 to an abstract representation 506 and mapping an abstract representation 506 to some runtime representation may be automated. For example, design tools may automatically generate an abstract representation for the model representation using XGL and then use the XGL abstract representation to generate GUIs that are customized for specific runtime environments and devices. As previously indicated, mapping rules may be provided for mapping model representations to an XGL representation. Mapping rules may also be provided for mapping an XGL representation to a runtime platform-specific representation.


Since the runtime environment uses abstract representation 506 rather than model representation 502 for runtime processing, the model representation 502 that is created during design-time is decoupled from the runtime environment. Abstract representation 506 thus provides an interface between the modeling environment and the runtime environment. As a result, changes may be made to the design time environment, including changes to model representation 502 or changes that affect model representation 502, generally to not substantially affect or impact the runtime environment or tools used by the runtime environment. Likewise, changes may be made to the runtime environment generally to not substantially affect or impact the design time environment. A designer or other developer can thus concentrate on the design aspects and make changes to the design without having to worry about the runtime dependencies such as the target device platform or programming language dependencies.



FIG. 5B depicts an example process for mapping a model representation 502 to a runtime representation using the example modeling environment 516 of FIG. 5A or some other modeling environment. Model representation 502 may comprise one or more model components and associated properties that describe a data object, such as hosted business objects and interfaces. As described above, at least one of these model components is based on or otherwise associated with these hosted business objects and interfaces. The abstract representation 506 is generated based upon model representation 502. Abstract representation 506 may be generated by the abstract representation generator 504. Abstract representation 506 comprises one or more abstract GUI components and properties associated with the abstract GUI components. As part of generation of abstract representation 506, the model GUI components and their associated properties from the model representation are mapped to abstract GUI components and properties associated with the abstract GUI components. Various mapping rules may be provided to facilitate the mapping. The abstract representation encapsulates both appearance and behavior of a GUI. Therefore, by mapping model components to abstract components, the abstract representation not only specifies the visual appearance of the GUI but also the behavior of the GUI, such as in response to events whether clicking/dragging or scrolling, interactions between GUI components and such.


One or more runtime representations 550a, including GUIs for specific runtime environment platforms, may be generated from abstract representation 506. A device-dependent runtime representation may be generated for a particular type of target device platform to be used for executing and displaying the GUI encapsulated by the abstract representation. The GUIs generated from abstract representation 506 may comprise various types of GUI elements such as buttons, windows, scrollbars, input boxes, etc. Rules may be provided for mapping an abstract representation to a particular runtime representation. Various mapping rules may be provided for different runtime environment platforms.


Methods and systems consistent with the subject matter described herein provide and use interfaces 320 derived from the business object model 318 suitable for use with more than one business area, for example different departments within a company such as finance, or marketing. Also, they are suitable across industries and across businesses. Interfaces 320 are used during an end-to-end business transaction to transfer business process information in an application-independent manner. For example the interfaces can be used for fulfilling a sales order.


1. Message Overview


To perform an end-to-end business transaction, consistent interfaces are used to create business documents that are sent within messages between heterogeneous programs or modules.


a) Message Categories


As depicted in FIG. 6, the communication between a sender 602 and a recipient 604 can be broken down into basic categories that describe the type of the information exchanged and simultaneously suggest the anticipated reaction of the recipient 604. A message category is a general business classification for the messages. Communication is sender-driven. In other words, the meaning of the message categories is established or formulated from the perspective of the sender 602. The message categories include information 606, notification 608, query 610, response 612, request 614, and confirmation 616.


(1) Information


Information 606 is a message sent from a sender 602 to a recipient 604 concerning a condition or a statement of affairs. No reply to information is expected. Information 606 is sent to make business partners or business applications aware of a situation. Information 606 is not compiled to be application-specific. Examples of “information” are an announcement, advertising, a report, planning information, and a message to the business warehouse.


(2) Notification


A notification 608 is a notice or message that is geared to a service. A sender 602 sends the notification 608 to a recipient 604. No reply is expected for a notification. For example, a billing notification relates to the preparation of an invoice while a dispatched delivery notification relates to preparation for receipt of goods.


(3) Query


A query 610 is a question from a sender 602 to a recipient 604 to which a response 612 is expected. A query 610 implies no assurance or obligation on the part of the sender 602. Examples of a query 610 are whether space is available on a specific flight or whether a specific product is available. These queries do not express the desire for reserving the flight or purchasing the product.


(4) Response


A response 612 is a reply to a query 610. The recipient 604 sends the response 612 to the sender 602. A response 612 generally implies no assurance or obligation on the part of the recipient 604. The sender 602 is not expected to reply. Instead, the process is concluded with the response 612. Depending on the business scenario, a response 612 also may include a commitment, i.e., an assurance or obligation on the part of the recipient 604. Examples of responses 612 are a response stating that space is available on a specific flight or that a specific product is available. With these responses, no reservation was made.


(5) Request


A request 614 is a binding requisition or requirement from a sender 602 to a recipient 604. Depending on the business scenario, the recipient 604 can respond to a request 614 with a confirmation 616. The request 614 is binding on the sender 602. In making the request 614, the sender 602 assumes, for example, an obligation to accept the services rendered in the request 614 under the reported conditions. Examples of a request 614 are a parking ticket, a purchase order, an order for delivery and a job application.


(6) Confirmation


A confirmation 616 is a binding reply that is generally made to a request 614. The recipient 604 sends the confirmation 616 to the sender 602. The information indicated in a confirmation 616, such as deadlines, products, quantities and prices, can deviate from the information of the preceding request 614. A request 614 and confirmation 616 may be used in negotiating processes. A negotiating process can consist of a series of several request 614 and confirmation 616 messages. The confirmation 616 is binding on the recipient 604. For example, 100 units of X may be ordered in a purchase order request; however, only the delivery of 80 units is confirmed in the associated purchase order confirmation.


b) Message Choreography


A message choreography is a template that specifies the sequence of messages between business entities during a given transaction. The sequence with the messages contained in it describes in general the message “lifecycle” as it proceeds between the business entities. If messages from a choreography are used in a business transaction, they appear in the transaction in the sequence determined by the choreography. This illustrates the template character of a choreography, i.e., during an actual transaction, it is not necessary for all messages of the choreography to appear. Those messages that are contained in the transaction, however, follow the sequence within the choreography. A business transaction is thus a derivation of a message choreography. The choreography makes it possible to determine the structure of the individual message types more precisely and distinguish them from one another.


2. Components of the Business Object Model


The overall structure of the business object model ensures the consistency of the interfaces that are derived from the business object model. The derivation ensures that the same business-related subject matter or concept is represented and structured in the same way in all interfaces.


The business object model defines the business-related concepts at a central location for a number of business transactions. In other words, it reflects the decisions made about modeling the business entities of the real world acting in business transactions across industries and business areas. The business object model is defined by the business objects and their relationship to each other (the overall net structure).


Each business object is generally a capsule with an internal hierarchical structure, behavior offered by its operations, and integrity constraints. Business objects are semantically disjoint, i.e., the same business information is represented once. In the business object model, the business objects are arranged in an ordering framework. From left to right, they are arranged according to their existence dependency to each other. For example, the customizing elements may be arranged on the left side of the business object model, the strategic elements may be arranged in the center of the business object model, and the operative elements may be arranged on the right side of the business object model. Similarly, the business objects are arranged from the top to the bottom based on defined order of the business areas, e.g., finance could be arranged at the top of the business object model with CRM below finance and SRM below CRM.


To ensure the consistency of interfaces, the business object model may be built using standardized data types as well as packages to group related elements together, and package templates and entity templates to specify the arrangement of packages and entities within the structure.


a) Data Types


Data types are used to type object entities and interfaces with a structure. This typing can include business semantic. Such data types may include those generally described at pages 96 through 1642 (which are incorporated by reference herein) of U.S. patent application Ser. No. 11/803,178, filed on May 11, 2007 and entitled “Consistent Set Of Interfaces Derived From A Business Object Model”. For example, the data type BusinessTransactionDocumentID is a unique identifier for a document in a business transaction. Also, as an example, Data type BusinessTransactionDocumentParty contains the information that is exchanged in business documents about a party involved in a business transaction, and includes the party's identity, the party's address, the party's contact person and the contact person's address. BusinessTransactionDocumentParty also includes the role of the party, e.g., a buyer, seller, product recipient, or vendor.


The data types are based on Core Component Types (“CCTs”), which themselves are based on the World Wide Web Consortium (“W3C”) data types. “Global” data types represent a business situation that is described by a fixed structure. Global data types include both context-neutral generic data types (“GDTs”) and context-based context data types (“CDTs”). GDTs contain business semantics, but are application-neutral, i.e., without context. CDTs, on the other hand, are based on GDTs and form either a use-specific view of the GDTs, or a context-specific assembly of GDTs or CDTs. A message is typically constructed with reference to a use and is thus a use-specific assembly of GDTs and CDTs. The data types can be aggregated to complex data types.


To achieve a harmonization across business objects and interfaces, the same subject matter is typed with the same data type. For example, the data type “GeoCoordinates” is built using the data type “Measure” so that the measures in a GeoCoordinate (i.e., the latitude measure and the longitude measure) are represented the same as other “Measures” that appear in the business object model.


b) Entities


Entities are discrete business elements that are used during a business transaction. Entities are not to be confused with business entities or the components that interact to perform a transaction. Rather, “entities” are one of the layers of the business object model and the interfaces. For example, a Catalogue entity is used in a Catalogue Publication Request and a Purchase Order is used in a Purchase Order Request. These entities are created using the data types defined above to ensure the consistent representation of data throughout the entities.


c) Packages


Packages group the entities in the business object model and the resulting interfaces into groups of semantically associated information. Packages also may include “sub”-packages, i.e., the packages may be nested.


Packages may group elements together based on different factors, such as elements that occur together as a rule with regard to a business-related aspect. For example, as depicted in FIG. 7, in a Purchase Order, different information regarding the purchase order, such as the type of payment 702, and payment card 704, are grouped together via the PaymentInformation package 700.


Packages also may combine different components that result in a new object. For example, as depicted in FIG. 8, the components wheels 804, motor 806, and doors 808 are combined to form a composition “Car” 802. The “Car” package 800 includes the wheels, motor and doors as well as the composition “Car.”


Another grouping within a package may be subtypes within a type. In these packages, the components are specialized forms of a generic package. For example, as depicted in FIG. 9, the components Car 904, Boat 906, and Truck 908 can be generalized by the generic term Vehicle 902 in Vehicle package 900. Vehicle in this case is the generic package 910, while Car 912, Boat 914, and Truck 916 are the specializations 918 of the generalized vehicle 910.


Packages also may be used to represent hierarchy levels. For example, as depicted in FIG. 10, the Item Package 1000 includes Item 1002 with subitem xxx 1004, subitem yyy 1006, and subitem zzz 1008.


Packages can be represented in the XML schema as a comment. One advantage of this grouping is that the document structure is easier to read and is more understandable. The names of these packages are assigned by including the object name in brackets with the suffix “Package.” For example, as depicted in FIG. 11, Party package 1100 is enclosed by <PartyPackage> 1102 and </PartyPackage> 1104. Party package 1100 illustratively includes a Buyer Party 1106, identified by <BuyerParty> 1108 and </BuyerParty> 1110, and a Seller Party 1112, identified by <SellerParty> 1114 and </SellerParty>, etc.


d) Relationships


Relationships describe the interdependencies of the entities in the business object model, and are thus an integral part of the business object model.


(1) Cardinality of Relationships



FIG. 12 depicts a graphical representation of the cardinalities between two entities. The cardinality between a first entity and a second entity identifies the number of second entities that could possibly exist for each first entity. Thus, a 1:c cardinality 1200 between entities A 1202 and X 1204 indicates that for each entity A 1202, there is either one or zero 1206 entity X 1204. A 1:1 cardinality 1208 between entities A 1210 and X 1212 indicates that for each entity A 1210, there is exactly one 1214 entity X 1212. A 1:n cardinality 1216 between entities A 1218 and X 1220 indicates that for each entity A 1218, there are one or more 1222 entity Xs 1220. A 1:cn cardinality 1224 between entities A 1226 and X 1228 indicates that for each entity A 1226, there are any number 1230 of entity Xs 1228 (i.e., 0 through n Xs for each A).


(2) Types of Relationships


(a) Composition


A composition or hierarchical relationship type is a strong whole-part relationship which is used to describe the structure within an object. The parts, or dependent entities, represent a semantic refinement or partition of the whole, or less dependent entity. For example, as depicted in FIG. 13, the components 1302, wheels 1304, and doors 1306 may be combined to form the composite 1300 “Car” 1308 using the composition 1310. FIG. 14 depicts a graphical representation of the composition 1410 between composite Car 1408 and components wheel 1404 and door 1406.


(b) Aggregation


An aggregation or an aggregating relationship type is a weak whole-part relationship between two objects. The dependent object is created by the combination of one or several less dependent objects. For example, as depicted in FIG. 15, the properties of a competitor product 1500 are determined by a product 1502 and a competitor 1504. A hierarchical relationship 1506 exists between the product 1502 and the competitor product 1500 because the competitor product 1500 is a component of the product 1502. Therefore, the values of the attributes of the competitor product 1500 are determined by the product 1502. An aggregating relationship 1508 exists between the competitor 1504 and the competitor product 1500 because the competitor product 1500 is differentiated by the competitor 1504. Therefore the values of the attributes of the competitor product 1500 are determined by the competitor 1504.


(c) Association


An association or a referential relationship type describes a relationship between two objects in which the dependent object refers to the less dependent object. For example, as depicted in FIG. 16, a person 1600 has a nationality, and thus, has a reference to its country 1602 of origin. There is an association 1604 between the country 1602 and the person 1600. The values of the attributes of the person 1600 are not determined by the country 1602.


(3) Specialization


Entity types may be divided into subtypes based on characteristics of the entity types. For example, FIG. 17 depicts an entity type “vehicle” 1700 specialized 1702 into subtypes “truck” 1704, “car” 1706, and “ship” 1708. These subtypes represent different aspects or the diversity of the entity type.


Subtypes may be defined based on related attributes. For example, although ships and cars are both vehicles, ships have an attribute, “draft,” that is not found in cars. Subtypes also may be defined based on certain methods that can be applied to entities of this subtype and that modify such entities. For example, “drop anchor” can be applied to ships. If outgoing relationships to a specific object are restricted to a subset, then a subtype can be defined which reflects this subset.


As depicted in FIG. 18, specializations may further be characterized as complete specializations 1800 or incomplete specializations 1802. There is a complete specialization 1800 where each entity of the generalized type belongs to at least one subtype. With an incomplete specialization 1802, there is at least one entity that does not belong to a subtype. Specializations also may be disjoint 1804 or nondisjoint 1806. In a disjoint specialization 1804, each entity of the generalized type belongs to a maximum of one subtype. With a nondisjoint specialization 1806, one entity may belong to more than one subtype. As depicted in FIG. 18, four specialization categories result from the combination of the specialization characteristics.


e) Structural Patterns


(1) Item


An item is an entity type which groups together features of another entity type. Thus, the features for the entity type chart of accounts are grouped together to form the entity type chart of accounts item. For example, a chart of accounts item is a category of values or value flows that can be recorded or represented in amounts of money in accounting, while a chart of accounts is a superordinate list of categories of values or value flows that is defined in accounting.


The cardinality between an entity type and its item is often either 1:n or 1:cn. For example, in the case of the entity type chart of accounts, there is a hierarchical relationship of the cardinality 1:n with the entity type chart of accounts item since a chart of accounts has at least one item in all cases.


(2) Hierarchy


A hierarchy describes the assignment of subordinate entities to superordinate entities and vice versa, where several entities of the same type are subordinate entities that have, at most, one directly superordinate entity. For example, in the hierarchy depicted in FIG. 19, entity B 1902 is subordinate to entity A 1900, resulting in the relationship (A,B) 1912. Similarly, entity C 1904 is subordinate to entity A 1900, resulting in the relationship (A,C) 1914. Entity D 1906 and entity E 1908 are subordinate to entity B 1902, resulting in the relationships (B,D) 1916 and (B,E) 1918, respectively. Entity F 1910 is subordinate to entity C 1904, resulting in the relationship (C,F) 1920.


Because each entity has at most one superordinate entity, the cardinality between a subordinate entity and its superordinate entity is 1:c. Similarly, each entity may have 0, 1 or many subordinate entities. Thus, the cardinality between a superordinate entity and its subordinate entity is 1:cn. FIG. 20 depicts a graphical representation of a Closing Report Structure Item hierarchy 2000 for a Closing Report Structure Item 2002. The hierarchy illustrates the 1:c cardinality 2004 between a subordinate entity and its superordinate entity, and the 1:cn cardinality 2006 between a superordinate entity and its subordinate entity.


3. Creation of the Business Object Model



FIGS. 21A-B depict the steps performed using methods and systems consistent with the subject matter described herein to create a business object model. Although some steps are described as being performed by a computer, these steps may alternatively be performed manually, or computer-assisted, or any combination thereof. Likewise, although some steps are described as being performed by a computer, these steps may also be computer-assisted, or performed manually, or any combination thereof.


As discussed above, the designers create message choreographies that specify the sequence of messages between business entities during a transaction. After identifying the messages, the developers identify the fields contained in one of the messages (step 2100, FIG. 21A). The designers then determine whether each field relates to administrative data or is part of the object (step 2102). Thus, the first eleven fields identified below in the left column are related to administrative data, while the remaining fields are part of the object.


















MessageID
Admin



ReferenceID



CreationDate



SenderID



AdditionalSenderID



ContactPersonID



SenderAddress



RecipientID



AdditionalRecipientID



ContactPersonID



RecipientAddress



ID
Main Object



AdditionalID



PostingDate



LastChangeDate



AcceptanceStatus



Note



CompleteTransmission Indicator



Buyer



BuyerOrganisationName



Person Name



FunctionalTitle



DepartmentName



CountryCode



StreetPostalCode



POBox Postal Code



Company Postal Code



City Name



DistrictName



PO Box ID



PO Box Indicator



PO Box Country Code



PO Box Region Code



PO Box City Name



Street Name



House ID



Building ID



Floor ID



Room ID



Care Of Name



AddressDescription



Telefonnumber



MobileNumber



Facsimile



Email



Seller



SellerAddress



Location



LocationType



DeliveryItemGroupID



DeliveryPriority



DeliveryCondition



TransferLocation



NumberofPartialDelivery



QuantityTolerance



MaximumLeadTime



TransportServiceLevel



TranportCondition



TransportDescription



CashDiscountTerms



PaymentForm



PaymentCardID



PaymentCardReferenceID



SequenceID



Holder



ExpirationDate



AttachmentID



AttachmentFilename



DescriptionofMessage



ConfirmationDescriptionof Message



FollowUpActivity



ItemID



ParentItemID



HierarchyType



ProductID



ProductType



ProductNote



ProductCategoryID



Amount



BaseQuantity



ConfirmedAmount



ConfirmedBaseQuantity



ItemBuyer



ItemBuyerOrganisationName



Person Name



FunctionalTitle



DepartmentName



CountryCode



StreetPostalCode



POBox Postal Code



Company Postal Code



City Name



DistrictName



PO Box ID



PO Box Indicator



PO Box Country Code



PO Box Region Code



PO Box City Name



Street Name



House ID



Building ID



Floor ID



Room ID



Care Of Name



AddressDescription



Telefonnumber



MobilNumber



Facsimile



Email



ItemSeller



ItemSellerAddress



ItemLocation



ItemLocationType



ItemDeliveryItemGroupID



ItemDeliveryPriority



ItemDeliveryCondition



ItemTransferLocation



ItemNumberofPartialDelivery



ItemQuantityTolerance



ItemMaximumLeadTime



ItemTransportServiceLevel



ItemTranportCondition



ItemTransportDescription



ContractReference



QuoteReference



CatalogueReference



ItemAttachmentID



ItemAttachmentFilename



ItemDescription



ScheduleLineID



DeliveryPeriod



Quantity



ConfirmedScheduleLineID



ConfirmedDeliveryPeriod



ConfirmedQuantity










Next, the designers determine the proper name for the object according to the ISO 11179 naming standards (step 2104). In the example above, the proper name for the “Main Object” is “Purchase Order.” After naming the object, the system that is creating the business object model determines whether the object already exists in the business object model (step 2106). If the object already exists, the system integrates new attributes from the message into the existing object (step 2108), and the process is complete.


If at step 2106 the system determines that the object does not exist in the business object model, the designers model the internal object structure (step 2110). To model the internal structure, the designers define the components. For the above example, the designers may define the components identified below.

















ID
Purchase




AdditionalID
Order


PostingDate


LastChangeDate


AcceptanceStatus


Note


CompleteTransmission


Indicator


Buyer

Buyer


BuyerOrganisationName


Person Name


FunctionalTitle


DepartmentName


CountryCode


StreetPostalCode


POBox Postal Code


Company Postal Code


City Name


DistrictName


PO Box ID


PO Box Indicator


PO Box Country Code


PO Box Region Code


PO Box City Name


Street Name


House ID


Building ID


Floor ID


Room ID


Care Of Name


AddressDescription


Telefonnumber


MobileNumber


Facsimile


Email


Seller

Seller


SellerAddress


Location

Location


LocationType


DeliveryItemGroupID

Delivery-


DeliveryPriority

Terms


DeliveryCondition


TransferLocation


NumberofPartialDelivery


QuantityTolerance


MaximumLeadTime


TransportServiceLevel


TranportCondition


TransportDescription


CashDiscountTerms


PaymentForm

Payment


PaymentCardID


PaymentCardReferenceID


SequenceID


Holder


ExpirationDate


AttachmentID


AttachmentFilename


DescriptionofMessage


ConfirmationDescriptionof


Message


FollowUpActivity


ItemID

Purchase


ParentItemID

Order Item


HierarchyType


ProductID


Product


ProductType


ProductNote


ProductCategoryID


ProductCategory


Amount


BaseQuantity


ConfirmedAmount


ConfirmedBaseQuantity


ItemBuyer


Buyer


ItemBuyerOrganisation


Name


Person Name


FunctionalTitle


DepartmentName


CountryCode


StreetPostalCode


POBox Postal Code


Company Postal Code


City Name


DistrictName


PO Box ID


PO Box Indicator


PO Box Country Code


PO Box Region Code


PO Box City Name


Street Name


House ID


Building ID


Floor ID


Room ID


Care Of Name


AddressDescription


Telefonnumber


MobilNumber


Facsimile


Email


ItemSeller


Seller


ItemSellerAddress


ItemLocation


Location


ItemLocationType


ItemDeliveryItemGroupID


ItemDeliveryPriority


ItemDeliveryCondition


ItemTransferLocation


ItemNumberofPartial


Delivery


ItemQuantityTolerance


ItemMaximumLeadTime


ItemTransportServiceLevel


ItemTranportCondition


ItemTransportDescription


ContractReference


Contract


QuoteReference


Quote


CatalogueReference


Catalogue


ItemAttachmentID


ItemAttachmentFilename


ItemDescription


ScheduleLineID


DeliveryPeriod


Quantity


ConfirmedScheduleLineID


ConfirmedDeliveryPeriod


ConfirmedQuantity









During the step of modeling the internal structure, the designers also model the complete internal structure by identifying the compositions of the components and the corresponding cardinalities, as shown below.


















PurchaseOrder



1



Buyer


0 . . . 1




Address

0 . . . 1




ContactPerson

0 . . . 1





Address
0 . . . 1



Seller


0 . . . 1



Location


0 . . . 1




Address

0 . . . 1



DeliveryTerms


0 . . . 1




Incoterms

0 . . . 1




PartialDelivery

0 . . . 1




QuantityTolerance

0 . . . 1




Transport

0 . . . 1



CashDiscount


0 . . . 1



Terms




MaximumCashDiscount

0 . . . 1




NormalCashDiscount

0 . . . 1



PaymentForm


0 . . . 1




PaymentCard

0 . . . 1



Attachment


0 . . . n



Description


0 . . . 1



Confirmation


0 . . . 1



Description



Item


0 . . . n




HierarchyRelationship

0 . . . 1




Product

0 . . . 1




ProductCategory

0 . . . 1




Price

0 . . . 1





NetunitPrice
0 . . . 1




ConfirmedPrice

0 . . . 1





NetunitPrice
0 . . . 1




Buyer

0 . . . 1




Seller

0 . . . 1




Location

0 . . . 1




DeliveryTerms

0 . . . 1




Attachment

0 . . . n




Description

0 . . . 1




ConfirmationDescription

0 . . . 1




ScheduleLine

0 . . . n





DeliveryPeriod
1




ConfirmedScheduleLine

0 . . . n









After modeling the internal object structure, the developers identify the subtypes and generalizations for all objects and components (step 2112). For example, the Purchase Order may have subtypes Purchase Order Update, Purchase Order Cancellation and Purchase Order Information. Purchase Order Update may include Purchase Order Request, Purchase Order Change, and Purchase Order Confirmation. Moreover, Party may be identified as the generalization of Buyer and Seller. The subtypes and generalizations for the above example are shown below.



















Purchase




1


Order



PurchaseOrder



Update




PurchaseOrder Request




PurchaseOrder Change




PurchaseOrder




Confirmation



PurchaseOrder



Cancellation



PurchaseOrder



Information



Party




BuyerParty


0 . . . 1





Address

0 . . . 1





ContactPerson

0 . . . 1






Address
0 . . . 1




SellerParty


0 . . . 1



Location




ShipToLocation


0 . . . 1





Address

0 . . . 1




ShipFromLocation


0 . . . 1





Address

0 . . . 1



DeliveryTerms



0 . . . 1




Incoterms


0 . . . 1




PartialDelivery


0 . . . 1




QuantityTolerance


0 . . . 1




Transport


0 . . . 1



CashDiscount



0 . . . 1



Terms




MaximumCash Discount


0 . . . 1




NormalCashDiscount


0 . . . 1



PaymentForm



0 . . . 1




PaymentCard


0 . . . 1



Attachment



0 . . . n



Description



0 . . . 1



Confirmation



0 . . . 1



Description



Item



0 . . . n




HierarchyRelationship


0 . . . 1




Product


0 . . . 1




ProductCategory


0 . . . 1




Price


0 . . . 1





NetunitPrice

0 . . . 1




ConfirmedPrice


0 . . . 1





NetunitPrice

0 . . . 1




Party





BuyerParty

0 . . . 1





SellerParty

0 . . . 1




Location





ShipTo

0 . . . 1





Location





ShipFrom

0 . . . 1





Location




DeliveryTerms


0 . . . 1




Attachment


0 . . . n




Description


0 . . . 1




Confirmation


0 . . . 1




Description




ScheduleLine


0 . . . n





Delivery

1





Period




ConfirmedScheduleLine


0 . . . n









After identifying the subtypes and generalizations, the developers assign the attributes to these components (step 2114). The attributes for a portion of the components are shown below.


















Purchase



1


Order



ID


1



SellerID


0 . . . 1



BuyerPosting


0 . . . 1



DateTime



BuyerLast


0 . . . 1



ChangeDate



Time



SellerPosting


0 . . . 1



DateTime



SellerLast


0 . . . 1



ChangeDate



Time



Acceptance


0 . . . 1



StatusCode



Note


0 . . . 1



ItemList


0 . . . 1



Complete



Transmission



Indicator



BuyerParty


0 . . . 1




StandardID

0 . . . n




BuyerID

0 . . . 1




SellerID

0 . . . 1




Address

0 . . . 1




ContactPerson

0 . . . 1





BuyerID
0 . . . 1





SellerID
0 . . . 1





Address
0 . . . 1



SellerParty


0 . . . 1



Product


0 . . . 1



RecipientParty



VendorParty


0 . . . 1



Manufacturer


0 . . . 1



Party



BillToParty


0 . . . 1



PayerParty


0 . . . 1



CarrierParty


0 . . . 1



ShipTo


0 . . . 1



Location




StandardID

0 . . . n




BuyerID

0 . . . 1




SellerID

0 . . . 1




Address

0 . . . 1



ShipFrom


0 . . . 1



Location









The system then determines whether the component is one of the object nodes in the business object model (step 2116, FIG. 21B). If the system determines that the component is one of the object nodes in the business object model, the system integrates a reference to the corresponding object node from the business object model into the object (step 2118). In the above example, the system integrates the reference to the Buyer party represented by an ID and the reference to the ShipToLocation represented by an into the object, as shown below. The attributes that were formerly located in the PurchaseOrder object are now assigned to the new found object party. Thus, the attributes are removed from the PurchaseOrder object.



















PurchaseOrder






ID




SellerID




BuyerPostingDateTime




BuyerLastChangeDateTime




SellerPostingDateTime




SellerLastChangeDateTime




AcceptanceStatusCode




Note




ItemListComplete




TransmissionIndicator




BuyerParty





ID




SellerParty




ProductRecipientParty




VendorParty




ManufacturerParty




BillToParty




PayerParty




CarrierParty




ShipToLocation





ID




ShipFromLocation










During the integration step, the designers classify the relationship (i.e., aggregation or association) between the object node and the object being integrated into the business object model. The system also integrates the new attributes into the object node (step 2120). If at step 2116, the system determines that the component is not in the business object model, the system adds the component to the business object model (step 2122).


Regardless of whether the component was in the business object model at step 2116, the next step in creating the business object model is to add the integrity rules (step 2124). There are several levels of integrity rules and constraints which should be described. These levels include consistency rules between attributes, consistency rules between components, and consistency rules to other objects. Next, the designers determine the services offered, which can be accessed via interfaces (step 2126). The services offered in the example above include PurchaseOrderCreateRequest, PurchaseOrderCancellationRequest, and PurchaseOrderReleaseRequest. The system then receives an indication of the location for the object in the business object model (step 2128). After receiving the indication of the location, the system integrates the object into the business object model (step 2130).


4. Structure of the Business Object Model


The business object model, which serves as the basis for the process of generating consistent interfaces, includes the elements contained within the interfaces. These elements are arranged in a hierarchical structure within the business object model.


5. Interfaces Derived from Business Object Model


Interfaces are the starting point of the communication between two business entities. The structure of each interface determines how one business entity communicates with another business entity. The business entities may act as a unified whole when, based on the business scenario, the business entities know what an interface contains from a business perspective and how to fill the individual elements or fields of the interface. As illustrated in FIG. 27A, communication between components takes place via messages that contain business documents (e.g., business document 27002). The business document 27002 ensures a holistic business-related understanding for the recipient of the message. The business documents are created and accepted or consumed by interfaces, specifically by inbound and outbound interfaces. The interface structure and, hence, the structure of the business document are derived by a mapping rule. This mapping rule is known as “hierarchization.” An interface structure thus has a hierarchical structure created based on the leading business object 27000. The interface represents a usage-specific, hierarchical view of the underlying usage-neutral object model.


As illustrated in FIG. 27B, several business document objects 27006, 27008, and 27010 as overlapping views may be derived for a given leading object 27004. Each business document object results from the object model by hierarchization.


To illustrate the hierarchization process, FIG. 27C depicts an example of an object model 27012 (i.e., a portion of the business object model) that is used to derive a service operation signature (business document object structure). As depicted, leading object X 27014 in the object model 27012 is integrated in a net of object A 27016, object B 27018, and object C 27020. Initially, the parts of the leading object 27014 that are required for the business object document are adopted. In one variation, all parts required for a business document object are adopted from leading object 27014 (making such an operation a maximal service operation). Based on these parts, the relationships to the superordinate objects (i.e., objects A, B, and C from which object X depends) are inverted. In other words, these objects are adopted as dependent or subordinate objects in the new business document object.


For example, object A 27016, object B 27018, and object C 27020 have information that characterize object X. Because object A 27016, object B 27018, and object C 27020 are superordinate to leading object X 27014, the dependencies of these relationships change so that object A 27016, object B 27018, and object C 27020 become dependent and subordinate to leading object X 27014. This procedure is known as “derivation of the business document object by hierarchization.”


Business-related objects generally have an internal structure (parts). This structure can be complex and reflect the individual parts of an object and their mutual dependency. When creating the operation signature, the internal structure of an object is strictly hierarchized. Thus, dependent parts keep their dependency structure, and relationships between the parts within the object that do not represent the hierarchical structure are resolved by prioritizing one of the relationships.


Relationships of object X to external objects that are referenced and whose information characterizes object X are added to the operation signature. Such a structure can be quite complex (see, for example, FIG. 27D). The cardinality to these referenced objects is adopted as 1:1 or 1:C, respectively. By this, the direction of the dependency changes. The required parts of this referenced object are adopted identically, both in their cardinality and in their dependency arrangement.


The newly created business document object contains all required information, including the incorporated master data information of the referenced objects. As depicted in FIG. 27D, components Xi in leading object X 27022 are adopted directly. The relationship of object X 27022 to object A 27024, object B 27028, and object C 27026 are inverted, and the parts required by these objects are added as objects that depend from object X 27022. As depicted, all of object A 27024 is adopted. B3 and B4 are adopted from object B 27028, but B1 is not adopted. From object C 27026, C2 and C1 are adopted, but C3 is not adopted.



FIG. 27E depicts the business document object X 27030 created by this hierarchization process. As shown, the arrangement of the elements corresponds to their dependency levels, which directly leads to a corresponding representation as an XML structure 27032.


The following provides certain rules that can be adopted singly or in combination with regard to the hierarchization process. A business document object always refers to a leading business document object and is derived from this object. The name of the root entity in the business document entity is the name of the business object or the name of a specialization of the business object or the name of a service specific view onto the business object. The nodes and elements of the business object that are relevant (according to the semantics of the associated message type) are contained as entities and elements in the business document object.


The name of a business document entity is predefined by the name of the corresponding business object node. The name of the superordinate entity is not repeated in the name of the business document entity. The “full” semantic name results from the concatenation of the entity names along the hierarchical structure of the business document object.


The structure of the business document object is, except for deviations due to hierarchization, the same as the structure of the business object. The cardinalities of the business document object nodes and elements are adopted identically or more restrictively to the business document object. An object from which the leading business object is dependent can be adopted to the business document object. For this arrangement, the relationship is inverted, and the object (or its parts, respectively) are hierarchically subordinated in the business document object.


Nodes in the business object representing generalized business information can be adopted as explicit entities to the business document object (generally speaking, multiply TypeCodes out). When this adoption occurs, the entities are named according to their more specific semantic (name of TypeCode becomes prefix). Party nodes of the business object are modeled as explicit entities for each party role in the business document object. These nodes are given the name <Prefix> <Party Role>Party, for example, BuyerParty, ItemBuyerParty. BTDReference nodes are modeled as separate entities for each reference type in the business document object. These nodes are given the name <Qualifier> <BO> <Node>Reference, for example SalesOrderReference, OriginSalesOrderReference, SalesOrderItemReference. A product node in the business object comprises all of the information on the Product, ProductCategory, and Batch. This information is modeled in the business document object as explicit entities for Product, ProductCategory, and Batch.


Entities which are connected by a 1:1 relationship as a result of hierarchization can be combined to a single entity, if they are semantically equivalent. Such a combination can often occurs if a node in the business document object that results from an assignment node is removed because it does not have any elements.


The message type structure is typed with data types. Elements are typed by GDTs according to their business objects. Aggregated levels are typed with message type specific data types (Intermediate Data Types), with their names being built according to the corresponding paths in the message type structure. The whole message type structured is typed by a message data type with its name being built according to the root entity with the suffix “Message”. For the message type, the message category (e.g., information, notification, query, response, request, confirmation, etc.) is specified according to the suited transaction communication pattern.


In one variation, the derivation by hierarchization can be initiated by specifying a leading business object and a desired view relevant for a selected service operation. This view determines the business document object. The leading business object can be the source object, the target object, or a third object. Thereafter, the parts of the business object required for the view are determined. The parts are connected to the root node via a valid path along the hierarchy. Thereafter, one or more independent objects (object parts, respectively) referenced by the leading object which are relevant for the service may be determined (provided that a relationship exists between the leading object and the one or more independent objects).


Once the selection is finalized, relevant nodes of the leading object node that are structurally identical to the message type structure can then be adopted. If nodes are adopted from independent objects or object parts, the relationships to such independent objects or object parts are inverted. Linearization can occur such that a business object node containing certain TypeCodes is represented in the message type structure by explicit entities (an entity for each value of the TypeCode). The structure can be reduced by checking all 1:1 cardinalities in the message type structure. Entities can be combined if they are semantically equivalent, one of the entities carries no elements, or an entity solely results from an n:m assignment in the business object.


After the hierarchization is completed, information regarding transmission of the business document object (e.g., CompleteTransmissionIndicator, ActionCodes, message category, etc.) can be added. A standardized message header can be added to the message type structure and the message structure can be typed. Additionally, the message category for the message type can be designated.


Invoice Request and Invoice Confirmation are examples of interfaces. These invoice interfaces are used to exchange invoices and invoice confirmations between an invoicing party and an invoice recipient (such as between a seller and a buyer) in a B2B process. Companies can create invoices in electronic as well as in paper form. Traditional methods of communication, such as mail or fax, for invoicing are cost intensive, prone to error, and relatively slow, since the data is recorded manually. Electronic communication eliminates such problems. The motivating business scenarios for the Invoice Request and Invoice Confirmation interfaces are the Procure to Stock (PTS) and Sell from Stock (SFS) scenarios. In the PTS scenario, the parties use invoice interfaces to purchase and settle goods. In the SFS scenario, the parties use invoice interfaces to sell and invoice goods. The invoice interfaces directly integrate the applications implementing them and also form the basis for mapping data to widely-used XML standard formats such as RosettaNet, PIDX, xCBL, and CIDX.


The invoicing party may use two different messages to map a B2B invoicing process: (1) the invoicing party sends the message type InvoiceRequest to the invoice recipient to start a new invoicing process; and (2) the invoice recipient sends the message type InvoiceConfirmation to the invoicing party to confirm or reject an entire invoice or to temporarily assign it the status “pending.”


An InvoiceRequest is a legally binding notification of claims or liabilities for delivered goods and rendered services—usually, a payment request for the particular goods and services. The message type InvoiceRequest is based on the message data type InvoiceMessage. The InvoiceRequest message (as defined) transfers invoices in the broader sense. This includes the specific invoice (request to settle a liability), the debit memo, and the credit memo.


InvoiceConfirmation is a response sent by the recipient to the invoicing party confirming or rejecting the entire invoice received or stating that it has been assigned temporarily the status “pending.” The message type InvoiceConfirmation is based on the message data type InvoiceMessage. An InvoiceConfirmation is not mandatory in a B2B invoicing process, however, it automates collaborative processes and dispute management.


Usually, the invoice is created after it has been confirmed that the goods were delivered or the service was provided. The invoicing party (such as the seller) starts the invoicing process by sending an InvoiceRequest message. Upon receiving the InvoiceRequest message, the invoice recipient (for instance, the buyer) can use the InvoiceConfirmation message to completely accept or reject the invoice received or to temporarily assign it the status “pending.” The InvoiceConfirmation is not a negotiation tool (as is the case in order management), since the options available are either to accept or reject the entire invoice. The invoice data in the InvoiceConfirmation message merely confirms that the invoice has been forwarded correctly and does not communicate any desired changes to the invoice. Therefore, the InvoiceConfirmation includes the precise invoice data that the invoice recipient received and checked. If the invoice recipient rejects an invoice, the invoicing party can send a new invoice after checking the reason for rejection (AcceptanceStatus and ConfirmationDescription at Invoice and InvoiceItem level). If the invoice recipient does not respond, the invoice is generally regarded as being accepted and the invoicing party can expect payment.



FIGS. 22A-F depict a flow diagram of the steps performed by methods and systems consistent with the subject matter described herein to generate an interface from the business object model. Although described as being performed by a computer, these steps may alternatively be performed manually, or using any combination thereof. The process begins when the system receives an indication of a package template from the designer, i.e., the designer provides a package template to the system (step 2200).


Package templates specify the arrangement of packages within a business transaction document. Package templates are used to define the overall structure of the messages sent between business entities. Methods and systems consistent with the subject matter described herein use package templates in conjunction with the business object model to derive the interfaces.


The system also receives an indication of the message type from the designer (step 2202). The system selects a package from the package template (step 2204), and receives an indication from the designer whether the package is required for the interface (step 2206). If the package is not required for the interface, the system removes the package from the package template (step 2208). The system then continues this analysis for the remaining packages within the package template (step 2210).


If, at step 2206, the package is required for the interface, the system copies the entity template from the package in the business object model into the package in the package template (step 2212, FIG. 22B). The system determines whether there is a specialization in the entity template (step 2214). If the system determines that there is a specialization in the entity template, the system selects a subtype for the specialization (step 2216). The system may either select the subtype for the specialization based on the message type, or it may receive this information from the designer. The system then determines whether there are any other specializations in the entity template (step 2214). When the system determines that there are no specializations in the entity template, the system continues this analysis for the remaining packages within the package template (step 2210, FIG. 22A).


At step 2210, after the system completes its analysis for the packages within the package template, the system selects one of the packages remaining in the package template (step 2218, FIG. 22C), and selects an entity from the package (step 2220). The system receives an indication from the designer whether the entity is required for the interface (step 2222). If the entity is not required for the interface, the system removes the entity from the package template (step 2224). The system then continues this analysis for the remaining entities within the package (step 2226), and for the remaining packages within the package template (step 2228).


If, at step 2222, the entity is required for the interface, the system retrieves the cardinality between a superordinate entity and the entity from the business object model (step 2230, FIG. 22D). The system also receives an indication of the cardinality between the superordinate entity and the entity from the designer (step 2232). The system then determines whether the received cardinality is a subset of the business object model cardinality (step 2234). If the received cardinality is not a subset of the business object model cardinality, the system sends an error message to the designer (step 2236). If the received cardinality is a subset of the business object model cardinality, the system assigns the received cardinality as the cardinality between the superordinate entity and the entity (step 2238). The system then continues this analysis for the remaining entities within the package (step 2226, FIG. 22C), and for the remaining packages within the package template (step 2228).


The system then selects a leading object from the package template (step 2240, FIG. 22E). The system determines whether there is an entity superordinate to the leading object (step 2242). If the system determines that there is an entity superordinate to the leading object, the system reverses the direction of the dependency (step 2244) and adjusts the cardinality between the leading object and the entity (step 2246). The system performs this analysis for entities that are superordinate to the leading object (step 2242). If the system determines that there are no entities superordinate to the leading object, the system identifies the leading object as analyzed (step 2248).


The system then selects an entity that is subordinate to the leading object (step 2250, FIG. 22F). The system determines whether any non-analyzed entities are superordinate to the selected entity (step 2252). If a non-analyzed entity is superordinate to the selected entity, the system reverses the direction of the dependency (step 2254) and adjusts the cardinality between the selected entity and the non-analyzed entity (step 2256). The system performs this analysis for non-analyzed entities that are superordinate to the selected entity (step 2252). If the system determines that there are no non-analyzed entities superordinate to the selected entity, the system identifies the selected entity as analyzed (step 2258), and continues this analysis for entities that are subordinate to the leading object (step 2260). After the packages have been analyzed, the system substitutes the BusinessTransactionDocument (“BTD”) in the package template with the name of the interface (step 2262). This includes the “BTD” in the BTDItem package and the “BTD” in the BTDItemScheduleLine package.


6. Use of an Interface


The XI stores the interfaces (as an interface type). At runtime, the sending party's program instantiates the interface to create a business document, and sends the business document in a message to the recipient. The messages are preferably defined using XML. In the example depicted in FIG. 23, the Buyer 2300 uses an application 2306 in its system to instantiate an interface 2308 and create an interface object or business document object 2310. The Buyer's application 2306 uses data that is in the sender's component-specific structure and fills the business document object 2310 with the data. The Buyer's application 2306 then adds message identification 2312 to the business document and places the business document into a message 2302. The Buyer's application 2306 sends the message 2302 to the Vendor 2304. The Vendor 2304 uses an application 2314 in its system to receive the message 2302 and store the business document into its own memory. The Vendor's application 2314 unpacks the message 2302 using the corresponding interface 2316 stored in its XI to obtain the relevant data from the interface object or business document object 2318.


From the component's perspective, the interface is represented by an interface proxy 2400, as depicted in FIG. 24. The proxies 2400 shield the components 2402 of the sender and recipient from the technical details of sending messages 2404 via XI. In particular, as depicted in FIG. 25, at the sending end, the Buyer 2500 uses an application 2510 in its system to call an implemented method 2512, which generates the outbound proxy 2506. The outbound proxy 2506 parses the internal data structure of the components and converts them to the XML structure in accordance with the business document object. The outbound proxy 2506 packs the document into a message 2502. Transport, routing and mapping the XML message to the recipient 28304 is done by the routing system (XI, modeling environment 516, etc.).


When the message arrives, the recipient's inbound proxy 2508 calls its component-specific method 2514 for creating a document. The proxy 2508 at the receiving end downloads the data and converts the XML structure into the internal data structure of the recipient component 2504 for further processing.


As depicted in FIG. 26A, a message 2600 includes a message header 2602 and a business document 2604. The message 2600 also may include an attachment 2606. For example, the sender may attach technical drawings, detailed specifications or pictures of a product to a purchase order for the product. The business document 2604 includes a business document message header 2608 and the business document object 2610. The business document message header 2608 includes administrative data, such as the message ID and a message description. As discussed above, the structure 2612 of the business document object 2610 is derived from the business object model 2614. Thus, there is a strong correlation between the structure of the business document object and the structure of the business object model. The business document object 2610 forms the core of the message 2600.


In collaborative processes as well as Q&A processes, messages should refer to documents from previous messages. A simple business document object ID or object ID is insufficient to identify individual messages uniquely because several versions of the same business document object can be sent during a transaction. A business document object ID with a version number also is insufficient because the same version of a business document object can be sent several times. Thus, messages require several identifiers during the course of a transaction.


As depicted in FIG. 26B, the message header 2618 in message 2616 includes a technical ID (“ID4”) 2622 that identifies the address for a computer to route the message. The sender's system manages the technical ID 2622.


The administrative information in the business document message header 2624 of the payload or business document 2620 includes a BusinessDocumentMessageID (“ID3”) 2628. The business entity or component 2632 of the business entity manages and sets the BusinessDocumentMessageID 2628. The business entity or component 2632 also can refer to other business documents using the BusinessDocumentMessageID 2628. The receiving component 2632 requires no knowledge regarding the structure of this ID. The BusinessDocumentMessageID 2628 is, as an ID, unique. Creation of a message refers to a point in time. No versioning is typically expressed by the ID. Besides the BusinessDocumentMessageID 2628, there also is a business document object ID 2630, which may include versions.


The component 2632 also adds its own component object ID 2634 when the business document object is stored in the component. The component object ID 2634 identifies the business document object when it is stored within the component. However, not all communication partners may be aware of the internal structure of the component object ID 2634. Some components also may include a versioning in their ID 2634.


7. Use of Interfaces Across Industries


Methods and systems consistent with the subject matter described herein provide interfaces that may be used across different business areas for different industries. Indeed, the interfaces derived using methods and systems consistent with the subject matter described herein may be mapped onto the interfaces of different industry standards. Unlike the interfaces provided by any given standard that do not include the interfaces required by other standards, methods and systems consistent with the subject matter described herein provide a set of consistent interfaces that correspond to the interfaces provided by different industry standards. Due to the different fields provided by each standard, the interface from one standard does not easily map onto another standard. By comparison, to map onto the different industry standards, the interfaces derived using methods and systems consistent with the subject matter described herein include most of the fields provided by the interfaces of different industry standards. Missing fields may easily be included into the business object model. Thus, by derivation, the interfaces can be extended consistently by these fields. Thus, methods and systems consistent with the subject matter described herein provide consistent interfaces or services that can be used across different industry standards.


For example, FIG. 28 illustrates an example method 2800 for service enabling. In this example, the enterprise services infrastructure may offer one common and standard-based service infrastructure. Further, one central enterprise services repository may support uniform service definition, implementation and usage of services for user interface, and cross-application communication. In step 2801, a business object is defined via a process component model in a process modeling phase. Next, in step 2802, the business object is designed within an enterprise services repository. For example, FIG. 29 provides a graphical representation of one of the business objects 2900. As shown, an innermost layer or kernel 2901 of the business object may represent the business object's inherent data. Inherent data may include, for example, an employee's name, age, status, position, address, etc. A second layer 2902 may be considered the business object's logic. Thus, the layer 2902 includes the rules for consistently embedding the business object in a system environment as well as constraints defining values and domains applicable to the business object. For example, one such constraint may limit sale of an item only to a customer with whom a company has a business relationship. A third layer 2903 includes validation options for accessing the business object. For example, the third layer 2903 defines the business object's interface that may be interfaced by other business objects or applications. A fourth layer 2904 is the access layer that defines technologies that may externally access the business object.


Accordingly, the third layer 2903 separates the inherent data of the first layer 2901 and the technologies used to access the inherent data. As a result of the described structure, the business object reveals only an interface that includes a set of clearly defined methods. Thus, applications access the business object via those defined methods. An application wanting access to the business object and the data associated therewith usually includes the information or data to execute the clearly defined methods of the business object's interface. Such clearly defined methods of the business object's interface represent the business object's behavior. That is, when the methods are executed, the methods may change the business object's data. Therefore, an application may utilize any business object by providing the information or data without having any concern for the details related to the internal operation of the business object. Returning to method 2800, a service provider class and data dictionary elements are generated within a development environment at step 2803. In step 2804, the service provider class is implemented within the development environment.



FIG. 30 illustrates an example method 3000 for a process agent framework. For example, the process agent framework may be the basic infrastructure to integrate business processes located in different deployment units. It may support a loose coupling of these processes by message based integration. A process agent may encapsulate the process integration logic and separate it from business logic of business objects. As shown in FIG. 30, an integration scenario and a process component interaction model are defined during a process modeling phase in step 3001. In step 3002, required interface operations and process agents are identified during the process modeling phase also. Next, in step 3003, a service interface, service interface operations, and the related process agent are created within an enterprise services repository as defined in the process modeling phase. In step 3004, a proxy class for the service interface is generated. Next, in step 3005, a process agent class is created and the process agent is registered. In step 3006, the agent class is implemented within a development environment.



FIG. 31 illustrates an example method 3100 for status and action management (S&AM). For example, status and action management may describe the life cycle of a business object (node) by defining actions and statuses (as their result) of the business object (node), as well as, the constraints that the statuses put on the actions. In step 3101, the status and action management schemas are modeled per a relevant business object node within an enterprise services repository. In step 3102, existing statuses and actions from the business object model are used or new statuses and actions are created. Next, in step 3103, the schemas are simulated to verify correctness and completeness. In step 3104, missing actions, statuses, and derivations are created in the business object model with the enterprise services repository. Continuing with method 3100, the statuses are related to corresponding elements in the node in step 3105. In step 3106, status code GDT's are generated, including constants and code list providers. Next, in step 3107, a proxy class for a business object service provider is generated and the proxy class S&AM schemas are imported. In step 3108, the service provider is implemented and the status and action management runtime interface is called from the actions.


Regardless of the particular hardware or software architecture used, the disclosed systems or software are generally capable of implementing business objects and deriving (or otherwise utilizing) consistent interfaces that are suitable for use across industries, across businesses, and across different departments within a business in accordance with some or all of the following description. In short, system 100 contemplates using any appropriate combination and arrangement of logical elements to implement some or all of the described functionality.


Moreover, the preceding flowcharts and accompanying description illustrate example methods. The present services environment contemplates using or implementing any suitable technique for performing these and other tasks. It will be understood that these methods are for illustration purposes only and that the described or similar techniques may be performed at any appropriate time, including concurrently, individually, or in combination. In addition, many of the steps in these flowcharts may take place simultaneously and/or in different orders than as shown. Moreover, the services environment may use methods with additional steps, fewer steps, and/or different steps, so long as the methods remain appropriate.



FIGS. 32-1 through 32-3 collectively illustrate an example object model for a campaign business object 32000. Specifically, the object model depicts interactions among various components of the campaign business object 32000, as well as external components that interact with the campaign business object 32000 (shown here as 32002 through 32034 and 32066 through 32102). The campaign business object 32000 includes elements 32036 through 32064, which can be hierarchical, as depicted, and use cardinality relationships, as described above. For example, the campaign entity 32036 hierarchically includes entities response option reference 32038 and execution step 32040, among others. Some or all of the entities 32036 through 32064 can correspond to packages and/or entities in the message data types described below.


The business object Campaign is a plan of action that includes measures that are used to execute and monitor marketing activities intended to reach a defined goal. The Campaign business object belongs to the process component Campaign Management. The Campaign business object belongs to the deployment unit Customer Relationship Management. The Campaign business object covers measures within a campaign management process, such as channel determination, assignment of forms and target groups, and campaign execution and response tracking. Marketing activities can include E-mail-, Letter- or Fax-Activity objects, generated leads, a creation and sending of personalized mail that is addressed to members of a Target Group or other marketing related activities that are addressed to the members of a Target Group. Campaigns can be used for different business cases, such as customer acquisition and retention, product launches, seasonal sales. An example way of executing a campaign is: 1) E-mail execution/campaign execution is done using existing e-mail functionality; and 2) File export generates a spreadsheet file including campaign plus target group member information. A campaign can include three main components: information that applies to an entire campaign; information that is relevant for campaign execution, such as execution parameters and references to generated marketing activities; and information about responses collected to a campaign. The business object Campaign has an object category of Business Transaction Document and a technical category of Standard Business Object. The business object Campaign is involved in the following process component interactions: External Campaign Management_Campaign Management_Campaign Replication Initiated by External, External Campaign Management_Campaign Management_Manage Campaign, External Campaign Management_Campaign Management_Manage Campaign_Inbound, External Campaign Management_Campaign Management_Manage Campaign_Outbound, and External Campaign Management_Campaign Management_Query Campaign.


A service interface Campaign Replication Initiated by External In has a technical name of CampaignReplicationInitiatedByExternalIn, is part of the process component interaction External Campaign Management_Campaign Management_Campaign Replication Initiated by External, and is an interface to replicate campaigns initiated by an external system. A Replicate Campaigns operation has a technical name of CampaignReplicationInitiatedByExternalIn.ReplicateCampaigns, can be used to replicate campaigns, and is based on a message type Campaign Mass Replication Request that is derived from the business object Campaign.


A service interface Campaign Replication Initiated by External Out has a technical name of CampaignReplicationInitiatedByExternalOut, is part of the process component interaction External Campaign Management_Campaign Management_Campaign Replication Initiated by External, and is an interface to confirm a replication of campaigns initiated by an external system.


A Confirm Campaign Replication operation has a technical name of CampaignReplicationInitiatedByExternalOut.ConfirmCampaignReplication, can be used to confirm campaign replication, and is based on a message type Campaign Mass Replication Confirmation that is derived from the business object Campaign.


A service interface Manage Campaign In has a technical name of ManageCampaignIn, is part of the process component interaction External Campaign Management_Campaign Management_Manage Campaign, and is an interface to replicate campaigns from a source system or file to a target system. A Check Maintain As Bundle operation has a technical name of ManageCampaignIn.CheckMaintainBundle, can be used to check whether one or more campaigns can be created, updated, or deleted without errors using imported structured data, and is based on a message type Campaign Request Bundle Check Maintain Query_sync that is derived from business object Campaign and on a message type Campaign Request Bundle Check Maintain Response_sync that is derived from the business object Campaign. A Maintain As Bundle operation has a technical name of ManageCampaignIn.MaintainBundle, can be used to create, update or delete one or more campaigns using imported structured data, and is based on a message type Campaign Bundle Maintain Confirmation_sync that is derived from the business object Campaign and on a message type Campaign Bundle Maintain Request_sync that is derived from the business object Campaign.


Below is an example for simulating the creation of two marketing campaigns. Example code for a request for creation:














<n0:CampaignRequestBundleCheckMaintainQuery_sync xmlns:n0=“exampleNamespace”>


<BasicMessageHeader> <ID>00300571D06B1DED9EE4723F124207BC</ID>


</BasicMessageHeader> <Campaign>


<ObjectNodeSenderTechnicalID>10001</ObjectNodeSenderTechnicalID>


<Description>Simulate creation</Description> <PlannedStartDate>2012-06-


13</PlannedStartDate> <PlannedEndDate>2012-07-27</PlannedEndDate>


<LifeCycleStatusCode>1</LifeCycleStatusCode> <ExecutionStep


trackingLinkListCompleteTransmissionIndicator=“false”>


<TargetGroupID>362</TargetGroupID> <ExecutionTypeCode>1</ExecutionTypeCode>


<TrackingLink actionCode=“01”>


<ObjectNodeSenderTechnicalID>10011</ObjectNodeSenderTechnicalID>


<TargetLinkWebURI>http://www.....</TargetLinkWebURI> </TrackingLink>


<TrackingLink actionCode=“01”>


<ObjectNodeSenderTechnicalID>10012</ObjectNodeSenderTechnicalID>


<TargetLinkWebURI>http://www...</TargetLinkWebURI> </TrackingLink>


</ExecutionStep> <DetailedDescriptionText actionCode=“04”>


<ObjectNodeSenderTechnicalID>11000</ObjectNodeSenderTechnicalID>


<ContentText>Campaign Note </ContentText> </DetailedDescriptionText> </Campaign>


<Campaign> <ObjectNodeSenderTechnicalID>20001</ObjectNodeSenderTechnicalID>


<Description>Simulate creation</Description> <PlannedStartDate>2012-06-


13</PlannedStartDate> <PlannedEndDate>2012-07-27</PlannedEndDate>


<LifeCycleStatusCode>1</LifeCycleStatusCode> <ExecutionStep>


<TargetGroupID>362</TargetGroupID> <ExecutionTypeCode>1</ExecutionTypeCode>


</ExecutionStep> <DetailedDescriptionText actionCode=“04”>


<ObjectNodeSenderTechnicalID>21000</ObjectNodeSenderTechnicalID>


<ContentText>Campaign Note </ContentText> </DetailedDescriptionText>


</Campaign></n0:CampaignRequestBundleCheckMaintainQuery_sync>









Below is an example response such as if the creation ends successfully:














<nm:CampaignBundleMaintainConfirmation_sync


xmlns:nm=“exampleNamespace”>


<Campaign> <ChangeStateID>20130220081016.7946350


</ChangeStateID>


<ReferenceObjectNodeSenderTechnicalID>20001


</ReferenceObjectNodeSenderTechnicalID


> <UUID>00163e02-8b2e-1ed2-9ee6-9eb6ed736348


</UUID> <ID>3039</ID>


</Campaign> <Campaign> <ChangeStateID>20130220081016.7946350


</ChangeStateID>


<ReferenceObjectNodeSenderTechnicalID>10001


</ReferenceObjectNodeSenderTechnicalID


> <UUID>00163e02-8b2e-1ed2-9ee6-9eb6ed734348


</UUID> <ID>3038</ID>


</Campaign> <Log/></nm:CampaignBundleMaintainConfirmation_sync>









Below is an example request for changing a web URI only for a marketing campaign with an identifier of 3038:














<n0:CampaignBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader> <ID>00300571D06B1DED9EE4723F124207BC


</ID>


</BasicMessageHeader> <Campaign>


<ChangeStateID>20130220081016.7946350</ChangeStateID>


<ObjectNodeSenderTechnicalID>10001</ObjectNodeSenderTechnicalID>


<ID>3038</ID>


<ExecutionStep trackingLinkListCompleteTransmissionIndicator=“false”>


<TrackingLink>


<ObjectNodeSenderTechnicalID>10011</ObjectNodeSenderTechnicalID>


<UUID>00163E02-8B2E-1ED2-9EE6-9EB6ED73C348</UUID>


<TargetLinkWebURI>http://www...</TargetLinkWebURI>


</TrackingLink>


</ExecutionStep>


</Campaign></n0:CampaignBundleMaintainRequest_sync>









Below is an response for the change request:

















<nm:CampaignBundleMaintainConfirmation_sync



xmlns:nm=“exampleNamespace”>



<Campaign> <ChangeStateID> 20130220081016.7946350



</ChangeStateID>



<ReferenceObjectNodeSenderTechnicalID>10001



</ReferenceObjectNodeSenderTechnicalID



> <UUID>00163e02-8b2e-1ed2-9ee6-9eb6ed734348</UUID>



<ID>3038</ID>



</Campaign> <Log/>



</nm:CampaignBundleMaintainConfirmation_sync>










A service interface Manage Campaign Inbound In has a technical name of ManageCampaignInboundIn. The service interface Manage Campaign Inbound In is part of the process component interaction External Campaign Management_Campaign Management_Manage Campaign_Inbound, and is an interface to replicate campaign inbounds from a source system or file to a target system. A Check Maintain Failed Delivery Status As Bundle operation has a technical name of ManageCampaignInboundIn.CheckMaintainFailedDeliveryStatusBundle, can be used to check whether one or more campaign failed delivery status data can be created, updated, or deleted without errors using imported structured data, and is based on a message type Campaign Failed Delivery Status Request Bundle Check Maintain Query_sync that is derived from the business object Campaign and on a message type Campaign Failed Delivery Status Request Bundle Check Maintain Response_sync that is derived from the business object Campaign.


A Check Maintain Mailing Permission As Bundle operation has a technical name of ManageCampaignInboundIn.CheckMaintainMailingPermissionBundle, can be used to check whether one or more sets of campaign mailing permission data can be created, updated, or deleted without errors using imported structured data, and is based on a message type Campaign Mailing Permission Request Bundle Check Maintain Query_sync that is derived from the business object Campaign and on a message type Campaign Mailing Permission Request Bundle Check Maintain Response_sync that is derived from the business object Campaign.


A Check Maintain Reaction As Bundle operation has a technical name of ManageCampaignInboundIn.CheckMaintainReactionBundle, can be used to check whether one or more sets of marketing campaign reaction data can be created without errors using imported structured data, and is based on a message type Campaign Reaction Request Bundle Check Maintain Query_sync that is derived from the business object Campaign and on a message type Campaign Reaction Request Bundle Check Maintain Response_sync that is derived from the business object Campaign. An operation Maintain Failed Delivery Status As Bundle has a technical name of ManageCampaignInboundIn.MaintainFailedDeliveryStatusBundle, can be used to create, update, or delete one or more sets of campaign failed delivery status data using imported structured data, and is based on a message type Campaign Failed Delivery Status Bundle Maintain Confirmation_sync that is derived from the business object Campaign and on a message type Campaign Failed Delivery Status Bundle Maintain Request_sync that is derived from the business object Campaign. Below is an example for processing bounces based on a marketing campaign executed in an external system:














<n0:CampaignFailedDeliveryStatusBundleMaintainRequest_sync


xmlns.n0=“exampleNamespace”> <BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID> </BasicMessageHeader>


<Campaign> <ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>1112</ID> <Outbound>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2001</CustomerInternalID>


<ContactPersonInternalID>CP2002</ContactPersonInternalID>


<MailSystemErrorCode>5.1.2</MailSystemErrorCode>


<CommunicationDataUsageDeniedIndicator>true</CommunicationDataUsageDeniedIndicator


> </Outbound> <Outbound> <!-- Denied indicator overrules the error code -->


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2010</CustomerInternalID>


<ContactPersonInternalID>CP2012</ContactPersonInternalID>


<MailSystemErrorCode>5.1.3</MailSystemErrorCode>


<CommunicationDataUsageDeniedIndicator>false</CommunicationDataUsageDeniedIndicator


> </Outbound> <Outbound> <!-- Error code determines the denied indicator -->


<ObjectNodeSenderTechnicalID>1003</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2020</CustomerInternalID>


<ContactPersonInternalID>CP2022</ContactPersonInternalID>


<MailSystemErrorCode>5.1.6</MailSystemErrorCode> </Outbound>


</Campaign></n0:CampaignFailedDeliveryStatusBundleMaintainRequest_sync>









An operation Maintain Mailing Permission As Bundle has a technical name of ManageCampaignInboundIn.MaintainMailingPermissionBundle, can be used to create, update, or delete one or more sets of campaign mailing permission data using imported structured data, and is based on a message type Campaign Mailing Permission Bundle Maintain Confirmation_sync that is derived from the business object Campaign and on a message type Campaign Mailing Permission Bundle Maintain Request_sync that is derived from the business object Campaign. Below is an example for processing requests to subscribe/unsubscribe for marketing campaigns based on marketing campaigns executed in an external system:














<n0:CampaignMailingPermissionBundleMaintainRequest_sync


xmlns.n0=“exampleNamespace”> <BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID> </BasicMessageHeader>


<Campaign> <ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>1112</ID> <Outbound>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2001</CustomerInternalID>


<ContactPersonInternalID>CP2002</ContactPersonInternalID>


<MailingPermissionDeniedIndicator>true</MailingPermissionDeniedIndicator>


</Outbound> <Outbound>


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2010</CustomerInternalID>


<ContactPersonInternalID>CP2012</ContactPersonInternalID>


<MailingPermissionDeniedIndicator>false</MailingPermissionDeniedIndicator>


</Outbound> </Campaign> <Campaign>


<ObjectNodeSenderTechnicalID>2000</ObjectNodeSenderTechnicalID> <ID>1114</ID>


<Outbound> <ObjectNodeSenderTechnicalID>2001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2020</CustomerInternalID>


<ContactPersonInternalID>CP2022</ContactPersonInternalID>


<MailingPermissionDeniedIndicator>true</MailingPermissionDeniedIndicator>


</Outbound>


</Campaign></n0:CampaignMailingPermissionBundleMaintainRequest_sync>









An operation Maintain Reaction As Bundle has a technical name of ManageCampaignInboundIn.MaintainReactionBundle, can be used to create one or more sets of marketing campaign reaction data using imported structured data, and is based on a message type Campaign Reaction Bundle Maintain Confirmation_sync that is derived from the business object Campaign and on a message type Campaign Reaction Bundle Maintain Request_sync that is derived from the business object Campaign. Below is an example for processing reactions based on a marketing campaign executed in an external system.














<n0:CampaignReactionBundleMaintainRequest_sync xmlns:n0=“exampleNamespace”>


<BasicMessageHeader> <ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader> <Campaign actionCode=“06”


inboundBusinessTransactionDocumentReferenceListCompleteTransmissionIndicator=“false”


> <ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID> <ID>2831</ID>


<InboundBusinessTransactionDocumentReference actionCode=“01”>


<ObjectNodeSenderTechnicalID>1011</ObjectNodeSenderTechnicalID>


<CustomerUUID>00300571-CE9B-1DED-89DE-4402AB375EC4</CustomerUUID>


<ContactPersonUUID>00300571-CE9B-1DED-89DE-


389FE45C1EC4</ContactPersonUUID> <CreationDateTime>2013-02-


15T12:00:00.1234567Z</CreationDateTime>


<CampaignReactionTypeCode>21</CampaignReactionTypeCode> <ReactionTracking


actionCode=“01”> <TargetLinkWebURI>http://www.example.com</TargetLinkWebURI>


</ReactionTracking> </InboundBusinessTransactionDocumentReference>


<InboundBusinessTransactionDocumentReference actionCode=“01”>


<ObjectNodeSenderTechnicalID>1012</ObjectNodeSenderTechnicalID>


<CustomerUUID>00300571-CE9B-1DED-89DE-4B7CA3968564</CustomerUUID>


<ContactPersonUUID>00300571-CE9B-1DDD-89DE-


2DBB185F5BDF</ContactPersonUUID> <CreationDateTime>2013-02-


15T12:01:00.1234567Z</CreationDateTime>


<CampaignReactionTypeCode>21</CampaignReactionTypeCode> <ReactionTracking


actionCode=“01”> <TargetLinkUUID>00163E02-8B2E-1ED2-9D9D-


BBF8587FD734</TargetLinkUUID> </ReactionTracking>


</InboundBusinessTransactionDocumentReference>


<InboundBusinessTransactionDocumentReference actionCode=“01”>


<ObjectNodeSenderTechnicalID>1013</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC9785</CustomerInternalID>


<ContactPersonInternalID>MCP9785</ContactPersonInternalID>


<CreationDateTime>2013-02-15T12:02:00.1234567Z</CreationDateTime>


<CampaignReactionTypeCode>20</CampaignReactionTypeCode>


</InboundBusinessTransactionDocumentReference>


</Campaign></n0:CampaignReactionBundleMaintainRequest_sync>









A service interface Manage Campaign Outbound In has a technical name of ManageCampaignOutboundIn, is part of the process component interaction External Campaign Management_Campaign Management_Manage Campaign_Outbound, and is an interface to replicate marketing campaign outbounds from a source system or file to a target system. An operation Check Maintain As Bundle has a technical name of ManageCampaignOutboundIn.CheckMaintainBundle, can be used to check whether one or more sets of campaign outbounds can be created, updated, or deleted without errors using imported structured data, and is based on a message type Campaign Outbound Request Bundle Check Maintain Query_sync that is derived from the business object Campaign and on a message type Campaign Outbound Request Bundle Check Maintain Response_sync that is derived from the business object Campaign. Below is an example for checking the creation of new campaign outbounds based on campaigns executed in an external system.














<n0:CampaignOutboundRequestBundleCheckMaintainQuery_sync


xmlns:n0=“exampleNamespace”><BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID> </BasicMessageHeader>


<Campaign> <ID>942</ID> <Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerUUID>00300571-CE9B-1DED-89DF-29DCE9BE1CAB</CustomerUUID>


<ContactPersonUUID>00300571-CE9B-1DDD-89DD-


FEB454B21BDF</ContactPersonUUID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound> <Outbound


actionCode=“01”> <ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC9794</CustomerInternalID>


<ContactPersonInternalID>MCP9794</ContactPersonInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound> </Campaign>


<Campaign> <ID>938</ID> <Outbound>


<ObjectNodeSenderTechnicalID>2001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>XYZ9794</CustomerInternalID> <!-- Invalid identifiers -->


<ContactPersonInternalID>XYZ9794</ContactPersonInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound> <Outbound>


<ObjectNodeSenderTechnicalID>2009</ObjectNodeSenderTechnicalID>


<CustomerInternalID>AXUS-C132</CustomerInternalID>


<ContactPersonUUID>00300571-C924-02DB-B8C5-


73444EA1C21E</ContactPersonUUID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound> <Outbound>


<ObjectNodeSenderTechnicalID>1010</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC13803</CustomerInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound>


</Campaign></n0:CampaignOutboundRequestBundleCheckMaintainQuery_sync>









Below is an example for a corresponding response in a case where a check for creation of campaign outbounds failed:














<nm:CampaignOutboundRequestBundleCheckMaintainResponse_sync


xmlns:nm=“exampleNamespace”> <Log>


<MaximumLogItemSeverityCode>3</MaximumLogItemSeverityCode> <Item>


<TypeID>001/CM_A2X_MNG_CMPG_OUTB/</TypeID>


<CategoryCode>SEI.SCV</CategoryCode> <SeverityCode>3</SeverityCode>


<ReferenceObjectNodeSenderTechnicalID>


2001</ReferenceObjectNodeSenderTechnicalID> <Note>Account XYZ9794 does not


exist</Note> </Item> <Item> <TypeID>002/CM_A2X_MNG_CMPG_OUTB/</TypeID>


<CategoryCode>SEI.SCV</CategoryCode> <SeverityCode>3</SeverityCode>


<ReferenceObjectNodeSenderTechnicalID>


2001</ReferenceObjectNodeSenderTechnicalID> <Note>Contact person XYZ9794 does not


exist</Note> </Item> <Item> <TypeID>040/MBF_A2X_CORE/</TypeID>


<CategoryCode>BPR.PUR</CategoryCode> <SeverityCode>3</SeverityCode>


<ReferenceObjectNodeSenderTechnicalID>2001</ReferenceObjectNodeSenderTechnicalID


> <Note>Only list complete transmission LCTI allowed for segment CAMPAIGN-


OUTBOUND</Note> </Item>


</Log></nm:CampaignOutboundRequestBundleCheckMaintainResponse_sync>









A Maintain As Bundle operation has a technical name of ManageCampaignOutboundIn.MaintainBundle, can be used to create, update or delete one or more sets of campaign outbound data using imported structured data, and is based on a message type Campaign Outbound Bundle Maintain Confirmation_sync that is derived from the business object Campaign and on a message type Campaign Outbound Bundle Maintain Request_sync that is derived from the business object Campaign. Below is an example for the creation of marketing campaign outbounds:














<n0:CampaignOutboundBundleMaintainRequest_sync xmlns:n0=“exampleNamespace”>


<BasicMessageHeader> <ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader> <Campaign>


<ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID> <ID>960</ID>


<Outbound> <ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CreationDateTime>2012-08-23T12:00:00.0019050Z</CreationDateTime>


<CustomerUUID>00300571-CE9B-1DED-89DF-29DCE9BE1CAB</CustomerUUID>


<ContactPersonUUID>00300571-CE9B-1DDD-89DD-


FEB454B21BDF</ContactPersonUUID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound> <Outbound>


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CreationDateTime>2012-08-23T12:00:00.0019050Z</CreationDateTime>


<CustomerInternalID>MC9794</CustomerInternalID>


<ContactPersonInternalID>MCP9794</ContactPersonInternalID> <!-- Defaulting of the


Communication Status Code --> </Outbound> <Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1003</ObjectNodeSenderTechnicalID>


<CustomerUUID>00000000-0001-02DC-AED2-5ED1A0AD80A0</CustomerUUID>


<ContactPersonInternalID>CP2000_1</ContactPersonInternalID>


<CommunicationStatusCode>1</CommunicationStatusCode> </Outbound> <Outbound


actionCode=“01”> <ObjectNodeSenderTechnicalID>1004</ObjectNodeSenderTechnicalID>


<CustomerInternalID>AXUS-C132</CustomerInternalID>


<ContactPersonUUID>00300571-C924-02DB-B8C5-


73444EA1C21E</ContactPersonUUID>


<CommunicationStatusCode>3</CommunicationStatusCode>


<CommunicationFailureReasonCode>3</CommunicationFailureReasonCode> <!--


Contacting Member not Permitted --> </Outbound> <Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1005</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC13803</CustomerInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode> </Outbound>


</Campaign></n0:CampaignOutboundBundleMaintainRequest_sync>









Below is an example for a corresponding response in a case where campaign outbounds have been created successfully:














<nm:CampaignOutboundBundleMaintainConfirmation_sync


xmlns:nm=“exampleNamespace”> <Campaign>


<ChangeStateID>20120712151832.0667510</ChangeStateID>


<ReferenceObjectNodeSenderTechnicalID>1000


</ReferenceObjectNodeSenderTechnicalID


> <UUID>00163e02-8b2e-1ee1-b386-9acee7cc326f</UUID>


<ID>960</ID> </Campaign>


<Log/></nm:CampaignOutboundBundleMaintainConfirmation_sync>









Below is an example for deletion of an outbound instance:














<n0:CampaignOutboundBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E028B341ED1BB9F9748EDB6E40C</ID>


</BasicMessageHeader> <Campaign>


<ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>960</ID>


<Outbound actionCode =“03”>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC9794</CustomerInternalID>


<ContactPersonInternalID>MCP9794</ContactPersonInternalID>


</Outbound>


</Campaign></n0:CampaignOutboundBundleMaintainRequest_sync>









A service interface Query Campaign In has a technical name of QueryCampaignIn, is part of the process component interaction External Campaign Management_Campaign Management_Query Campaign, and is an interface to query campaign data. An operation Find By Elements has a technical name of QueryCampaignIn.FindByElements, can be used to query campaign data by elements, and is based on a message type Campaign By Elements Query_sync that is derived from the business object Campaign and on a message type Campaign By Elements Response_sync that is derived from the business object Campaign.


The business object Campaign can include a Root node. The Root node can include identifying and administrative information as well as information that describes the objective of a campaign. The elements located directly at the node Campaign are defined by the inline structure: APCRM_S_CAMPAIGN_EL. These elements include: UUID, ID, ReferenceID, Description, PlannedStartDate, PlannedEndDate, SystemAdministrativeData, Status, DataOriginTypeCode, and EmailBlastIndicator. UUID may be an alternative key, is a globally unique identifier for a campaign, and may be based on datatype GDT: UUID. ID may be an alternative key, is an identifier for a campaign, and may be based on datatype GDT: BusinessTransactionDocumentID. ReferenceID may be an alternative key and may be based on datatype GDT: CampaignReferenceID. Description is a description of a campaign, and may be based on datatype GDT: MEDIUM_Description. PlannedStartDate may be optional, is a point in time at which a campaign is planned to start, and may be based on datatype GDT: Date, with a qualifier of Planned. PlannedEndDate may be optional, is a point in time at which a campaign is planned to end, and may be based on datatype GDT: Date, with a qualifier of Planned. SystemAdministrativeData includes administrative data that is stored in a system, such as system users and change dates/times, and may be based on datatype GDT: SystemAdministrativeData. Status is a status of a campaign, and may be based on datatype BOIDT: CampaignStatus. Status may include LifeCycleStatusCode, ActivationStatusCode, CancellationStatusCode, and ClosureStatusCode. Status/LifeCycleStatusCode is a coded representation of the stages of a lifecycle of a campaign, and may be based on datatype GDT: CampaignLifeCycleStatusCode. Status/ActivationStatusCode is a coded representation of an activation state of a campaign, and may be based on datatype GDT: ActivationStatusCode. Status/CancellationStatusCode is a coded representation of a cancellation state of a campaign, and may be based on datatype GDT: CancellationStatusCode. Status/ClosureStatusCode is a coded representation of a closure state of a campaign, and may be based on datatype GDT: ClosureStatusCode. DataOriginTypeCode may be optional and may be based on datatype GDT: CampaignDataOriginTypeCode. EmailBlastIndicator may be optional and may be based on datatype GDT: Indicator.


The following composition relationships to subordinate nodes exist: Response Option Reference, with a cardinality of 1:CN; Execution Step, with a cardinality of 1:C; Inbound Business Transaction Document Reference, with a cardinality of 1:CN; Key Performance Indicators, with a cardinality of 1:C; Outbound Marketing Activity, with a cardinality of 1:CN; and Overview, with a cardinality of 1:C. The following composition relationships to dependent objects exist: Attachment Folder, with a cardinality of 1:C, which is a folder for one or more documents in electronic form including additional information about a campaign; and Text Collection, with a cardinality of 1:C, which is a collection of natural-language texts with additional information about a Campaign.


The following inbound association relationships may exist: Creation Identity, from the business object Identity/node Identity, with a cardinality of 1:CN, which is an identity that has created a campaign; and Last Change Identity, from the business object Identity/node Identity, with a cardinality of 1:CN, which is an identity that has changed a campaign. The following specialization associations for navigation may exist: Activity Inbound Business Transaction Document Reference, to the node Inbound Business Transaction Document Reference, with a target cardinality of CN, which may be Filtered and which is an inbound activity. The filter elements for such an association are defined by the inline structure APCRM_S_CPG_ACT_INB_BTDREF_FI. These elements include BusinessTransactionDocumentReferenceUUID, which may be optional and may be based on datatype GDT: UUID.


An Activate action can be used to activate a campaign. After activation, a campaign may be used to generate outbound marketing activities, and references to inbound business transaction documents may be created. The Activate action may set an Activation Status from “Not Active” to “Active”. As a result, the life cycle status of the campaign can change from “In Planning” to “Active”.


A Cancel action can be used to cancel a campaign. After cancellation, the campaign may no longer be used to generate outbound marketing activities or to record inbound marketing activities. The action Cancel sets a Cancellation status of a campaign from “Not Cancelled” to “Cancelled”. The life cycle status of the campaign is also set to “Cancelled”.


A Close action can be used to close a campaign. After being closed, a campaign may now no longer be used to generate outbound marketing activities. The Close action sets a Closure status of a campaign from “Not Closed” to “Closed”. As a result, the life cycle status of the campaign is changed to “Closed” as well.


A Create With Reference action can be used to create a new campaign with reference to an existing campaign. A Revoke Cancellation action can be used to revoke the cancellation of a campaign. After being revoked, a campaign may be used again to generate outbound marketing activities and to record inbound marketing activities. The Revoke Cancellation action sets a cancellation status of a campaign from “Cancelled” to “Not Cancelled”.


A Revoke Closure action can be used to revoke the closure of a campaign. After the Revoke Closure action is performed, a campaign may be used again to generate outbound marketing activities and to record inbound marketing activities. The action Revoke Closure changes a Closure status of a campaign from “Closed” to “Not Closed” and a life cycle status of the campaign is set to “Active”. A Revoke Activation action can be performed.


A SelectAll query can be used to return the node IDs of all instances of the Root node and can be used to enable an initial load of data for a Fast Search Infrastructure FSI. A Query By Elements query can be used to return a list of campaigns according to specified selection elements. The query elements are defined by the inline structure: APCRM_S_CPG_BY_ELEMENT_QU. These elements include: UUID, ID, ReferenceID, PlannedStartDate, PlannedEndDate, SystemAdministrativeData, CreationBusinessPartnerCommonPersonNameGivenName, CreationBusinessPartnerCommonPersonNameFamilyName, LastChangeBusinessPartnerCommonPersonNameGivenName, LastChangeBusinessPartnerCommonPersonNameFamilyName, LifeCycleStatusCode, Description, EmailBlastIndicator, ExecutionStepExecutionTypeCode, ExecutionStepTargetGroupID, ExecutionStepTargetGroupDescription, ExecutionStatusCode, ResponseOptionUUID, ResponseOptionID, ResponseOptionDescription, ResponseOptionCategoryCode, CustomerinternalID, ContactPersonlnternalID, and SearchText.


UUID is a globally unique identifier for a campaign, and may be based on datatype GDT: UUID. ID is an identifier for a campaign, and may be based on datatype GDT: BusinessTransactionDocumentID. ReferenceID may be based on datatype GDT: CampaignReferenceID. PlannedStartDate is a point in time at which a campaign is planned to start, and may be based on datatype GDT: Date. PlannedEndDate is a point in time at which a campaign is planned to end, and may be based on datatype GDT: Date. SystemAdministrativeData includes administrative data that is stored in the system, such as change dates/times, and may be based on datatype GDT: SystemAdministrativeData. CreationBusinessPartnerCommonPersonNameGivenName is a given name of a business partner that created a campaign, and may be based on datatype GDT: MEDIUM_Name. CreationBusinessPartnerCommonPersonNameFamilyName is a family name of a business partner that created a campaign, and may be based on datatype GDT: MEDIUM_Name. LastChangeBusinessPartnerCommonPersonNameGivenName is a given name of a business partner that last changed a campaign, and may be based on datatype GDT: MEDIUM_Name. LastChangeBusinessPartnerCommonPersonNameFamilyName is a family name of a business partner that last changed a campaign, and may be based on datatype GDT: MEDIUM_Name. LifeCycleStatusCode is a coded representation of a life cycle status code of a campaign, and may be based on datatype GDT: CampaignLifeCycleStatusCode.


Description is a description of a campaign, and may be based on datatype GDT: MEDIUM_Description. EmailBlastIndicator may be based on datatype GDT: Indicator. ExecutionStepExecutionTypeCode is a coded representation of an execution type of an execution step, and may be based on datatype GDT: CampaignExecutionStepExecutionTypeCode. ExecutionStepTargetGroupID is an identifier for an execution step in a target group, and may be based on datatype GDT: TargetGroupID. ExecutionStepTargetGroupDescription is a description of an execution step in a target group, and may be based on datatype GDT: MEDIUM_Description, with a qualifier of TargetGroup. ExecutionStatusCode is a coded representation of an execution status of an execution step, and may be based on datatype GDT: CampaignExecutionStatusCode. ResponseOptionUUID is a globally unique identifier for a response option, and may be based on datatype GDT: UUID. ResponseOptionID may be based on datatype GDT: ResponseOptionID. ResponseOptionDescription is an identifier for a response option, and may be based on datatype GDT: MEDIUM_Description. ResponseOptionCategoryCode is a coded representation of a response option category, and may be based on datatype GDT: ResponseOptionCategoryCode. CustomerInternalID may be based on datatype GDT: BusinessPartnerInternalID. ContactPersonInternalID may be based on datatype GDT: BusinessPartnerInternalID. SearchText includes free text including one or more words that can be used to search for information about a campaign, and may be based on datatype GDT: SearchText.


Response Option Reference is a reference to an option that specifies how a customer who has been contacted as part of a campaign can respond to that campaign. The elements located directly at the node Response Option Reference are defined by the inline structure APCRM_S_CPG_RO_EL. These elements include: ResponseOptionUUID, ResponseOptionID, and DefaultIndicator. ResponseOptionUUID may be optional, is a globally unique identifier for a response option, and may be based on datatype GDT: UUID. ResponseOptionID may be optional, is an identifier for a response option, and may be based on datatype GDT: ResponseOptionID. DefaultIndicator may be optional, is an indicator that specifies whether or not a response option is a default, and may be based on datatype GDT: Indicator. The following inbound association relationships may exist: Response Option, from the business object Campaign Response Option/node Root, with a cardinality of 1:CN, which specifies all possible response options that are intended for a campaign. The following specialization associations for navigation may exist to the node Campaign: Parent, with a target cardinality of 1; and Root, with a target cardinality of 1.


Execution Step is a specification of how a single step of a campaign is to be executed. An execution step includes execution relevant parameters for the execution of one step of a campaign, such as an execution type and a target group for which marketing activities are to be created. A campaign has one marketing goal, such as the promotion of a new product, which may be accomplished, for example, by the execution of several execution steps. For instance, a first execution step might represent a mass e-mailing, a second execution step might represent a serial letter, and a third execution step might represent a newspaper advertisement, all for the purpose of promoting a same product. The elements located directly at the node Execution Step are defined by the inline structure: APCRM_S_CPG_EXECUTION_STEP_EL. These elements include: UUID, TargetGroupUUID, TargetGroupID, TargetGroupMemberAddressDeterminationMethodCode, ActivityCreateIndicator, ActivityCreateParameters, ExecutionTypeCode, ExecutionDateTime, ExecutionidentityUUID, BlockedTargetGroupMemberIncludeIndicator, Status, FromEmailURI, FromEmailName, ReplyToEmailURI, ReplyToEmailName, ExecutionStatusCode, BackgroundJobDateTime, BackgroundJobScheduleID, RestartDisabledIndicator, FileFormatDefinitionUUID, and FileFormatDefinitionID.


UUID may be an alternative key, is a globally unique identifier of a campaign execution step, and may be based on datatype GDT: UUID. TargetGroupUUID is a globally universally unique identifier for a target group used by an execution step, and may be based on datatype GDT: UUID. TargetGroupID is an identifier for a target group used by an execution step, and may be based on datatype GDT: TargetGroupID. TargetGroupMemberAddressDeterminationMethodCode is a coded representation of a method by which an address of a target group member is determined, and may be based on datatype GDT: TargetGroupMemberAddressDeterminationMethodCode. ActivityCreateIndicator is an indicator that specifies whether activity objects are to be created for members of a specified target group, and may be based on datatype GDT: Indicator, with a qualifier of Created. The type of the activities that are created can be derived from an execution type code specified in the execution step. ActivityCreateParameters are parameters used to create activity objects, and may be based on datatype BOIDT: CampaignExecutionStepActivityCreateParametersElements. ActivityCreateParameters can include Name and Text. ActivityCreateParameters/Name is a name for the activities that are created, and may be based on datatype GDT: EXTENDED_Name. Names can be entered in a “Name” attribute of each activity that is generated. ActivityCreateParameters/Text includes text for generated activities, and may be based on datatype GDT: Text. Text can be entered as a text item in the text collection of each Activity that is generated. In some implementations,


ActivityCreationParameters is only maintained if the ActivityCreationIndicator is true. ExecutionTypeCode is a coded representation of an execution type of an execution step, and may be based on datatype GDT: CampaignExecutionStepExecutionTypeCode. ExecutionDateTime may be optional, is a point in time when a campaign execution step is executed, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Execution. ExecutionIdentityUUID is a globally unique identifier for an identity who executed a campaign execution step, and may be based on datatype GDT: UUID. BlockedTargetGroupMemberincludeIndicator is an indicator that specifies whether blocked target group members are to be included in a campaign execution, and may be based on datatype GDT: Indicator, with a qualifier of Include. Blocked target group members are members of a target group which may not be contacted due to one or more of the following reasons: a contact-allowed code of a customer assigned to the target group member is “contact not allowed”; an address used to contact the target group member is blocked from usage.


Status is a status of a campaign execution step, and may be based on datatype BOIDT: CampaignExecutionStepStatus. Status can include Status/CampaignLifeCycleStatusCode, which is a coded representation of the life cycle of a campaign to which an execution step belongs, and may be based on datatype GDT: CampaignLifeCycleStatusCode. A status value of a campaign life cycle status code can be inherited from a campaign to which an execution step belongs. For instance, an execution step may only be started if the life cycle status of the parent campaign is “Active”. Status can include Status/StartingStatusCode, which is a coded representation of a starting state of a campaign execution step, and may be based on datatype GDT: StartingStatusCode. FromEmailURI may be optional, is an e-mail address an e-mail was sent from, and may be based on datatype GDT: EmailURI. A from e-mail address can be used in a direct E-mail campaign to show a receiver a valid e-mail address of a sender instead of a generic e-mail address of a mailing provider. FromEmailName may be optional and may be based on datatype GDT: LANGUAGEINDEPENDENT_EXTENDED_Name. ReplyToEmailURI may be optional, is an e-mail address an e-mail can send to as a reply, and may be based on datatype GDT: EmailURI. The ReplyTo e-mail address can be used in a direct E-mail campaign to show a receiver of a mail where to answer a received e-mail. ReplyToEmailName may be optional and may be based on datatype GDT: LANGUAGEINDEPENDENT_EXTENDED_Name.


ExecutionStatusCode may be optional, is a coded representation of an execution status of an execution step, and may be based on datatype GDT: CampaignExecutionStatusCode. ReplyToEmailName may include up-to-date information about the execution of a campaign, such as if the campaign is scheduled, running, finished with a certain outcome or cancelled, such as in a case of technical problems. BackgroundJobDateTime may be optional, is a point in time when a background job is to be executed, and may be based on datatype GDT: GLOBAL_DateTime. If a background job is scheduled, the BackgroundJobDateTime attribute can show a background job planning date time. If a background job is finished, the BackgroundJobDateTime attribute can show a date time when the background job was executed. BackgroundJobScheduleID may be optional, is an identifier for the schedule of a background job, and may be based on datatype GDT: BackgroundJobScheduleID. RestartDisabledIndicator may be optional, is an indicator that specifies whether a restart of a campaign execution is possible, and may be based on datatype GDT: Indicator. FileFormatDefinitionUUID may be optional and may be based on datatype GDT: UUID. FileFormatDefinitionID may be optional and may be based on datatype GDT: BusinessTransactionDocumentID.


The following composition relationships to subordinate nodes exist: Tracking Link, with a cardinality of 1:CN; Execution Step Package, with a cardinality of 1:CN; and Mail Form, with a cardinality of 1:CN. The following inbound association relationships may exist: Campaign Execution Run, from the business object Campaign Execution Run/node Root, with a cardinality of C:CN, which specifies a campaign execution run for an execution step of a campaign; Campaign File Format Definition, from the business object Campaign File Format Definition/node Root, with a cardinality of C:CN; Execution Identity, from the business object Identity/node Identity, with a cardinality of 1:CN, which is an identity that has executed a campaign execution step; TargetGroupActivityRun, from the business object Target Group Marketing Activity Creation Run/node Target Group Marketing Activity Creation Run, with a cardinality of C:CN, which is a run used in an execution step to create marketing activities for a target group; and Target Group, from the business object Target Group/node Target Group, with a cardinality of C:CN, which is a target group for which marketing activities are to be created.


The following specialization associations for navigation may exist: Parent, to the node Campaign, with a target cardinality of 1; Root, to the node Campaign, with a target cardinality of 1; Default Mail Form, to the node Mail Form, with a target cardinality of CN; Outbound Marketing Activity, to the node Outbound Marketing Activity, with a target cardinality of CN, which may be filtered; and Target Group Marketing Activity Creation Run, to target group marketing activity creation run/target group marketing activity creation run, with a target cardinality of CN. The filter elements are defined by the inline structure OUTBOUND_MARKETING_ACTIVITY_FI. These elements include CommunicationStatusCode, which may be optional and may be based on datatype GDT: MarketingActivityCommunicationStatusCode.


A Start action can be used to start the execution of a campaign. The action Start can be triggered by a user on a user interface when the user launches a campaign. The action Start calls a Schedule Immediately action of an instance of a MDRO TargetGroupMarketingActivityCreationRun which is associated with an instance of the Execution Step node of the business object Campaign. The action Start sets the Execution status from Not Started to Started. In some implementations, once an execution has started, it can be neither aborted, nor can it be restarted.


A Test Send action can be used to send an e-mail for test purposes out of a direct e-mail campaign. The action TestSend can be triggered from a user interface and is available in a direct e-mail campaign. The action elements are defined by the inline structure: APCRM_S_CPG_ES_TEST_SEND_AC. These elements include: RecipientEmailURI, CustomerinternalID, ContactPersonlnternalID, and MailFormUUID. RecipientEmailURI is a uniform resource identifier e-mail address of a recipient for a test e-mail, and may be based on datatype GDT: EmailURI. CustomerinternalID may be optional, is an identifier for a customer for internal purposes, and may be based on datatype GDT: BusinessPartnerInternalID. ContactPersonlnternalID may be optional, is an identifier for a contact person, may be used internally, and may be based on datatype GDT: BusinessPartnerInternalID. MailFormUUID is a universally unique identifier for a mail form used in the campaign, and may be based on datatype GDT: UUID.


A CreateExecutionRun action can be used to create a campaign execution run instance for direct e-mail campaigns. The action CreateExecutionRun can be triggered by a user on a user interface when the user launches a direct e-mail campaign. The action CreateExecutionRun creates an instance of a MDRO CampaignExecutionRun which can be used for the execution of a campaign in parallel background processes. The CampaignExecutionRun instance can be associated with an instance of the execution step node of the business object Campaign.


An Execute action can be used to start the execution of a direct e-mail campaign. The action Execute can be triggered by a MDRO CampaignExecutionRun that builds packages of target group members to check addressability for given members, generates personalized e-mails, and sends out the generated emails. The action elements are defined by the inline structure: APCRM_S_CPG_ES_EXECUTE_AC. These elements include: TotalNumberpackageValue and CurrentNumberpackageValue. TotalNumberpackageValue may be optional, is a value that sets a total number of packages created by a campaign execution run, and may be based on datatype GDT: NumberValue. CurrentNumberpackageValue may be optional, is a value that sets a number of a currently processed package, and may be based on datatype GDT: NumberValue.


A Finalize action can be used to finalize the execution of a campaign. The action Finalize can be called from a MDRO CampaignExecutionRun after all parallel processes are finished for a direct e-mail campaign execution. The Finalize action can check if for all parallel started processes, the execution package instances were stored properly. The Finalize action can perform clean-up processing. In the clean up processing, all execution step package instances except a last instance with a highest ordinal number can be deleted. For the last package instance, an indicator can be set to document that the execution of all packages has been processed successfully. Action elements for the Finalize action are defined by the inline structure APCRM_S_CPG_ES_FINALIZE_AC. These elements include FinishedSuccessfullyIndicator, which may be optional and may be based on datatype GDT: Indicator.


An Initialize action can be used to initialize an execution status after an execution step is cancelled. A system can reset a status to reschedule an execution step for a direct e-mail campaign. The Initialize action can be triggered by a MDRO CampaignExecutionRun to initialize values in the node ExecutionStep, such as the value field ExecutionStatus. In some implementations, the Initialize action is not triggered from a user interface.


A Set Execution Status action can be used to set the status of a CampaignExecutionRun for direct e-mail campaigns. The action SetExecutionStatus can calculate, dependent on a MDRO CampaignExecutionRun, an ExecutionStatusCode and modify a corresponding value in the node ExecutionStep if the calculated value is different than a current value. The action SetExecutionStatus can be triggered from the user interface and from technical report to check running MDRO jobs.


A Tracking Link node can exist. The elements located directly at the node Tracking Link are defined by the inline structure: CAMPAIGN_TRACKING_LINK_EL. These elements include UUID, CampaignTrackingLinkAlternativeID, TargetURI, and MailFormUUID. UUID may be optional, may be an alternative key, and may be based on datatype GDT: UUID. CampaignTrackingLinkAlternativeID may be an alternative key and may be based on datatype GDT: CampaignTrackingLinkAlternativeID. TargetURI may be optional and may be based on datatype GDT: WebURI. MailFormUUID may be optional and may be based on datatype GDT: UUID.


The following specialization associations for navigation may exist: Root, to the node Campaign, with a target cardinality of 1; Execution Step, to the node Execution Step, with a target cardinality of 1; Mail Form, to the node Mail Form, with a target cardinality of C; and Reaction Tracking, to the node Reaction Tracking, with a target cardinality of CN.


Execution Step Package is a specification of processed packages an execution step is split up into. The elements located directly at the node Execution Step package are defined by the inline structure: APCRM_S_CPG_EXEC_STEP_PACK. These elements include: UUID, PackageStartMemberUUID, PackageEndMemberUUID, FinalizedIndicator, TotalpackageNumberValue, and CurrentpackageNumberValue. UUID may be optional, may be an alternative key, is a universally unique identifier for an execution step package, and may be based on datatype GDT: UUID. PackageStartMemberUUID may be optional, is a universally unique identifier for a starting member of a target group used by an execution step, and may be based on datatype GDT: UUID. PackageEndMemberUUID may be optional, is a universally unique identifier for an ending member of a target group used by an execution step, and may be based on datatype GDT: UUID. FinalizedIndicator may be optional, is an indicator that specifies whether an execution step was finalized successfully, and may be based on datatype GDT: Indicator. TotalpackageNumberValue may be optional, is a value indicates a total number of packages created by a campaign execution run, and may be based on datatype GDT: NumberValue. CurrentpackageNumberValue may be optional, is a value that indicates a number of a currently processed package, and may be based on datatype GDT: NumberValue. The following specialization associations for navigation may exist: Root, to the node Campaign, with a target cardinality of 1; and Parent, to the node Execution Step, with a target cardinality of 1.


Mail Form is a form that is stored as a hyperlink markup language text file and that is used to send out personalized e-mails for a campaign. An HTML e-mail form can be uploaded by a user and assigned to a specific campaign. The HTML e-mail form can be created outside the system by 3rd party tools. The form may include placeholders for a fixed set of account and contact person attributes. The HTML e-mail body of the uploaded e-mail form can be stored in the element MailBody of the node MailForm and the e-mail subject can be maintained directly in the attribute SubjectDescription of the node MailForm. The elements located directly at the node Mail Form are defined by the inline structure: APCRM_S_CPG_MAIL_FORM_EL. These elements include: UUID, SubjectDescription, DefaultIndicator, and MailBody. UUID may be an alternative key, is a unique identifier of a campaign e-mail form, and may be based on datatype GDT: UUID.


SubjectDescription is a description of a language dependent subject line for an e-mail form, and may be based on datatype GDT: LONG_Description. DefaultIndicator may be optional, is an indicator that specifies whether an e-mail form is a default, and may be based on datatype GDT: Indicator, with a qualifier of Default. MailBody is an e-mail body that is written outside of a system with specialized HTML editors and afterwards uploaded into the system. MailBody may be based on datatype GDT: BinaryObject. The following specialization associations for navigation may exist: Root, to the node Campaign, with a target cardinality of 1; Parent, to the node Execution Step, with a target cardinality of 1; Tracking Link, to the node Tracking Link, with a target cardinality of CN.


Inbound Business Transaction Document Reference is a reference to a business transaction document that is created in response to a campaign. A response to a campaign can be a sales order placed as a reaction to a newspaper advertisement campaign or a phone call made to confirm a trade fair invitation send out using the execution of a campaign execution step. The elements located directly at the node Inbound Business Transaction Document Reference are defined by the inline structure: APCRM_S_CPG_INB_BTDREF_EL. These elements include: CustomerUUID, ContactPersonUUID, ReactionTypeCode, BusinessTransactionDocumentReference, BusinessTransactionDocumentRelationshipRoleCode, CreationDateTime, BusinessTransactionDocumentDescription, OutboundMarketingActivityID, OutboundMarketingActivityUUID, FirstResponseIndicator, ResponseOptionUUID, CreationIdentityUUID, LastResponseOptionUUID, MailingPermissionDeniedIndicator, and MarketingLeadIndicator. CustomerUUID may be optional and may be based on datatype GDT: UUID. ContactPersonUUID may be optional and may be based on datatype GDT: UUID. ReactionTypeCode may be optional and may be based on datatype GDT: CampaignReactionTypeCode. BusinessTransactionDocumentReference is a reference to a business transaction document that was created in response to a campaign inbound, and may be based on datatype GDT: BusinessTransactionDocumentReference. In some implementations, a component “UUID” of a business transaction document reference is used as an alternative key for an inbound business transaction document reference. BusinessTransactionDocumentRelationshipRoleCode may be based on datatype GDT: BusinessTransactionDocumentRelationshipRoleCode. CreationDateTime may be optional and may be based on datatype GDT: GLOBAL_DateTime. BusinessTransactionDocumentDescription may be optional and may be based on datatype GDT: LONG_Description. OutboundMarketingActivityID may be optional and may be based on datatype GDT: MarketingActivityID. OutboundMarketingActivityUUID may be optional and may be based on datatype GDT: UUID. FirstResponseIndicator may be optional and may be based on datatype GDT: Indicator. ResponseOptionUUID may be optional and may be based on datatype GDT: UUID. CreationIdentityUUID may be optional and may be based on datatype GDT: UUID. LastResponseOptionUUID may be optional and may be based on datatype GDT: UUID. MailingPermissionDeniedIndicator may be optional and may be based on datatype GDT: Indicator. MarketingLeadIndicator may be optional and may be based on datatype GDT: Indicator.


The following composition relationships to subordinate nodes exist: Reaction Tracking, with a cardinality of 1:C; and Inbound Business Transaction Document Reference Overview, with a cardinality of 1:C. The following inbound association relationships may exist: Contact Person, from the business object Business Partner/node Business Partner, with a cardinality of C:C; CustomerQuote, from the business object Customer Quote/node Customer Quote, with a cardinality of C:C, which is when a sales quote has been created referencing a campaign; Customer, from the business object Customer/node Customer, with a cardinality of 1:C; Email Activity, from the business object Email Activity/node Email Activity, with a cardinality of C:C, which is when an inbound e-mail activity has been created with reference to a campaign; Fax Activity, from the business object Fax Activity/node Fax Activity, with a cardinality of C:C, which is when an inbound fax activity has been created with reference to a campaign; Creation Identity, from the business object Identity/node Identity, with a cardinality of 1:CN; Lead, from the business object Lead/node Lead, with a cardinality of C:C, which is when a lead has been created referencing a campaign; Letter Activity, from the business object Letter Activity/node Letter Activity, with a cardinality of C:C, which is when an inbound letter activity has been created with reference to a campaign; Opportunity, from the business object Opportunity/node Opportunity, with a cardinality of C:C, which is when an opportunity has been created referencing a campaign; Phone Call Activity, from the business object Phone Call Activity/node Phone Call Activity, with a cardinality of C:C, which is when an inbound phone call activity has been created with reference to a campaign; and Sales Order, from the business object Sales Order/node Sales Order, with a cardinality of C:C, which is when a sales order has been created referencing a campaign.


The following specialization associations for navigation may exist: Response Option, to the business object Campaign Response Option/node Root, with a target cardinality of C; Parent, to the node Campaign, with a target cardinality of 1; Root, to the node Campaign, with a target cardinality of 1; and Outbound Marketing Activity, to the node Outbound Marketing Activity, with a target cardinality of C.


A Destroy action can be used to destroy an object in accordance with specified data retention rules. Destruction of data can imply either physical deletion or anonymization. The Destroy action can be used for Information Lifecycle Management. In some implementations, the object does not perform all business logic checks.


ReactionTracking includes tracking information on how persons or companies react to a campaign. The elements located directly at the node Reaction Tracking are defined by the inline structure: CAMPAIGN_REACTION_TRACKING_EL. These elements include: UUID and TrackableLinkUUID. UUID may be an alternative key and may be based on datatype GDT: UUID. TrackableLinkUUID may be optional and may be based on datatype GDT: UUID. The following specialization associations for navigation may exist: Root, to the node Campaign, with a target cardinality of 1; Parent, to the node Inbound Business Transaction Document Reference, with a target cardinality of 1; Tracking Link, to the node Tracking Link, with a target cardinality of C.


Inbound Business Transaction Document Reference Overview Query Response Transformation Node is an overview of an inbound business transaction document reference. The elements located directly at the node Inbound Business Transaction Document Reference Overview are defined by the data type CampaignInboundBusinessTransactionDocumentReferenceOverviewElements. These elements include: CreationDateTime, OutboundMarketingActivityID, CreationBusinessPartnerCommonPersonNameFormattedName, CreationBusinessPartnerUUID, CustomerUUID, CustomerinternalID, CustomerFormattedName, ContactPersonUUID, ContactPersonlnternalID, ContactPersonFormattedName, CampaignUUID, CampaignID, CampaignDescription, EmailBlastIndicator, BusinessTransactionDocumentTypeCode, Business TransactionDocumentID, BusinessTransactionDocumentDescription, ReactionTypeCode, TrackableLinkUUID, TargetURI, ResponseOptionUUID, ResponseOptionID, ResponseOptionDescription, ResponseCategoryCode, LastResponseOptionUUID, LastResponseOptionID, LastResponseOptionDescription, LastResponseCategoryCode, and MailingPermissionDeniedIndicator. CreationDateTime is a point in time when an inbound business transaction document reference is created, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Creation. OutboundMarketingActivityID may be optional and may be based on datatype GDT: MarketingActivityID. CreationBusinessPartnerCommonPersonNameFormattedName may be optional and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name. CreationBusinessPartnerUUID may be optional and may be based on datatype GDT: UUID. CustomerUUID is a globally unique identifier for a customer who responded with a referenced inbound business transaction document, and may be based on datatype GDT: UUID. CustomerInternalID is an identifier for a customer who responded with a referenced inbound business transaction document, and may be based on datatype GDT: BusinessPartnerInternalID.


CustomerFormattedName may be optional, is a formatted name of a customer who responded with a referenced inbound business transaction document, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. ContactPersonUUID is a globally unique identifier for a contact person who responded with a referenced inbound business transaction document, and may be based on datatype GDT: UUID. ContactPersonlnternalID may be optional, is an identifier for a contact person who responded with a referenced inbound business transaction document, and may be based on datatype GDT: BusinessPartnerInternalID. ContactPersonFormattedName may be optional, is a formatted name of a contact person who responded with a referenced inbound business transaction document, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. CampaignUUID is a globally unique identifier for a campaign for which an inbound business transaction document reference is recorded, and may be based on datatype GDT: UUID. CampaignID is an identifier of a campaign for which an inbound is recorded, and may be based on datatype GDT: BusinessTransactionDocumentID. CampaignDescription is a description of a campaign for which an inbound is recorded, and may be based on datatype GDT: MEDIUM_Description. EmailBlastIndicator may be optional and may be based on datatype GDT: Indicator. BusinessTransactionDocumentTypeCode may be optional, is a coded representation of a type of a business transaction document referenced by a campaign inbound, and may be based on datatype GDT: BusinessTransactionDocumentTypeCode. BusinessTransactionDocumentID may be optional, is an identifier for a business transaction document referenced by a campaign inbound, and may be based on datatype GDT: BusinessTransactionDocumentID.


BusinessTransactionDocumentDescription may be optional, is a description of a business transaction document referenced by a campaign inbound, and may be based on datatype GDT: LONG_Description. ReactionTypeCode may be optional and may be based on datatype GDT: CampaignReactionTypeCode. TrackableLinkUUID may be optional and may be based on datatype GDT: UUID. TargetURI may be optional and may be based on datatype GDT: WebURI. ResponseOptionUUID may be optional, is a globally unique identifier for a response option, and may be based on datatype GDT: UUID. ResponseOptionID may be optional, is an identifier for a response option, and may be based on datatype GDT: ResponseOptionID. ResponseOptionDescription may be optional, is a description for a response option, and may be based on datatype GDT: MEDIUM_Description. ResponseCategoryCode may be optional, is a coded representation for a response category, and may be based on datatype GDT: ResponseOptionCategoryCode. LastResponseOptionUUID may be optional and may be based on datatype GDT: UUID. LastResponseOptionID may be optional and may be based on datatype GDT:


ResponseOptionID. LastResponseOptionDescription may be optional and may be based on datatype GDT: MEDIUM_Description. LastResponseCategoryCode may be optional and may be based on datatype GDT: ResponseOptionCategoryCode. MailingPermissionDeniedIndicator may be optional and may be based on datatype GDT: Indicator. The following specialization associations for navigation may exist: Root, to the node Campaign, with a target cardinality of 1; Parent, to the node Inbound Business Transaction Document Reference, with a target cardinality of 1.


A Query By Elements query can be used to return a list of campaign inbound business transaction document references according to specified selection elements. The query elements are defined by the data type CampaignInboundBusinessTransactionDocumentReferenceOverviewElementsQueryElements. These elements include: CreationDateTime, CustomerUUID, CustomerinternalID, CustomerName, CustomerAdditionalName, CustomerSortingFormattedName, ContactPersonUUID, ContactPersonInternalID, ContactPersonFamilyName, ContactPersonGivenName, ContactPersonSortingFormattedName, OutboundMarketingActivityID, OutboundMarketingActivityUUID, FirstResponseIndicator, CampaignID, CampaignDescription, EmailBlastIndicator, BusinessTransactionDocumentTypeCode, ReactionTypeCode, TrackableLinkUUID, TargetURI, ResponseOptionUUID, ResponseOptionID, ResponseOptionDescription, ResponseOptionCategoryCode, MailingPermissionDeniedIndicator, and SearchText.


CreationDateTime is a point in time a campaign inbound business transaction document reference was created, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Creation. CustomerUUID may be based on datatype GDT: UUID. CustomerinternalID is an identifier for a customer, and may be based on datatype GDT: BusinessPartnerInternalID. CustomerName is a name of a customer, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of Customer. CustomerAdditionalName is an additional name of a customer, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of CustomerAdditional. CustomerSortingFormattedName is a formatted name of a customer for sorting purposes, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. ContactPersonUUID may be based on datatype GDT: UUID. ContactPersonlnternalID is an identifier for a contact person, and may be based on datatype GDT: BusinessPartnerInternalID. ContactPersonFamilyName is a family name of a contact person, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of Family. ContactPersonGivenName is a given name of a contact person, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of Given. ContactPersonSortingFormattedName is a formatted name of a contact person, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. OutboundMarketingActivityID is an identifier for an outbound marketing activity, and may be based on datatype GDT: MarketingActivityID. OutboundMarketingActivityUUID is a globally unique identifier for an outbound marketing activity, and may be based on datatype GDT: UUID. FirstResponseIndicator is an indicator that specifies whether an inbound business transaction document is a first response to a campaign by a specific customer and/or contact person, and may be based on datatype GDT: Indicator, with a qualifier of Response. A response to a campaign is a reaction to the campaign by a customer and/or contact person who was targeted by the campaign. A same customer and/or contact person may respond multiple times to a campaign. The responses to a campaign are represented by business transaction documents which are linked to the campaign by campaign inbound business transaction document references. CampaignID is an identifier for a campaign, and may be based on datatype GDT: BusinessTransactionDocumentID. CampaignDescription is a description of a campaign, and may be based on datatype GDT: MEDIUM_Description. EmailBlastIndicator may be based on datatype GDT: Indicator. BusinessTransactionDocumentTypeCode is a coded representation of a type of business transaction document, and may be based on datatype GDT: BusinessTransactionDocumentTypeCode. ReactionTypeCode may be based on datatype GDT: CampaignReactionTypeCode. TrackableLinkUUID may be based on datatype GDT: UUID. TargetURI may be based on datatype GDT: WebURI. ResponseOptionUUID is a globally unique identifier for a response option, and may be based on datatype GDT: UUID. ResponseOptionID is an identifier for a response option, and may be based on datatype GDT: ResponseOptionID. ResponseOptionDescription is a description of a response option, and may be based on datatype GDT: MEDIUM_Description. ResponseOptionCategoryCode is a coded representation of a response option category, and may be based on datatype GDT: ResponseOptionCategoryCode. MailingPermissionDeniedIndicator is an indicator that specifies whether sending of emails to a specific customer and/or contact person is allowed, and may be based on datatype GDT: Indicator. SearchText includes free text including one or more words used to search for information about a campaign inbound business transaction document reference, and may be based on datatype GDT: SearchText.


Key Performance Indicators are a collection of quantifiable, calculated key figures that measure the performance of a campaign. Examples for Key Performance Indicators are a total number of inbound responses to a campaign or a response rate of a campaign. The elements located directly at the node Key Performance Indicators are defined by the inline structure: APCRM_S_CPG_KPIS_EL. These elements include: EffectiveResponseRatePercent, EffectiveOutboundMarketingActivityNumberValue, FailedOutboundMarketingActivityNumberValue, WithoutResponseOutboundMarketingActivityNumberValue, ResultingActivitiesTotalNumberValue, ResultingLeadsTotalNumberValue, ResultingMarketingLeadsTotalNumberValue, ResultingOpportunitiesTotalNumberValue, ResultingCustomerQuotesTotalNumberValue, EffectiveMemberResponseRatePercent, EmailBounceNumberValue, EmailBounceRatePercent, EmailSentNumberValue, UniqueEmailOpenedNumberValue, UniqueEmailOpenedRatePercent, TotalLinkClickedNumberValue, UniqueLinkClickedNumberValue, TotalLinkClickedRatePercent, UniqueLinkClickedRatePercent, EmailUnopenedNumberValue, and EmailUnopenedRatePercent. EffectiveResponseRatePercent may be optional, can be a determined value that is an effective inbound number value divided by an effective outbound number value, can be given in percent, and may be based on datatype GDT: Percent, with a qualifier of ResponseRate. EffectiveOutboundMarketingActivityNumberValue may be optional, is a number of outbound marketing activities created with reference to a campaign by individual customers or contact persons, and may be based on datatype GDT: NumberValue, with a qualifier of MarketingActivity. FailedOutboundMarketingActivityNumberValue may be optional, is a number of outbound marketing activities created with reference to a campaign for which a communication has failed, and may be based on datatype GDT: NumberValue, with a qualifier of MarketingActivity. WithoutResponseOutboundMarketingActivityNumberValue may be optional, is a number of outbound marketing activities created with reference to a campaign for which no response has been recorded, and may be based on datatype GDT: NumberValue, with a qualifier of MarketingActivity. ResultingActivitiesTotalNumberValue may be optional, is a total number of activities created with reference to a campaign, and may be based on datatype GDT: NumberValue, with a qualifier of Total. ResultingLeadsTotalNumberValue may be optional, is a total number of leads created with reference to a campaign, and may be based on datatype GDT: NumberValue, with a qualifier of Total. ResultingMarketingLeadsTotalNumberValue may be optional and may be based on datatype GDT: NumberValue. ResultingOpportunitiesTotalNumberValue may be optional, is a total number of opportunities created with reference to a campaign, and may be based on datatype GDT: NumberValue, with a qualifier of Total.


ResultingCustomerQuotesTotalNumberValue may be optional, is a total number of sales quotes created with reference to a campaign, and may be based on datatype GDT: NumberValue, with a qualifier of Total. EffectiveMemberResponseRatePercent may be optional and may be based on datatype GDT: Percent. EmailBounceNumberValue may be optional and may be based on datatype GDT: NumberValue. EmailBounceRatePercent may be optional and may be based on datatype GDT: Percent. EmailSentNumberValue may be optional and may be based on datatype GDT: NumberValue. UniqueEmailOpenedNumberValue may be optional and may be based on datatype GDT: NumberValue. UniqueEmailOpenedRatePercent may be optional and may be based on datatype GDT: Percent. TotalLinkClickedNumberValue may be optional and may be based on datatype GDT: NumberValue. UniqueLinkClickedNumberValue may be optional and may be based on datatype GDT: NumberValue. TotalLinkClickedRatePercent may be optional and may be based on datatype GDT: Percent. UniqueLinkClickedRatePercent may be optional and may be based on datatype GDT: Percent. EmailUnopenedNumberValue may be optional and may be based on datatype GDT: NumberValue. EmailUnopenedRatePercent may be optional and may be based on datatype GDT: Percent. The following specialization associations for navigation may exist: Parent, to the node Campaign, with a target cardinality of 1; and Root, to the node Campaign, with a target cardinality of 1. In some implementations, Key Performance Indicators are not changed externally.


Outbound Marketing Activity is a marketing activity with direction outbound initiated by a campaign via execution of a campaign execution step. The elements located directly at the node Outbound Marketing Activity are defined by the inline structure APCRM_S_CPG_OUTBOUND_EL. These elements include: UUID, ID, AlternativelD, CreationDateTime, ExecutionStepUUID, TargetGroupMemberUUID, CustomerUUID, ContactPersonUUID, CommunicationFailureReasonCode, Status, BusinessTransactionDocumentReference, BusinessTransactionDocumentRelationshipRoleCode, BusinessTransactionDocumentDescription, AddressSnapshotUUID, MailFormUUID, MailBodyPlaceHolderValue, and CampaignExecutionCommunicationChannelTypeCode. UUID may be an alternative key, is a globally unique identifier for an outbound marketing activity, and may be based on datatype GDT: UUID. ID may be an alternative key, is an identifier for an outbound marketing activity, and may be based on datatype GDT: MarketingActivityID. AlternativeID may be an alternative key, is an alternative identifier for an outbound marketing activity, and may be based on datatype GDT: MarketingActivityAlternativelD. CreationDateTime is a point in time when an outbound marketing activity was created, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Creation. ExecutionStepUUID is a globally unique identifier for an execution step that includes a specification for the creation of an outbound marketing activity, and may be based on datatype GDT: UUID. TargetGroupMemberUUID is a globally unique identifier for a target group member which was contacted via an outbound marketing activity, and may be based on datatype GDT: UUID.


CustomerUUID is a globally unique identifier for a customer who was contacted by an outbound marketing activity, and may be based on datatype GDT: UUID. ContactPersonUUID is a globally unique identifier for a contact person who was contacted by an outbound marketing activity, and may be based on datatype GDT: UUID. CommunicationFailureReasonCode may be optional, is a coded representation of a reason for the failure of a communication of an outbound marketing activity which was created by a campaign, and may be based on datatype GDT: MarketingActivityCommunicationFailureReasonCode. Status is a status of an outbound marketing activity, and may be based on datatype BOIDT: CampaignOutboundMarketingActivityStatus Status may include Status/CommunicationStatusCode, which is a coded representation of a communication state of an outbound marketing activity initiated by a campaign, and may be based on datatype GDT: MarketingActivityCommunicationStatusCode. BusinessTransactionDocumentReference may be optional and may be based on datatype GDT: Business TransactionDocumentReference. BusinessTransactionDocumentRelationshipRoleCode may be optional and may be based on datatype GDT: BusinessTransactionDocumentRelationshipRoleCode. BusinessTransactionDocumentDescription may be optional and may be based on datatype GDT: LONG_Description. AddressSnapshotUUID may be optional, is a unique identifier for an address snapshot that was used by an outbound marketing activity, and may be based on datatype GDT: UUID. MailFormUUID may be optional, is a unique identifier for a mail form that was used by an outbound marketing activity, and may be based on datatype GDT: UUID. MailBodyPlaceHolderValue may be optional, includes values of place holders used in a mail form, and may be based on datatype GDT: BinaryObject. The values can be stored in an XML (eXtensible Markup Language) format. Together with a mail form the values can be used in order to restore a personalized e-mail which has been sent to a corresponding customer and contact person. CampaignExecutionCommunicationChannelTypeCode may be optional and may be based on datatype GDT: CampaignExecutionCommunicationChannelTypeCode.


The following composition relationships to subordinate nodes exist: Outbound Marketing Activity Overview, with a cardinality of 1:C. The following inbound aggregation relationships may exist: Target Group Member, from the business object Target Group/node Member, with a cardinality of 1:CN, which is a target group member for who an outbound was created; Target Group Member Contact Information, from the business object Target Group/node Member Contact Information, with a cardinality of 1:CN, which includes contact Information of a target group member for who an outbound was created. The following inbound association relationships may exist: Address Snapshot, from the business object Address Snapshot/node Root, with a cardinality of C:CN; Contact Person, from the business object Business Partner/node Business Partner, with a cardinality of C:CN, which is a contact person of a customer for who an outbound was created; Customer, from the business object Customer/node Customer, with a cardinality of 1:CN, which is a customer for who an outbound was created; Email Activity, from the business object Email Activity/node Email Activity, with a cardinality of C:C; Fax Activity, from the business object Fax Activity/node Fax Activity, with a cardinality of C:C; Letter Activity, from the business object Letter Activity/node Letter Activity, with a cardinality of C:C; and Phone Call Activity; from the business object Phone Call Activity/node Phone Call Activity, with a cardinality of C:C.


The following specialization associations for navigation may exist: Parent, to the node Campaign, with a target cardinality of 1; Root, to the node Campaign, with a target cardinality of 1; Execution Step, to the node Execution Step, with a target cardinality of 1; and Related Mail Form, to the node Mail Form, with a target cardinality of C.


A Create Marketing Activity action can be used to create a marketing activity. A marketing activity is an e-mail-, letter- or fax activity, or the generation of a lead, or the generation and sending of personalized mail that is addressed to a member of a target group, or any other marketing-related activity that is addressed to a member of a target group. The Create Marketing Activity action creates a marketing activity and links it with a campaign with a business transaction document reference. Data used to create the activity can be derived from an outbound marketing activity and an execution step of the campaign. For example, such data can include: 1) the type of marketing activity that is created—for instance, an e-mail activity can be derived from an execution type of an execution step; 2) the parties that are assigned to a created activity, which can be derived from a customer and contact person who are assigned to an outbound marketing activity; and 3) a name and text of an activity, which can be determined from activity creation parameters in an execution step.


A Set Failed Delivery Status action can exist and can have associated parameter elements. The action elements are defined by the inline structure: APCRM_S_CPG_ES_BOUNCE_AC. These elements include: SetUsageDeniedIndicator and MailSystemErrorCode. SetUsageDeniedIndicator may be optional and may be based on datatype GDT: Indicator. MailSystemErrorCode may be based on datatype GDT: MailSystemErrorCode.


Set Mailing Permission Denied and Reset Mailing Permission Denied actions can exist. A Destroy action can be used to destroy an object in accordance with specified data retention rules. Destruction of data can imply either physical deletion or anonymization. The Destroy action can be usable for Information Lifecycle Management. The object does not necessarily perform all business logic checks.


Outbound Marketing Activity Overview Query Response Transformation Node is a general overview of an outbound marketing activity. The elements located directly at the node Outbound Marketing Activity Overview are defined by the inline structure: APCRM_S_CPG_OUTBOUND_OV_EL. These elements include: UUID, ID, CreationDateTime, CustomerUUID, CustomerinternalID, CustomerFormattedName, ContactPersonUUID, ContactPersonlnternalID, ContactPersonFormattedName, ContactPersonFormattedName, CampaignUUID, CampaignID, CampaignDescription, CampaignLifeCycleStatusCode, CampaignPlannedStartDate, CampaignPlannedEndDate, EmailBlastIndicator, ExecutionStepUUID, Execution StepExecutionTypeCode, ExecutionStepTargetGroupUUID, Execution StepTargetGroupID, Execution StepTargetGroupDescription, BusinessTransactionDocumentReferenceBusinessTransactionDocumentTypeCode, BusinessTransactionDocumentReferenceBusinessTransactionDocumentID, BusinessTransactionDocumentReferenceBusinessTransactionDocumentDescription, CommunicationFailureReasonCode, Status, ResponseOptionUUID, ResponseOptionID, ResponseOptionDescription, ResponseCategoryCode, and CampaignExecutionCommunicationChannelTypeCode.


UUID is a globally unique identifier for an outbound marketing activity, and may be based on datatype GDT: UUID. ID is an identifier for an outbound marketing activity to enable simplified identification of a received response, and may be based on datatype GDT: MarketingActivityID. If a responder to a campaign specifies a marketing activity ID within the response, the responder can be easily identified by retrieving a respective campaign outbound marketing activity. From outbound information, a campaign and a customer or contact person who responded can be derived. CreationDateTime is a point in time when an outbound marketing activity was created, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Creation. CustomerUUID is a globally unique identifier for a customer addressed by an outbound marketing activity, and may be based on datatype GDT: UUID. CustomerinternalID is an identifier for a customer addressed by an outbound marketing activity, and may be based on datatype GDT: BusinessPartnerInternalID. CustomerFormattedName may be optional, is a formatted name of a customer addressed by an outbound marketing activity, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. ContactPersonUUID is a globally unique identifier for a contact person addressed by an outbound marketing activity, and may be based on datatype GDT: UUID. In some implementations, a ContactPersonUUID is specified if a CustomerUUID is also specified. ContactPersonInternalID may be optional, is an identifier for a contact person addressed by an outbound marketing activity, and may be based on datatype GDT: BusinessPartnerInternalID. In some implementations, ContactPersonID is specified if a CustomerUUID is also specified.


ContactPersonFormattedName may be optional, is a formatted name of a contact person addressed by an outbound marketing activity, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. In some implementations, ContactPersonFormattedName is specified if a CustomerUUID is specified. CampaignUUID is a globally unique identifier for a campaign which created an outbound marketing activity, and may be based on datatype GDT: UUID. CampaignID is an identifier for a campaign that created an outbound marketing activity, and may be based on datatype GDT: BusinessTransactionDocumentID. CampaignDescription is a description of a campaign that created an outbound marketing activity, and may be based on datatype GDT: MEDIUM_Description. CampaignLifeCycleStatusCode may be optional, is a coded representation of a life cycle status of a campaign, and may be based on datatype GDT: CampaignLifeCycleStatusCode. CampaignPlannedStartDate may be optional, is a point in time at which a campaign is planned to start, and may be based on datatype GDT: Date. CampaignPlannedEndDate may be optional, is a point in time at which a campaign is planned to end, and may be based on datatype GDT: Date. EmailBlastIndicator may be optional and may be based on datatype GDT: Indicator. ExecutionStepUUID is a globally unique identifier for a campaign execution step which created an outbound marketing activity, and may be based on datatype GDT: UUID. ExecutionStepExecutionTypeCode is a coded representation of a type of execution of an execution step that was used to create an outbound marketing activity within a campaign, and may be based on datatype GDT: CampaignExecutionStepExecutionTypeCode. ExecutionStepTargetGroupUUID is a globally unique identifier for a target group that was used in creating an outbound marketing activity using a campaign execution step, and may be based on datatype GDT: UUID. ExecutionStepTargetGroupID is an identifier of a target group that was used in creating an outbound marketing activity using a campaign execution step, and may be based on datatype GDT: TargetGroupID. ExecutionStepTargetGroupDescription is a description of a target group that was used in creating an outbound marketing activity using a campaign execution step, and may be based on datatype GDT: MEDIUM_Description, with a qualifier of TargetGroup. BusinessTransactionDocumentReferenceBusinessTransactionDocumentTypeCode may be optional, is a coded representation of the type of a business transaction document such as e-mail activity referenced by an outbound marketing activity, and may be based on datatype GDT: BusinessTransactionDocumentTypeCode. BusinessTransactionDocumentReferenceBusinessTransactionDocumentID is an identifier of a business transaction document such as e-mail activity created by an outbound marketing activity, and may be based on datatype GDT: BusinessTransactionDocumentID. BusinessTransactionDocumentReferenceBusinessTransactionDocumentDescription is a description of a business transaction document created by an outbound marketing activity, and may be based on datatype GDT: LONG_Description. CommunicationFailureReasonCode may be optional, is a coded representation of a reason for the failure of a communication of an outbound marketing activity that was created by a campaign, and may be based on datatype GDT: MarketingActivityCommunicationFailureReasonCode. Status is a status of an outbound marketing activity, and may be based on datatype BOIDT: CampaignOutboundMarketingActivityStatus. Status can include Status/CommunicationStatusCode, which is a coded representation of a communication state of an outbound marketing activity initiated by a campaign, and may be based on datatype GDT: MarketingActivityCommunicationStatusCode. ResponseOptionUUID may be optional and may be based on datatype GDT: UUID. ResponseOptionID may be optional and may be based on datatype GDT: ResponseOptionID. ResponseOptionDescription may be optional and may be based on datatype GDT: MEDIUM_Description. ResponseCategoryCode may be optional and may be based on datatype GDT: ResponseOptionCategoryCode. CampaignExecutionCommunicationChannelTypeCode may be optional and may be based on datatype GDT: CampaignExecutionCommunicationChannelTypeCode. The following specialization associations for navigation may exist: Root, to the node Campaign, with a target cardinality of 1; Parent, to the node Outbound Marketing Activity, with a target cardinality of 1.


A Query By Elements query be used to query elements of the Overview node of a Campaign Outbound Marketing Activity. The query elements are defined by the data type CampaignOutboundMarketingActivityOverviewElementsQueryElements. These elements include: UUID, ID, CreationDateTime, CustomerinternalID, CustomerName, CustomerAdditionalName, CustomerSortingFormattedName, ContactPersonlnternalID, ContactPersonNameFamilyName, ContactPersonNameGivenName, ContactPersonSortingFormattedName, CampaignID, CampaignDescription, CampaignLifeCycleStatusCode, CampaignPlannedStartDate, CampaignPlannedEndDate, EmailBlastIndicator, ExecutionStepUUID, ExecutionStepExecutionTypeCode, ExecutionStepTargetGroupID, ExecutionStepTargetGroupDescription, TargetGroupMemberUUID, BusinessTransactionDocumentReferenceBusinessTransactionDocumentTypeCode, CommunicationFailureReasonCode, NoResponseIndicator, Status, CampaignExecutionCommunicationChannelTypeCode, and SearchText.


UUID is a globally unique identifier for an outbound marketing activity overview, and may be based on datatype GDT: UUID. ID is an identifier for an outbound marketing activity overview, and may be based on datatype GDT: MarketingActivityID. CreationDateTime is a point in time when an outbound marketing activity overview was created, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Creation. CustomerInternalID is an identifier for a customer, and may be based on datatype GDT: BusinessPartnerInternalID. CustomerName is a name of a customer, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of Customer. CustomerAdditionalName is an additional name for a customer, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of CustomerAdditional. CustomerSortingFormattedName is a formatted name of a customer, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. ContactPersonInternalID is an identifier for a contact person, and may be based on datatype GDT: BusinessPartnerInternalID. ContactPersonNameFamilyName is a family name of a contact person, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of Family. ContactPersonNameGivenName is a given name of a contact person, and may be based on datatype GDT: LANGUAGEINDEPENDENT_MEDIUM_Name, with a qualifier of Given. ContactPersonSortingFormattedName is a formatted name of a contact person, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. CampaignID is an identifier for a campaign, and may be based on datatype GDT: BusinessTransactionDocumentID.


CampaignDescription is a description of a campaign, and may be based on datatype GDT: MEDIUM_Description. CampaignLifeCycleStatusCode is a coded representation of a life cycle status of a campaign, and may be based on datatype GDT: CampaignLifeCycleStatusCode. CampaignPlannedStartDate is a point in time at which a campaign is planned to start, and may be based on datatype GDT: Date. CampaignPlannedEndDate is a point in time at which a campaign is planned to end, and may be based on datatype GDT: Date. EmailBlastIndicator may be based on datatype GDT: Indicator. ExecutionStepUUID is a globally unique identifier for an execution step, and may be based on datatype GDT: UUID. ExecutionStepExecutionTypeCode is a coded representation of an execution type of an execution step, and may be based on datatype GDT: CampaignExecutionStepExecutionTypeCode. ExecutionStepTargetGroupID is an identifier for an execution step in a target group, and may be based on datatype GDT: TargetGroupID. ExecutionStepTargetGroupDescription is a description of an execution step in a target group, and may be based on datatype GDT: MEDIUM_Description, with a qualifier of TargetGroup. TargetGroupMemberUUID is a globally unique identifier for a target group member, and may be based on datatype GDT: UUID. BusinessTransactionDocumentReferenceBusinessTransactionDocumentTypeCode is a coded representation of a type of business transaction document that is referenced, and may be based on datatype GDT: BusinessTransactionDocumentTypeCode. CommunicationFailureReasonCode is a coded representation of a reason for communication failure, and may be based on datatype GDT: MarketingActivityCommunicationFailureReasonCode. NoResponseIndicator is an indicator that specifies whether a response exists for an outbound marketing activity, and may be based on datatype GDT: Indicator, with a qualifier of Response. Status is a status of an outbound marketing activity overview, and may be based on datatype BOIDT: CampaignOutboundMarketingActivityStatus. Status/CommunicationStatusCode is a coded representation of a communication state of an outbound marketing activity initiated by a campaign, and may be based on datatype GDT: MarketingActivityCommunicationStatusCode. CampaignExecutionCommunicationChannelTypeCode may be based on datatype GDT: CampaignExecutionCommunicationChannelTypeCode. SearchText includes free text including one or more words for searching for information about an outbound marketing activity overview, and may be based on datatype GDT: SearchText. Overview Query Response Transformation Node is an overview of a campaign. The elements located directly at the node Overview are defined by the data type CampaignOverviewElements. These elements include: UUID, ID, ReferenceID, Description, PlannedStartDate, PlannedEndDate, CreationBusinessPartnerCommonPersonNameFormattedName, CreationBusinessPartnerUUID, CreationDateTime, LastChangeBusinessPartnerCommonPersonNameFormattedName, LastChangeBusinessPartnerUUID, LastChangeDateTime, EmailBlastIndicator, ExecutionStepExecutionTypeCode, ExecutionStepTargetGroupDescription, ExecutionStepTargetGroupUUID, Execution StepTargetGroupID, ExecutionStepTargetGroupMemberNumberValue, ExecutionStatusCode, ExecutionDateTime, LifeCycleStatusCode, and RestartDisabledIndicator.


UUID is a globally unique identifier for a campaign, and may be based on datatype GDT: UUID. ID is an identifier for a campaign, and may be based on datatype GDT: BusinessTransactionDocumentID. ReferenceID may be optional and may be based on datatype GDT: CampaignReferenceID. Description is a description of a campaign, and may be based on datatype GDT: MEDIUM_Description. PlannedStartDate may be optional, is a point in time at which a campaign is planned to start, and may be based on datatype GDT: Date, with a qualifier of Planned. PlannedEndDate may be optional, is a point in time at which a campaign is planned to end, and may be based on datatype GDT: Date. CreationBusinessPartnerCommonPersonNameFormattedName is a formatted name of an employee who created a campaign, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. CreationBusinessPartnerUUID is a globally unique identifier for a business partner who created a campaign, and may be based on datatype GDT: UUID. CreationDateTime is a point in time when a campaign was created, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Creation. LastChangeBusinessPartnerCommonPersonNameFormattedName may be optional, is a formatted name of an employee who last changed a campaign, and may be based on datatype GDT: LANGUAGEINDEPENDENT_LONG_Name, with a qualifier of Formatted. LastChangeBusinessPartnerUUID is a globally unique identifier for a business partner who last changed a campaign, and may be based on datatype GDT: UUID. LastChangeDateTime may be optional, is a point in time when a campaign was last changed, and may be based on datatype GDT: GLOBAL_DateTime, with a qualifier of Change. EmailBlastIndicator may be optional and may be based on datatype GDT: Indicator.


ExecutionStepExecutionTypeCode may be optional, is a coded representation of an execution type of an execution step of a campaign, and may be based on datatype GDT: CampaignExecutionStepExecutionTypeCode. ExecutionStepTargetGroupDescription is a description of a target group assigned to a campaign, and may be based on datatype GDT: MEDIUM_Description, with a qualifier of TargetGroup. ExecutionStepTargetGroupUUID is a globally unique identifier for a target group assigned to an execution step of a campaign, and may be based on datatype GDT: UUID. ExecutionStepTargetGroupID is an identifier for a target group assigned to an execution step of a campaign, and may be based on datatype GDT: TargetGroupID. ExecutionStepTargetGroupMemberNumberValue may be optional, is the number of members of a target group assigned to an execution step of a campaign, and may be based on datatype GDT: NumberValue, with a qualifier of Member. ExecutionStatusCode may be optional, is a coded representation of an execution status of an execution step, and may be based on datatype GDT: CampaignExecutionStatusCode. ExecutionStatusCode includes up-to-date information about the execution of a campaign, such as whether the campaign is scheduled, running, finished with a certain outcome, or cancelled (e.g., in a case of technical problems). ExecutionDateTime may be optional, is a point in time when a campaign execution step is executed, and may be based on datatype GDT: GLOBAL_DateTime. LifeCycleStatusCode may be optional, is a coded representation of a life cycle status of a campaign, and may be based on datatype GDT: CampaignLifeCycleStatusCode. RestartDisabledIndicator may be optional, is an indicator that specifies whether a restart of a campaign execution is possible, and may be based on datatype GDT: Indicator. The following specialization associations for navigation may exist to the node Campaign: Parent, with a target cardinality of 1; and Root, with a target cardinality of 1.


A Query By Elements query can be used to return a list of campaign overviews according to specified selection elements. The query elements are defined by the data type CampaignOverviewElementsQueryElements. These elements include: UUID, ID, ReferenceID, SystemAdministrativeData, CreationBusinessPartnerCommonPersonNameGivenName, CreationBusinessPartnerCommonPersonNameFamilyName, LastChangeBusinessPartnerCommonPersonNameGivenName, LastChangeBusinessPartnerCommonPerson NameFamilyName, Description, PlannedStartDate, PlannedEndDate, EmailBlastIndicator, ExecutionStepExecutionTypeCode, ExecutionStepTargetGroupID, ExecutionStepTargetGroupDescription, ExecutionStatusCode, ResponseOptionUUID, ResponseOptionID, ResponseOptionDescription, ResponseOptionCategoryCode, LifeCycleStatusCode, SearchText, and RestartDisabledIndicator.


UUID is a globally unique identifier for a campaign overview, and may be based on datatype GDT: UUID. ID is an identifier for a campaign overview, and may be based on datatype GDT: BusinessTransactionDocumentID. ReferenceID may be based on datatype GDT: CampaignReferenceID. SystemAdministrativeData includes administrative data that is stored in a system, such as system users and change dates/times, and may be based on datatype GDT: SystemAdministrativeData. CreationBusinessPartnerCommonPersonNameGivenName is a given name of a business partner that created a campaign, and may be based on datatype GDT: MEDIUM_Name. CreationBusinessPartnerCommonPersonNameFamilyName is a family name of a business partner that created a campaign, and may be based on datatype GDT: MEDIUM_Name. LastChangeBusinessPartnerCommonPersonNameGivenName is a given name of a business partner that last changed a campaign, and may be based on datatype GDT: MEDIUM_Name. LastChangeBusinessPartnerCommonPersonNameFamilyName is a family name of a business partner that last changed a campaign, and may be based on datatype GDT: MEDIUM_Name. Description is a description of a campaign overview, and may be based on datatype GDT: MEDIUM_Description. PlannedStartDate is a point in time at which a campaign is planned to start, and may be based on datatype GDT: Date. PlannedEndDate is a point in time at which a campaign is planned to end, and may be based on datatype GDT: Date. EmailBlastIndicator may be based on datatype GDT: Indicator. ExecutionStepExecutionTypeCode is a coded representation of an execution type of an execution step, and may be based on datatype GDT: CampaignExecutionStepExecutionTypeCode.


ExecutionStepTargetGroupID is an identifier for an execution step in a target group, and may be based on datatype GDT: TargetGroupID. ExecutionStepTargetGroupDescription is a description for an execution step in a target group, and may be based on datatype GDT: MEDIUM_Description, with a qualifier of TargetGroup. ExecutionStatusCode is a coded representation of an execution status of an execution step, and may be based on datatype GDT: CampaignExecutionStatusCode. ExecutionStatusCode includes up-to-date information about an execution of a campaign, such as if the campaign is scheduled, running, finished with a certain outcome, or cancelled (e.g., as in a case of technical problems). ResponseOptionUUID is a globally unique identifier for a response option, and may be based on datatype GDT: UUID. ResponseOptionID is an identifier for a response option, and may be based on datatype GDT: ResponseOptionID. ResponseOptionDescription is a description for a response option, and may be based on datatype GDT: MEDIUM_Description. ResponseOptionCategoryCode is a coded representation of a response option category, and may be based on datatype GDT: ResponseOptionCategoryCode. LifeCycleStatusCode is a coded representation of a life cycle status of a campaign overview, and may be based on datatype GDT: CampaignLifeCycleStatusCode. SearchText includes free text including one or more words used to search for information about a campaign overview, and may be based on datatype GDT: SearchText. RestartDisabledIndicator is an indicator that specifies whether a restart of a campaign execution is possible, and may be based on datatype GDT: Indicator.


An inbound service ManageCampaignInboundIn can be used to manage campaign inbounds, has an associated process component of Campaign Management, has an associated deployment unit of Customer Relationship Management, can be inbound and stateless, and can be associated with the following operations: Maintain Mailing Permission As Bundle, Maintain Failed Delivery Status As Bundle, Check Maintain Failed Delivery Status As Bundle, Check Maintain Mailing Permission As Bundle, Maintain Reaction As Bundle, and Check Maintain Reaction As Bundle.


The Operation Maintain Mailing Permission As Bundle has a name of MaintainMailingPermissionBundle, can be synchronous, and can be used to maintain campaign mailing permission data (e.g., subscriptions) and to create, update or delete one or more sets of campaign mailing permission data using imported structured data.


Marketing campaign mailing permission data (e.g., subscriptions) can control the usage of customers or contact person contact data for new marketing campaigns (e.g., subscribe, unsubscribe). Both of the operations MaintainMailingPermissionBundle and CheckMaintainMailingPermissionBundle can be used to process a request for changing marketing campaign mailing permission data. A request message of the operation MaintainMailingPermissionBundle includes a BasicMessageHeader node element, as well as a Campaign node element including marketing campaign outbound data to be updated. The campaign node can occur multiple times in the request message, which can indicate that outbound data for multiple marketing campaigns are to be created, updated or deleted by a single web service call. The response message of the operation MaintainMailingPermissionBundle includes log items, processing information, and a marketing campaign-specific node with ReferenceObjectNodeSenderTechnicalID and ChangeStateID elements, as well as marketing campaign ID and marketing campaign UUID elements (e.g., identifiers of marketing campaigns rather than marketing campaign outbounds).


The Campaign message node includes two elements used to identify existing marketing campaigns: ID and ReferenceID. ID is an identifier of a marketing campaign in the system. ReferenceID is an identifier for a unique reference to a marketing campaign in an external system. Either ID or ReferenceID can be used for specifying a marketing campaign which is specified to be updated. A value “06” (No Action) can be specified for action codes. If an external application does not pass an action code, “No Action” can be used as a default action code.


An Outbound message node includes information about a customer and contact persons addressed by a marketing campaign, including an indicator for controlling the usage of customers or contact person contact data for new marketing campaigns (e.g., subscribe, unsubscribe). The Outbound message can include CustomerUUID, CustomerinternalID, ContactPersonUUID, ContactPersonlnternalID, MailingPermissionDeniedIndicator, and actionCode elements. CustomerUUID and CustomerinternalID are identifiers of a customer. Either the customer UUID or the customer internal ID can be specified. ContactPersonUUID and ContactPersonlnternalID are identifiers of a contact person. Either the contact person UUID or the contact person internal ID can be specified. MailingPermissionDeniedIndicator is an indicator that marks customer or contact persons that are excluded for marketing campaigns. The actionCode attribute is an action code. An action code of “02” (Update) is supported.


Valid elements for identification of marketing campaign outbound instances can include: 1) one of the customer identifiers (UUID or InternalID) and one of the contact person identifiers (UUID or InternalID); or 2) one of the customer identifiers (UUID or InternalID) if the outbound instance does not have a contact person. For the element MailingPermissionDeniedIndicator, a value of “true” can result in exclusion of the customer or contact person from future marketing campaigns and the value “false” can remove a previous subscription cancellation. After removal of a subscription cancellation, customers or contact persons can be used in future marketing campaigns.


The existence of a contact person and/or a customer in an outbound instance specifies an object for processing the request. If both a customer ID/UUID and a contact person ID/UUID are specified, a subscription associated with the request is a subscription that belongs to the contact person of the customer. If the customer ID/UUID is specified and the contact person ID/UUID is empty, a subscription associated with the request is a subscription that belongs to the customer. In some implementations, a request that has an empty customer ID/UUID and a specified contact person ID/UUID is not allowed. Below is example XML code which can be used to process requests to subscribe/unsubscribe for marketing campaigns based on marketing campaigns executed in an external system. The example includes two campaign elements.














<n0:CampaignMailingPermissionBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader>


<Campaign>


<ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>1112</ID>


<Outbound>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2001</CustomerInternalID>


<ContactPersonInternalID>CP2002</ContactPersonInternalID>


<MailingPermissionDeniedIndicator>true</MailingPermissionDenied-


Indicator>


<Outbound>


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2010</CustomerInternalID>


<ContactPersonInternalID>CP2012</ContactPersonInternalID>


<MailingPermissionDeniedIndicator>false</MailingPermissionDenied-


Indicator>


</Outbound>


</Campaign>


<Campaign>


<ObjectNodeSenderTechnicalID>2000</ObjectNodeSenderTechnicalID>


<ID>1114</ID>


<Outbound>


<ObjectNodeSenderTechnicalID>2001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2020</CustomerInternalID>


<ContactPersonInternalID>CP2022</ContactPersonInternalID>


<MailingPermissionDeniedIndicator>true</MailingPermissionDenied-


Indicator>


</Outbound>


</Campaign>


</n0:CampaignMailingPermissionBundleMaintainRequest_sync>









An operation Maintain Failed Delivery Status As Bundle has a name of MaintainFailedDeliveryStatusBundle, can be synchronous, and can be used to maintain campaign failed delivery status data (e.g., bounces), such as to create, update or delete one or more sets of campaign failed delivery status data using imported structured data.


Marketing campaign failed delivery status data (e.g., bounces) can represent error codes and error reasons associated with e-mails sent to customers or contact person by the mailing of marketing campaigns. Both operations MaintainFailedDeliveryStatusBundle and CheckMaintainFailedDeliveryStatusBundle can process a request to set marketing campaign failed delivery status data after a marketing campaign has been executed in an external system (e.g., bounces appearing after the marketing campaign execution). The operations of the service ManageCampaignOutboundIn can be used for errors noted during the marketing campaign execution, such as a missing e-mail address.


A request message of the operation MaintainFailedDeliveryStatusBundle includes a BasicMessageHeader node element, as well as a Campaign node element including marketing campaign outbound data to be updated. The campaign node can occur multiple times in the request message, which can indicate that outbound data for multiple marketing campaigns is to be created, updated or deleted by a single web service call. The response message of the operation MaintainFailedDeliveryStatusBundle includes log items, processing information, and a marketing campaign-specific node with ReferenceObjectNodeSenderTechnicalID and ChangeStateID elements, as well as marketing campaign ID and marketing campaign UUID elements (e.g., identifiers of marketing campaigns not of marketing campaign outbounds).


The Campaign message node includes two elements used to identify existing marketing campaigns: ID and ReferenceID. ID is an identifier of a marketing campaign in the system. ReferenceID is an identifier for a unique reference to a marketing campaign in an external system. Either ID or ReferenceID can be used for specifying a marketing campaign which is to be updated. A value of “06” (No Action) can be allowed for an action code. If the external application does not pass an action code, a value of “06” can be used as a default action code.


An Outbound message node includes information about a customer and contact persons addressed by a marketing campaign, such as error codes and error reasons of a failed e-mail communication. The Outbound message node can include CustomerUUID, CustomerInternalID, ContactPersonUUID, ContactPersonlnternalID, MailSystemErrorCode, CommunicationDataUsageDeniedIndicator, and actionCode. CustomerUUID and CustomerInternalID are identifiers of a customer. Either the customer UUID or the customer internal ID can be specified. ContactPersonUUID and ContactPersonlnternalID are identifiers of a contact person. Either the contact person UUID or the contact person internal ID can be specified. MailSystemErrorCode is a code for mail system errors. In some implementations, codes can correspond to an RFC 3463 standard associated with the Internet Engineering Task Force (IETF). CommunicationDataUsageDeniedIndicator is an indicator that marks an e-mail address of a customer or a contact person as invalid. Consequently, such an e-mail address may not be used for future mailings. The actionCode attribute represents an action code. The action code “02” (Update) can be supported.


Valid elements for identification of marketing campaign outbound instances can include: 1) one of the customer identifiers (UUID or InternalID) and one of the contact person identifiers (UUID or InternalID) and 2) one of the customer identifiers (UUID or InternalID), if the outbound instance does not have a contact person. If the element CommunicationDataUsageDeniedIndicator is not in the request message, the MailSystemErrorCode can be used internally to determine the CommunicationDataUsageDeniedIndicator, dependent on the error code. In some implementations, if the CommunicationDataUsageDeniedIndicator has the value “TRUE” then the CommunicationDataUsageDeniedIndicator can overrule behavior of some values of the MailSystemErrorCode.


The existence of a customer and a contact person in an outbound instance specifies an object for processing of the request. For example, if a customer ID/UUID and a contact person ID/UUID are both specified, a bounce can be considered to be associated with an e-mail address of the contact person of the customer. If the customer ID/UUID is specified but the contact person ID/UUID is empty, a bounce can be considered to be associated with an email address of the customer. In some implementations, an outbound instance which specifies a contact person but not a customer is considered to be an invalid request.


The syntax of codes for MailSystemErrorCode can be defined according to the RFC 3463 standard defined by the IETF. For example, a code with a class of “2”/“4”/“5” and minLength=“1”, maxLength=“3” can be defined, which can correspond to examples of “4.1.2” and “5.1.1”. The following example XML can be used to process bounces based on a marketing campaign executed in an external system.














<n0:CampaignFailedDeliveryStatusBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader>


<Campaign>


<ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>1112</ID>


<Outbound>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2001</CustomerInternalID>


<ContactPersonInternalID>CP2002</ContactPersonInternalID>


<MailSystemErrorCode>5.1.2</MailSystemErrorCode>


<CommunicationDataUsageDeniedIndicator>true


</CommunicationDataUsageDeniedIndicator>


</Outbound>


<Outbound>


<!-- Denied indicator overrules the error code -->


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2010</CustomerInternalID>


<ContactPersonInternalID>CP2012</ContactPersonInternalID>


<MailSystemErrorCode>5.1.3</MailSystemErrorCode>


<CommunicationDataUsageDeniedIndicator>false


</CommunicationDataUsageDeniedIndicator>


</Outbound>


<Outbound>


<!-- Error code determines the denied indicator -->


<ObjectNodeSenderTechnicalID>1003</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2020</CustomerInternalID>


<ContactPersonInternalID>CP2022</ContactPersonInternalID>


<MailSystemErrorCode>5.1.6</MailSystemErrorCode>


</Outbound>


</Campaign>


</n0:CampaignFailedDeliveryStatusBundleMaintainRequest_sync>









An operation Check Maintain Failed Delivery Status As Bundle has a name of CheckMaintainFailedDeliveryStatusBundle, can be synchronous, and can be used to check campaign failed delivery status data (e.g., bounces). An operation Check Maintain Mailing Permission As Bundle has a name of CheckMaintainMailingPermissionBundle, can be synchronous, and can be used to check campaign mailing permission data (e.g., subscriptions). An operation Maintain Reaction As Bundle has a name of MaintainReactionBundle, can be synchronous, and can be used to maintain campaign reaction data. An operation Check Maintain Reaction As Bundle has a name of CheckMaintainReactionBundle, can be synchronous, and can be used to check maintain campaign reaction data.


An inbound service ManageCampaignOutboundIn is associated with a process component CampaignManagement and with a deployment unit Customer Relationship Management, can be inbound and stateless, can be used to manage campaign outbounds, and can be associated with a Maintain as Bundle operation and a Check Maintain as Bundle operation. The inbound service ManageCampaignOutboundIn can be used to replicate marketing campaign outbounds from a source system or file to a target system and to maintain campaign outbound data by external consumers. The web service ManageCampaignOutboundIn provides two operations. The MaintainBundle operation can be used to create, update or delete one or more instances of marketing campaign outbounds. The CheckMaintainBundle operation can be used to determine if one or more marketing campaign outbounds can be maintained. In some implementations, the signature of both operations is identical.


The web service ManageCampaignOutboundIn can be activated by a communication arrangement maintained for a communication scenario Manage Campaign Outbounds. In some implementations, for performance reasons, uploading of between 100 and 500 outbounds is recommended. Regarding existence of transactional data, marketing campaigns referenced in an outbound service interface exist in the system before the invocation, as the service does not create or delete marketing campaigns. Regarding existence of master data, in some implementations, master data is referenced and is not created by the service. Reference master data (e.g., Customers, Contact Persons) can exist in the system at the time the web service is called, for example.


With regards to the Check Maintain Bundle operation as compared to the Maintain Bundle operation, the Maintain Bundle operation enables external applications to maintain business document data and the Check Maintain Bundle operation enables external applications to simulate maintain bundle requests without changing business document data. The Check Maintain Bundle operation can run the same checks as done in the Maintain m Bundle operation but without saving of changes.


Action Code is a coded representation of an instruction to a recipient of a message describing how to process a transmitted node or element. Action Code can be modeled as an attribute (e.g., using a notation of “attribute name: actionCode”) in structure elements of a message payload. An action code of “01” can correspond to a creation. The system can return an error message if the node element to create already exists. An action code of “02” can correspond to an update. The system can return an error message if the node element to update does not exist. An action code of “03” can correspond to a deletion. The system can return an error message if the node element to delete does not exist. An action code of “04” can correspond to a save. In a save operation, the system can create or change node element data. An action code of “05” can correspond to a removal, in which the system can delete a node element. In some implementations, with a removal operation, if the node element to remove does not exist, the system does not return an error message (e.g., in contrast to the delete operation). An action code of “06” can correspond to “no action”. If the “no action” action code is specified, the system does not change specified node elements. In some implementations, a default action code of “04” save can be used if no action code is specified.


Specifying action code “04” (save) can result in the creation of business documents if the system cannot identify a matching target business document, such as if no business document ID or UUID is provided by the web service consumer. The web service consumer (e.g., external application) can be responsible for providing correct business document IDs or UUIDs and avoiding accidental creation of duplicate business documents. The following example XML code illustrates the usages of action codes and includes a request for the creation of a new outbound instance with a return of an error message resulting if the instance already exists.

















<Outbound actionCode=“01”>



<CustomerInternalID>4711</CustomerInternalID>



<ContactPersonInternalID>4712</ContactPersonInternalID>



<CommunicationStatusCode>2</CommunicationStatusCode>



</Outbound>










Processing of the web service ManageCampaignOutboundIn can involve list processing. For example, the processing of node elements with cardinality >1 (for example, a list of text values or a list of solution proposals) can be controlled using List Complete Transmission Indicators (LCTI). A LCTI indicates whether a list of node elements is completely transmitted. The LCTI of a node element with cardinality >1 can be modeled as an attribute of a parent node element (e.g., using a notation of “attribute name: <name of child element>ListCompleteTransmissionIndicator”). A LCTI with a value of “false” can indicate that a corresponding list of node elements is not completely transmitted. Accordingly, all node elements that are not transmitted can remain unchanged. If transmitted node elements in the list can be uniquely identified, the system processes the node elements according to the action code. If transmitted node elements of the list cannot be uniquely identified, the system appends the node element to the corresponding list of node elements in a target business document. A LCTI with a value of “true” can indicate that a corresponding list of elements is completely transmitted. Accordingly, all node elements that are not transmitted can be removed. If no node element is transmitted, the complete list can be removed. In some implementations, a default list complete transmission indicator has a value of “false”. In some implementations, a LCTI refers to the completeness of the list of node elements and does not imply completeness of sub-elements.


The following example XML demonstrates usage of a LCTI. The example code specifies to delete all existing outbounds except the outbounds specified by the ID and to create or change the outbounds as passed by an external application.

















<Campaign actionCode=“06” outboundListCompleteTransmission-



Indicator=“true”>



<ID>1112</ID>



<Outbound>



<CustomerInternalID>A2001</CustomerInternalID>



<ContactPersonInternalID>CP2002</ContactPersonInternalID>



...



</Outbound>



<Outbound>



<CustomerInternalID>A2010</CustomerInternalID>



<ContactPersonInternalID>CP2012</ContactPersonInternalID>



...



</Outbound>



<Outbound>



<CustomerInternalID>A3001</CustomerInternalID>



<ContactPersonInternalID>CP3002</ContactPersonInternalID>



...



</Outbound>



</Campaign>










With regards to empty and missing elements, in some implementations, optional leaf elements in request messages that are not transmitted within a web service request are not changed in corresponding business documents. For instance, in the example below, only the element CommunicationStatusCode of the campaign outbound is updated. The CommunicationFailureReasonCode, as well as other unincluded elements, remain unchanged.

















<Campaign>



<ID>1112</ID>



<Outbound>



<CustomerInternalID>A2001</CustomerInternalID>



<ContactPersonInternalID>CP2002</ContactPersonInternalID>



<CommunicationStatusCode>1</CommunicationStatusCode>



</Outbound>



<Outbound>



<CustomerInternalID>A2010</CustomerInternalID>



<ContactPersonInternalID>CP2012</ContactPersonInternalID>



<CommunicationStatusCode>4</CommunicationStatusCode>



</Outbound>



</Campaign>










The Maintain Bundle and Check Maintain Bundle operations can be mass-enabled stateless synchronous web service operations. Transferring or requesting large amounts of data can cause communication timeouts. The web service consumer can be responsible for ensuring reasonable sizes for mass operations. A reasonable size can be, for example, 100 kilobytes. Larger or smaller sizes can be considered reasonable sizes.


Maintain Bundle and Check Maintain Bundle operations can be configured to support exactly one execution (e.g., idempotency). To ensure exactly one execution of web service requests, the web service consumer can provide unique values for the elements ID or UUID of a “BasicMessageHeader” node element.


Using a change state identifier (e.g., element name “ChangeStateID”), external applications can enforce that a modifying operation is not executed because the state of the business document has changed since an external application last read data of the business document. The change state ID can be an uninterpretable string that is provided by query and read operations, and can be utilized by some or all modifying operations. In some implementations, if the change state identifier is provided when calling a modifying operation, the system does not perform the operation if the state of the business document instance has changed since the change state ID was last computed. In some implementations, if the change state ID is not provided by the web service consumer, the system performs the web service operation without checking the state of the business document. In some implementations, the web service consumer (e.g., external application) is responsible for preventing accidental changes to business documents.


In some implementations, request node elements with cardinality >1 include one or more object node sender technical identifier elements to relate response message elements and log items to corresponding node elements in the request message. The object node sender technical identifiers can be provided as ObjectNodeSenderTechnicalID elements in request message types and can be referred to as a ReferenceObjectNodeSenderTechnicalID element in corresponding response message types. In some implementations, if the object node sender technical ID is initial, the object node sender technical ID of the parent node element in the request is returned as a reference object node sender technical ID. In some implementations, if the object node sender technical IDs of all parent node elements are initial, the reference object node sender technical ID is also returned as initial. The values specified in the ObjectNodeSenderTechnicalID can be transient values that establish a correspondence between elements for a single call. In some implementations, the web service consumer does not specify ObjectNodeSenderTechnicalID values. In some implementations, the web service consumer does not use the same ObjectNodeSenderTechnicalID values for different calls. In some implementations, the service provider does not interpret ObjectNodeSenderTechnicalID values. For example, the service provider can return ObjectNodeSenderTechnicalID values to the web service consumer in one or more ReferenceObjectNodeSenderTechnicalID elements. ObjectNodeSenderTechnicalID can be used to identify failed business document modifications in a mass operation. In the example below, ObjectNodeSenderTechnicalID is used for a child “A” element and a child “B” element, where child “B” includes erroneous content.














<Root>


<Child>


<ObjectNodeSenderTechnicalID>999_A<ObjectNodeSender-


TechnicalID>


<Content>


Child A: Some correct content


</Content>


</Child>


<Child>


<ObjectNodeSenderTechnicalID>999_B<ObjectNodeSenderTechnicalID>


<Content>


Child B: Some erroneous content


</Content>


</Child>









In the example below, a Log element includes a Note sub-element which includes an error message related to the erroneous content included in the child “B” element from the above example.

















<Log>



<Item>



<ReferenceObjectNodeSenderTechnicalID>999_B



</ReferenceObjectNodeSenderTechnicalID>



<Note>Error message for Child B</Note>



</Item>



</Log>










The structure of a response message can include two parts: 1) a business document-specific part including information about IDs and UUIDs of created and changed business documents; and 2) Log items including system messages such as errors, warnings, and information messages raised by the system during processing of the web service request.


External applications consuming web services can have special requirements and restrictions regarding the format of WSDL (Web Service Definition Language) definitions. For example, some external applications can use service definition WSDL definitions describing a web service signature. Such definitions can be sufficient for the creation of static client-side proxies. Other external applications, such as applications that do not create static client-side proxies, can use binding WSDL definitions including an endpoint definition and authentication policy information. In general, an external application can expect a particular structure and/or size of a WSDL definition. For example, a first system can use binding WSDL definitions and can consider elements with the attribute “minOccurs=0” as “mandatory” elements. A second system can consider “minOccurs=0” as meaning “optional”. In order to handle such a problem, a WSDL definition can be saved locally and an additional attribute “nillable=true” can be added to make a query parameter optional for the first system.


For small clients (e.g., mobile devices), the size of a WSDL definition may cause a problem. For example, a client may only use a small part of a signature, but due to the complexity of a WSDL definition, the client may experience long runtimes during serialization of the request or deserialization of the response if processing the entire definition. In order to solve such a problem, the WSDL can be saved locally and the optional parts of the signature can be removed before the WSDL definition is imported or static client-side proxies are generated.


External applications can take into account that web service request and response message types can be enhanced with additional elements and attributes. Enhancements can be created by an enterprise system, partners of the enterprise system, and/or administrators, to name a few examples. Enhancements of request message types can be optional elements or attributes. For optional elements or attributes, an enterprise system does not require an external application to provide values in the request. Enhancements of response message types can include mandatory elements or attributes, and for such elements or attributes, the external application can process the extended response successfully. Standard XML element and attribute names are generally stable. Technical definitions of data types can be enhanced in a compatible manner with standard XML. Such enhancements may result in changed data type names. External applications can generally rely on standard XML element names and attribute names, but generally cannot always rely on enhanced data type names.


A typical use case for using the ManageCampaignOutboundIn web service is the execution of marketing campaigns in an external system. Information about identifiers of customers and contact persons and status information of active marketing campaigns can be transmitted back to the system by using the web service ManageCampaignOutboundIn. The web service ManageCampaignOutboundIn can be used to create marketing campaigns and export marketing campaigns to external systems, execute marketing campaigns in external systems, and transmit information about customers, contact persons and status back to the system.


The example XML code below can be used to create new marketing campaign outbounds based on a marketing campaign executed in an external system. The example request code includes a Campaign element and multiple Outbound elements.














<n0:CampaignOutboundBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader>


<Campaign>


<ID>1112</ID>


<Outbound>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2001</CustomerInternalID>


<ContactPersonInternalID>CP2002</ContactPersonInternalID>


<CommunicationStatusCode>1</CommunicationStatusCode>


<CampaignExecutionCommunicationChannelTypeCode>INT


</CampaignExecutionCommunicationChannelTypeCode>


</Outbound>


<Outbound>


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2010</CustomerInternalID>


<ContactPersonInternalID>CP2012</ContactPersonInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode>


<CampaignExecutionCommunicationChannelTypeCode>INT


</CampaignExecutionCommunicationTypeCode>


</Outbound>


<Outbound>


<ObjectNodeSenderTechnicalID>1003</ObjectNodeSenderTechnicalID>


<CustomerInternalID>A2020</CustomerInternalID>


<ContactPersonInternalID>CP2022</ContactPersonInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode>


<CampaignExecutionCommunicationChannelTypeCode>INT


</CampaignExecutionCommunicationTypeCode>


</Outbound>


</Campaign>


</n0:CampaignOutboundBundleMaintainRequest_sync>









Below is response XML code associated with the above request XML example.

















<nm:CampaignOutboundBundleMaintainConfirmation_sync



xmlns:nm=“exampleNamespace”>



<Campaign>



<ChangeStateID>20120524092946.0950140</ChangeStateID>



<ReferenceObjectNodeSenderTechnicalID>



</ReferenceObjectNodeSenderTechnicalID>



<UUID>00163e02-8b30-1ed1-a9b0-5fcd149ccb2e</UUID>



<ID>1112</ID>



</Campaign>



<Log/>



</nm:CampaignOutboundBundleMaintainConfirmation_sync>










An operation Maintain As Bundle has a name of MaintainBundle, can be synchronous, and can be used to maintain a campaign, such as to create, update or delete one or more sets of campaign outbound data using imported structured data. The MaintainBundle operation can be used to create, update or delete one or more instances of marketing campaign outbounds, as compared to the CheckMaintainBundle operation which can be used to check if one or more marketing campaign outbounds can be maintained.


The request message of the operation MaintainBundle can include a BasicMessageHeader node element, as well as a Campaign node element including marketing campaign outbound data to be created, updated or deleted. The campaign node can occur multiple times in the request message, which can indicate that outbound data for multiple marketing campaigns is to be created, updated or deleted by a single web service call. The response message of the operation MaintainBundle can include log items, processing information, and a marketing campaign-specific node with ReferenceObjectNodeSenderTechnicalID and ChangeStateID elements, as well as marketing campaign ID and marketing campaign UUID elements. The marketing campaign ID and marketing campaign UUID elements can be identifiers of marketing campaigns, in contrast to identifiers of marketing campaign outbounds.


The Campaign message node can include two elements used to identify existing marketing campaigns: ID and ReferenceID. ID is an identifier of a marketing campaign in the system. ReferenceID is an identifier for a unique reference to a marketing campaign in an external system. Either ID or ReferenceID can be used for specifying a marketing campaign which is to be updated. The value “06” (No Action) can be allowed for action codes. If the external application does not pass an action code, “06” No Action can be a default action code.


The Outbound message node includes information about customer and contact persons addressed by the marketing campaign and associated communication status values. CustomerUUID and CustomerinternalID are identifiers of a customer. Either the customer UUID or the customer internal ID can be specified. ContactPersonUUID and ContactPersonlnternalID are identifiers of a contact person. Either the contact person UUID or the contact person internal ID can be specified. CreationDateTime is an original outbound creation time stamp. The input of the creation date time can be a time stamp in time zone UTC in a format of “CCYY-MM-DDThh:mm:ss(.sss)Z”. CommunicationStatusCode is a code for a communication status. CommunicationFailureReasonCode is a code to specify a reason for the failure of a communication. If the communication status is “Communication Failed”, a reason for the failed communication might be an invalid e-mail address. CommunicationFailureReasonCode can be used for errors appearing during the execution of marketing campaigns. Whenever errors occur after execution of marketing campaigns, one of the specialized operations MaintainFailedDeliveryStatusBundle or CheckMaintainFailedDeliveryStatusBundle of the service interface ManageCampaignInboundIn can be used for processing marketing campaign failed delivery status data (e.g., bounces). CampaignExecutionCommunicationChannelTypeCode is a coded representation of the type of a communication channel that is used to contact a customer or a contact person of a customer during a campaign execution. The actionCode attribute is an action code.


Valid elements for identification of marketing campaign outbound instances include: 1) one of the customer identifiers (UUID or InternalID) and one of the contact person identifiers (UUID or InternalID); and 2) one of the customer identifiers (UUID or InternalID), if the outbound instance does not have a contact person.


CommunicationStatusCode can have a value that represents one of Not Yet Communicated, Communicated Successfully, Communication Failed, or Not Relevant. When CommunicationStatusCode has a value of Communication Failed, CommunicationFailureReasonCode can have a value of Account Not Active, Contact Not Active, Contacting Member Not Permitted, E-mail Address Missing, Fax Number Missing, Letter Address Incomplete, Fax Number Invalid, E-mail Address Invalid, Account Does Not Exist, Contact Does Not Exist, Contact for Account Incorrect, Technical Problems, Phone Number Missing, Phone Number Invalid, Bounce—E-mail Address Invalid, E-mail Consent Withdrawn, Bounce—Mailbox Error, or Bounce—Other undefined Error. CampaignExecutionCommunicationChannelTypeCode can include values that represent Fax, E-Mail, Letter, SMS (Short Message Service), Telephone, or Visit. The following example XML code can be used for the creation of marketing campaign outbounds. As discussed above, an action code of “01” can indicate a creation.














<n0:CampaignOutboundBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader>


<Campaign>


<ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>960</ID>


<Outbound>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CreationDateTime>2012-08-23T12:00:00.0019050Z</CreationDate-


Time>


<CustomerUUID>00300571-CE9B-1DED-89DF-29DCE9BE1CAB


</CustomerUUID>


<ContactPersonUUID>00300571-CE9B-1DDD-89DD-FEB454B21BDF


</ContactPersonUUID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


<Outbound>


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CreationDateTime>2012-08-23T12:00:00.0019050Z</CreationDate-


Time>


<CustomerInternalID>MC9794</CustomerInternalID>


<ContactPersonInternalID>MCP9794</ContactPersonInternalID>


<!-- Defaulting of the Communication Status Code -->


</Outbound>


<Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1003</ObjectNodeSenderTechnicalID>


<CustomerUUID>00000000-0001-02DC-AED2-5ED1A0AD80A0


</CustomerUUID>


<ContactPersonInternalID>CP2000_1</ContactPersonInternalID>


<CommunicationStatusCode>1</CommunicationStatusCode>


</Outbound>


<Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1004</ObjectNodeSenderTechnicalID>


<CustomerInternalID>AXUS-C132</CustomerInternalID>


<ContactPersonUUID>00300571-C924-02DB-B8C5-73444EA1C21E


</ContactPersonUUID>


<CommunicationStatusCode>3</CommunicationStatusCode>


<CommunicationFailureReasonCode>3</CommunicationFailureReason-


Code>


</Outbound>


<Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1005</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC13803</CustomerInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


</Campaign>


</n0:CampaignOutboundBundleMaintainRequest_sync>









The example XML code below can be used as a corresponding response for the above XML code if the campaign outbounds have been successfully created.

















<nm:CampaignOutboundBundleMaintainConfirmation_sync



xmlns:nm=“exampleNamespace”>



<Campaign>



<ChangeStateID>20120712151832.0667510</ChangeStateID>



<ReferenceObjectNodeSenderTechnicalID>1000



</ReferenceObjectNodeSenderTechnicalID>



<UUID>00163e02-8b2e-1ee1-b386-9acee7cc326f</UUID>



<ID>960</ID>



</Campaign>



<Log/>



</nm:CampaignOutboundBundleMaintainConfirmation_sync>










The following example XML code can be used for deletion of an outbound instance. As discussed above, an action code of “03” can indicate a deletion.














<n0:CampaignOutboundBundleMaintainRequest_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E028B341ED1BB9F9748EDB6E40C</ID>


</BasicMessageHeader>


<Campaign>


<ObjectNodeSenderTechnicalID>1000</ObjectNodeSenderTechnicalID>


<ID>960</ID>


<Outbound actionCode =“03”>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC9794</CustomerInternalID>


<ContactPersonInternalID>MCP9794</ContactPersonInternalID>


</Outbound>


</Campaign>


</n0:CampaignOutboundBundleMaintainRequest_sync>









An operation Check Maintain As Bundle has a name of CheckMaintainBundle, can be used to check a campaign, can be synchronous, and can be used to check whether one or more campaign outbounds can be created, updated or deleted without errors using imported structured data. In some implementations, the web service request and response message types of the CheckMaintainBundle operation are the same as those of the MaintainBundle operation. Below is example XML code that can be used to check the creation of new campaign outbounds based on campaigns executed in an external system.














<n0:CampaignOutboundRequestBundleCheckMaintainQuery_sync


xmlns:n0=“exampleNamespace”>


<BasicMessageHeader>


<ID>00163E01277C1EE186B9834511A002AB</ID>


</BasicMessageHeader>


<Campaign>


<ID>942</ID>


<Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1001</ObjectNodeSenderTechnicalID>


<CustomerUUID>00300571-CE9B-1DED-89DF-29DCE9BE1CAB


</CustomerUUID>


<ContactPersonUUID>00300571-CE9B-1DDD-89DD-FEB454B21BDF


</ContactPersonUUID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


<Outbound actionCode=“01”>


<ObjectNodeSenderTechnicalID>1002</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC9794</CustomerInternalID>


<ContactPersonInternalID>MCP9794</ContactPersonInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


</Campaign>


<Campaign>


<ID>938</ID>


<Outbound>


<ObjectNodeSenderTechnicalID>2001</ObjectNodeSenderTechnicalID>


<CustomerInternalID>XYZ9794</CustomerInternalID> <!-- Invalid


identifiers -->


<ContactPersonInternalID>XYZ9794</ContactPersonInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


<Outbound>


<ObjectNodeSenderTechnicalID>2009</ObjectNodeSenderTechnicalID>


<CustomerInternalID>AXUS-C132</CustomerInternalID>


<ContactPersonUUID>00300571-C924-02DB-B8C5-73444EA1C21E


</ContactPersonUUID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


<Outbound>


<ObjectNodeSenderTechnicalID>1010</ObjectNodeSenderTechnicalID>


<CustomerInternalID>MC13803</CustomerInternalID>


<CommunicationStatusCode>2</CommunicationStatusCode>


</Outbound>


</Campaign>


</n0:CampaignOutboundRequestBundleCheckMaintainQuery_sync>









The below example XML code can be used as a corresponding response in case a check for creation of campaign outbounds fails (such as if account XYZ9794 does not exist).














<nm:CampaignOutboundRequestBundleCheckMaintainResponse_sync


xmlns:nm=“exampleNamespace”>


<Log>


<MaximumLogItemSeverityCode>3</MaximumLogItemSeverityCode>


<Item>


<TypeID>001(/CM_A2X_MNG_CMPG_OUTB/)</TypeID>


<CategoryCode>SEI.SCV</CategoryCode>


<SeverityCode>3</SeverityCode>


<ReferenceObjectNodeSenderTechnicalID> 2001


</ReferenceObjectNodeSenderTechnicalID>


<Note>Account XYZ9794 does not exist</Note>


</Item>


<Item>


<TypeID>002(/CM_A2X_MNG_CMPG_OUTB/)</TypeID>


<CategoryCode>SEI.SCV</CategoryCode>


<SeverityCode>3</SeverityCode>


<ReferenceObjectNodeSenderTechnicalID> 2001


</ReferenceObjectNodeSenderTechnicalID>


<Note>Contact person XYZ9794 does not exist</Note>


</Item>


<Item>


<TypeID>040(/MBF_A2X_CORE/)</TypeID>


<CategoryCode>BPR.PUR</CategoryCode>


<SeverityCode>3</SeverityCode>


<ReferenceObjectNodeSenderTechnicalID>2001


</ReferenceObjectNodeSenderTechnicalID>


</Item>


</Log>


<nm:CampaignOutboundRequestBundleCheckMaintainResponse_sync>










FIG. 33 illustrates one example logical configuration of a campaign failed delivery status bundle maintain request sync message 33000. Specifically, this figure depicts the arrangement and hierarchy of various components such as one or more levels of packages, entities, and data types, shown here as 33000 through 33006. As described above, packages may be used to represent hierarchy levels, and different types of cardinality relationships among entities can be represented using different arrowhead styles. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the campaign failed delivery status bundle maintain request sync message 33000 includes, among other things, the outbound entity 33006. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.


The message type Campaign Failed Delivery Status Bundle Maintain Request_sync is derived from the business object Campaign as a leading object together with its operation signature. The message type Campaign Failed Delivery Status Bundle Maintain Request_sync is a request to maintain one or more sets of campaign failed delivery status data. Marketing campaign failed delivery status data bounces represent error codes and error reasons of e-mails sent to customers or contact person by mailing campaigns. The structure of the message type Campaign Failed Delivery Status Bundle Maintain Request_sync is determined by the messagedata type CampaignFailedDeliveryStatusMaintainRequestBundleMessage_sync. The message data type CampaignFailedDeliveryStatusMaintainRequestBundleMessage_sync includes the packages BasicMessageHeader and Campaign.


The package BasicMessageHeader includes the entity BasicMessageHeader. BasicMessageHeader is typed by BusinessDocumentBasicMessageHeader. The package Campaign includes the sub-package Outbound and the entity Campaign.


Campaign includes the actionCode attribute, which may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. Campaign includes the following non-node elements: ChangeStateID, ObjectNodeSenderTechnicalID, ID, and ReferenceID. ChangeStateID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ChangeStateID. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. ID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessTransactionDocumentID. ReferenceID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:CampaignReferenceID. Campaign includes the following node elements: Outbound, in a 1:N cardinality relationship. The package CampaignOutbound includes the entity Outbound. Outbound includes the actionCode attribute, which may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. Outbound includes the following non-node elements: ObjectNodeSenderTechnicalID, CustomerUUID, CustomerinternalID, ContactPersonUUID, ContactPersonInternalID, MailSystemErrorCode, and CommunicationDataUsageDeniedIndicator. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. CustomerUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. CustomerInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. ContactPersonUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. ContactPersonlnternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. MailSystemErrorCode may have a multiplicity of 1 and may be based on datatype BGDT:MailSystemErrorCode. CommunicationDataUsageDeniedIndicator may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator.



FIG. 34 illustrates one example logical configuration of a campaign outbound bundle maintain request sync message 34000. Specifically, this figure depicts the arrangement and hierarchy of various components such as one or more levels of packages, entities, and data types, shown here as 34000 through 34006. As described above, packages may be used to represent hierarchy levels, and different types of cardinality relationships among entities can be represented using different arrowhead styles. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the campaign outbound bundle maintain request sync message 34000 includes, among other things, the outbound entity 34006. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.


The message type Campaign Outbound Bundle Maintain Request_sync is derived from the business object Campaign as a leading object together with its operation signature. The message type Campaign Outbound Bundle Maintain Request_sync is a request to maintain one or more campaign outbounds. The structure of the message type Campaign Outbound Bundle Maintain Request_sync is determined by the message data type CampaignOutboundMaintainRequestBundleMessage_sync. The message data type CampaignOutboundMaintainRequestBundleMessage_sync includes the packages BasicMessageHeader and Campaign.


The package BasicMessageHeader includes the entity BasicMessageHeader. BasicMessageHeader is typed by BusinessDocumentBasicMessageHeader. The package Campaign includes the sub-package Outbound and the entity Campaign.


Campaign includes the following attributes: actionCode and outboundListCompleteTransmissionIndicator. The actionCode attribute may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. The outboundListCompleteTransmissionIndicator attribute may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator. Campaign includes the following non-node elements: ChangeStateID, ObjectNodeSenderTechnicalID, ID, and ReferenceID. ChangeStateID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ChangeStateID. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. ID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessTransactionDocumentID. ReferenceID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:CampaignReferenceID. Campaign includes the following node elements: Outbound, in a 1:N cardinality relationship.


The package CampaignOutbound includes the entity Outbound. Outbound includes the actionCode attribute, which may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. Outbound includes the following non-node elements: ObjectNodeSenderTechnicalID, CreationDateTime, CustomerUUID, CustomerinternalID, ContactPersonUUID, ContactPersonInternalID, CommunicationStatusCode, CommunicationFailureReasonCode, and CampaignExecutionCommunicationChannelTypeCode. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. CreationDateTime may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:GLOBAL_DateTime. CustomerUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. CustomerinternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. ContactPersonUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. ContactPersonInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. CommunicationStatusCode may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:MarketingActivityCommunicationStatusCode. CommunicationFailureReasonCode may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:MarketingActivityCommunicationFailureReasonCode. CampaignExecutionCommunicationChannelTypeCode may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:CampaignExecutionCommunicationChannelTypeCode.



FIG. 35 illustrates one example logical configuration of a campaign reaction bundle maintain request sync message 35000. Specifically, this figure depicts the arrangement and hierarchy of various components such as one or more levels of packages, entities, and data types, shown here as 35000 through 35008. As described above, packages may be used to represent hierarchy levels, and different types of cardinality relationships among entities can be represented using different arrowhead styles. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the campaign reaction bundle maintain request sync message 35000 includes, among other things, the inbound business transaction document reference entity 35006. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.


The message type Campaign Reaction Bundle Maintain Request_sync is derived from the business object Campaign as a leading object together with its operation signature. The message type Campaign Reaction Bundle Maintain Request_sync Campaign Reaction Bundle Maintain Request_sync is a request to maintain one or more sets of campaign reaction data. Reaction data describes a reaction of a person or company to a marketing campaign, either because the person or company is contacted directly or because the person or company responds to an unspecific campaign, for example, a promotion campaign for a product that was bought and includes a response code that the person or company can use to participate. The structure of the message type Campaign Reaction Bundle Maintain Request_sync is determined by the messagedata type CampaignReactionMaintainRequestBundleMessage_sync. The message data type CampaignReactionMaintainRequestBundleMessage_sync includes the packages BasicMessageHeader and Campaign.


The package BasicMessageHeader includes the entity BasicMessageHeader. BasicMessageHeader is typed by BusinessDocumentBasicMessageHeader. The package Campaign includes the sub-package InboundBusinessTransactionDocumentReference and the entity Campaign.


Campaign includes the following attributes: actionCode and inboundBusinessTransactionDocumentReferenceListCompleteTransmissionIndicator. The actionCode attribute may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. The inboundBusinessTransactionDocumentReferenceListCompleteTransmissionIndicator attribute may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator. Campaign includes the following non-node elements: ChangeStateID, ObjectNodeSenderTechnicalID, ID, and ReferenceID. ChangeStateID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ChangeStateID. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. ID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessTransactionDocumentID. ReferenceID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:CampaignReferenceID. Campaign includes the following node elements: InboundBusinessTransactionDocumentReference, in a 1:N cardinality relationship.


The package CampaignInboundBusinessTransactionDocumentReference includes the sub-package ReactionTracking and the entity InboundBusinessTransactionDocumentReference. InboundBusinessTransactionDocumentReference includes the actionCode attribute, which may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. InboundBusinessTransactionDocumentReference includes the following non-node elements: ObjectNodeSenderTechnicalID, CustomerUUID, CustomerinternalID, ContactPersonUUID, ContactPersonInternalID, CreationDateTime, and CampaignReactionTypeCode. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. CustomerUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. CustomerInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. ContactPersonUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. ContactPersonInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. CreationDateTime may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:GLOBAL_DateTime. CampaignReactionTypeCode may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:CampaignReactionTypeCode.


InboundBusinessTransactionDocumentReference includes the following node elements: ReactionTracking, in a 1:C cardinality relationship. The package CampaignInboundBusinessTransactionDocumentReferenceReactionTracking includes the entity ReactionTracking. ReactionTracking includes the following non-node elements: TargetLinkUUID and TargetLinkWebURI. TargetLinkUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. TargetLinkWebURI may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:WebURI.



FIG. 36 illustrates one example logical configuration of a campaign mailing permission bundle maintain request sync message 36000. Specifically, this figure depicts the arrangement and hierarchy of various components such as one or more levels of packages, entities, and data types, shown here as 36000 through 36006. As described above, packages may be used to represent hierarchy levels, and different types of cardinality relationships among entities can be represented using different arrowhead styles. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the campaign mailing permission bundle maintain request sync message 36000 includes, among other things, the outbound entity 36006. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.


The message type Campaign Mailing Permission Bundle Maintain Request_sync is derived from the business object Campaign as a leading object together with its operation signature. The message type Campaign Mailing Permission Bundle Maintain Request_sync is a request to maintain one or more sets of campaign mailing permission data. Marketing campaign mailing permission data subscriptions can control the usage of customers or contact person contact data for new marketing campaigns actions, including subscribe and unsubscribe. The structure of this message type Campaign Mailing Permission Bundle Maintain Request_sync is determined by the message data type CampaignMailingPermissionMaintainRequestBundleMessage_sync. The message data type CampaignMailingPermissionMaintainRequestBundleMessage_sync includes the packages BasicMessageHeader and Campaign.


The package BasicMessageHeader includes the entity BasicMessageHeader. BasicMessageHeader is typed by BusinessDocumentBasicMessageHeader The package Campaign includes the sub-package Outbound and the entity Campaign.


Campaign includes the actionCode attribute, which may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. Campaign includes the following non-node elements: ChangeStateID, ObjectNodeSenderTechnicalID, ID, and ReferenceID. ChangeStateID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ChangeStateID. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. ID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessTransactionDocumentID. ReferenceID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:CampaignReferenceID.


Campaign includes the following node elements: Outbound, in a 1:N cardinality relationship. The package CampaignOutbound includes the entity Outbound. Outbound includes the actionCode attribute, which may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ActionCode. Outbound includes the following non-node elements: ObjectNodeSenderTechnicalID, CustomerUUID, CustomerinternalID, ContactPersonUUID, ContactPersonInternalID, and MailingPermissionDeniedIndicator. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ObjectNodePartyTechnicalID. CustomerUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. CustomerInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. ContactPersonUUID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:UUID. ContactPersonInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:BusinessPartnerInternalID. MailingPermissionDeniedIndicator may have a multiplicity of 1 and may be based on datatype CDT:Indicator.



FIGS. 37-1 through 37-6 show an example configuration of an Element Structure that includes a Campaign Failed Delivery Status Bundle Maintain Request_sync 370000 package. Specifically, these figures depict the arrangement and hierarchy of various components such as one or more levels of packages, entities, and datatypes, shown here as 370000 through 370198. As described above, packages may be used to represent hierarchy levels. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the Campaign Failed Delivery Status Bundle Maintain Request_sync 370000 includes, among other things, a Campaign Failed Delivery Status Bundle Maintain Request_sync 370002. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.



FIGS. 38-1 through 38-7 show an example configuration of an Element Structure that includes a Campaign Outbound Bundle Maintain Request_sync 380000 package. Specifically, these figures depict the arrangement and hierarchy of various components such as one or more levels of packages, entities, and datatypes, shown here as 380000 through 380216. As described above, packages may be used to represent hierarchy levels. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the Campaign Outbound Bundle Maintain Request_sync 380000 includes, among other things, a Campaign Outbound Bundle Maintain Request_sync 380002. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.



FIGS. 39-1 through 39-8 show an example configuration of an Element Structure that includes a Campaign Reaction Bundle Maintain Request_sync 390000 package. Specifically, these figures depict the arrangement and hierarchy of various components such as one or more levels of packages, entities, and datatypes, shown here as 390000 through 390224. As described above, packages may be used to represent hierarchy levels. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the Campaign Reaction Bundle Maintain Request_sync 390000 includes, among other things, a Campaign Reaction Bundle Maintain Request_sync 390002. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.



FIGS. 40-1 through 40-6 show an example configuration of an Element Structure that includes a Campaign Mailing Permission Bundle Maintain Request_sync 400000 package. Specifically, these figures depict the arrangement and hierarchy of various components such as one or more levels of packages, entities, and datatypes, shown here as 400000 through 400192. As described above, packages may be used to represent hierarchy levels. Entities are discrete business elements that are used during a business transaction. Data types are used to type object entities and interfaces with a structure. For example, the Campaign Mailing Permission Bundle Maintain Request_sync 400000 includes, among other things, a Campaign Mailing Permission Bundle Maintain Request_sync 400002. Accordingly, heterogeneous applications may communicate using this consistent message configured as such.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A computer readable medium including program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal, the medium comprising: program code for receiving via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more instances of campaign failed delivery status data, including error codes and/or error reasons for failures of e-mails sent to customers or contact persons in mailing campaigns, the first message including a message package hierarchically organized as: a campaign failed delivery status bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one outbound entity from an outbound package, and wherein each outbound entity includes a mail system error code; andprogram code for sending a second message to the heterogeneous application responsive to the first message.
  • 2. The computer readable medium of claim 1, wherein each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID.
  • 3. The computer readable medium of claim 1, wherein each outbound entity further includes at least one of the following: an object node sender technical ID, a customer universally unique identifier (UUID), a customer internal ID, a contact person UUID, a contact person internal ID, a mail system error code, and a communication data usage denied indicator.
  • 4. A distributed system operating in a landscape of computer systems providing message-based services defined in a service registry, the system comprising: a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more instances of campaign failed delivery status data, including error codes and/or error reasons for failures of e-mails sent to customers or contact persons in mailing campaigns, the instructions using a request;a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as: a campaign failed delivery status bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one outbound entity from an outbound package, and wherein each outbound entity includes a mail system error code; anda second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
  • 5. The distributed system of claim 4, wherein the first memory is remote from the graphical user interface.
  • 6. The distributed system of claim 4, wherein the first memory is remote from the second memory.
  • 7. A computer readable medium including program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal, the medium comprising: program code for receiving via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more campaign outbounds, the first message including a message package hierarchically organized as: a campaign outbound bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one outbound entity from an outbound package; andprogram code for sending a second message to the heterogeneous application responsive to the first message.
  • 8. The computer readable medium of claim 7, wherein the each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID.
  • 9. The computer readable medium of claim 7, wherein the each outbound entity further includes at least one of the following: an object node sender technical ID, a creation date time, a customer universally unique identifier (UUID), a customer internal ID, a contact person UUID, a contact person internal ID, a communication status code, a communication failure reason code, and a campaign execution communication channel type code.
  • 10. A distributed system operating in a landscape of computer systems providing message-based services defined in a service registry, the system comprising: a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more campaign outbounds, the instructions using a request;a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as: a campaign outbound bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one outbound entity from an outbound package; anda second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
  • 11. The distributed system of claim 10, wherein the first memory is remote from the graphical user interface.
  • 12. The distributed system of claim 10, wherein the first memory is remote from the second memory.
  • 13. A computer readable medium including program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal, the medium comprising: program code for receiving via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more sets of campaign reaction data, the data describing a reaction by a person or a company to a marketing campaign after the person or the company is contacted directly or because they respond to a campaign, the first message including a message package hierarchically organized as: a campaign reaction bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one inbound business transaction document reference entity from an inbound business transaction document reference package; andprogram code for sending a second message to the heterogeneous application responsive to the first message.
  • 14. The computer readable medium of claim 13, wherein each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID.
  • 15. The computer readable medium of claim 13, wherein each inbound business transaction document reference entity includes a reaction tracking entity from a reaction tracking package.
  • 16. A distributed system operating in a landscape of computer systems providing message-based services defined in a service registry, the system comprising: a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more sets of campaign reaction data, the data describing a reaction by a person or a company to a marketing campaign after the person or the company is contacted directly or because they respond to a campaign, the instructions using a request;a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as: a campaign reaction bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one inbound business transaction document reference entity from an inbound business transaction document reference package; anda second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
  • 17. The distributed system of claim 16, wherein the first memory is remote from the graphical user interface.
  • 18. The distributed system of claim 16, wherein the first memory is remote from the second memory.
  • 19. A computer readable medium including program code for providing a message-based interface for exchanging information about campaigns, including plans of action that include measures for executing and monitoring marketing activities intended to reach a defined goal, the medium comprising: program code for receiving via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for requesting to maintain one or more instances of campaign mailing permission data, including subscriptions that control usage of customer contact data or contact person contact data for new marketing campaigns, the first message including a message package hierarchically organized as: a campaign mailing permission bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one outbound entity from an outbound package, and wherein each outbound entity includes a mailing permission denied indicator; andprogram code for sending a second message to the heterogeneous application responsive to the first message.
  • 20. The computer readable medium of claim 19, wherein each campaign entity further includes at least one of the following: a change state identifier (ID), an object node sender technical ID, an ID, and a reference ID.
  • 21. The computer readable medium of claim 19, wherein the each outbound entity further includes at least one of the following: an object node sender technical ID, a customer universally unique identifier (UUID), a customer internal ID, a contact person UUID, and a contact person internal ID.
  • 22. A distributed system operating in a landscape of computer systems providing message-based services defined in a service registry, the system comprising: a graphical user interface comprising computer readable instructions, embedded on tangible media, for requesting to maintain one or more instances of campaign mailing permission data, including subscriptions that control usage of customer contact data or contact person contact data for new marketing campaigns, the instructions using a request;a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as: a campaign mailing permission bundle maintain request sync message entity; anda campaign package including at least one campaign entity, wherein each campaign entity includes at least one outbound entity from an outbound package, and wherein each outbound entity includes a mailing permission denied indicator; anda second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
  • 23. The distributed system of claim 22, wherein the first memory is remote from the graphical user interface.
  • 24. The distributed system of claim 22, wherein the first memory is remote from the second memory.