A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Some details of the subject matter of this specification are described in previously-filed U.S. patent application Ser. No. 11/803,178, entitled “Consistent Set of Interfaces Derived From a Business Object Model”, filed on May 11, 2007, which is hereby incorporated by reference.
The subject matter described herein relates generally to the generation and use of consistent interfaces (or services) derived from a business object model. More particularly, the present disclosure relates to the generation and use of consistent interfaces or services that are suitable for use across industries, across businesses, and across different departments within a business.
Transactions are common among businesses and between business departments within a particular business. During any given transaction, these business entities exchange information. For example, during a sales transaction, numerous business entities may be involved, such as a sales entity that sells merchandise to a customer, a financial institution that handles the financial transaction, and a warehouse that sends the merchandise to the customer. The end-to-end business transaction may require a significant amount of information to be exchanged between the various business entities involved. For example, the customer may send a request for the merchandise as well as some form of payment authorization for the merchandise to the sales entity, and the sales entity may send the financial institution a request for a transfer of funds from the customer's account to the sales entity's account.
Exchanging information between different business entities is not a simple task. This is particularly true because the information used by different business entities is usually tightly tied to the business entity itself. Each business entity may have its own program for handling its part of the transaction. These programs differ from each other because they typically are created for different purposes and because each business entity may use semantics that differ from the other business entities. For example, one program may relate to accounting, another program may relate to manufacturing, and a third program may relate to inventory control. Similarly, one program may identify merchandise using the name of the product while another program may identify the same merchandise using its model number. Further, one business entity may use U.S. dollars to represent its currency while another business entity may use Japanese Yen. A simple difference in formatting, e.g., the use of upper-case lettering rather than lower-case or title-case, makes the exchange of information between businesses a difficult task. Unless the individual businesses agree upon particular semantics, human interaction typically is required to facilitate transactions between these businesses. Because these “heterogeneous” programs are used by different companies or by different business areas within a given company, a need exists for a consistent way to exchange information and perform a business transaction between the different business entities.
Currently, many standards exist that offer a variety of interfaces used to exchange business information. Most of these interfaces, however, apply to only one specific industry and are not consistent between the different standards. Moreover, a number of these interfaces are not consistent within an individual standard.
In a first aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about projects. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for a request to derive an intercompany settlement project task. The first message includes a message package hierarchically organized as an intercompany settlement project task request message entity and a project task package including at least one project task entity. Each project task entity includes an object node sender technical identifier (ID). The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.
Implementations can include the following. The each project task entity further includes at least one of the following: an ID, a universally unique identifier (UUID), a seller company ID, a seller company UUID, a service performer employee ID, a service performer employee UUID, and a service provisioning date.
In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for a request to derive an intercompany settlement project task, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as an intercompany settlement project task request message entity and a project task package including at least one project task entity. Each project task entity includes an object node sender technical identifier (ID). The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.
In another aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about projects. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for a notification about a customer project and assignments of project tasks to customer transaction document items. The first message includes a message package hierarchically organized as a project and customer transaction document assignment notification message entity and a project package including a project entity. The project entity includes a universally unique identifier, a project identifier (ID), a language code, a responsible company ID, a responsible cost centre ID, an intercompany settlement indicator, a main business process variant type code, a project life cycle status code, and a task blocking status code. The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.
Implementations can include the following. The project entity further includes at least one of the following: a buyer party entity from the project package and at least one task entity from a task package.
In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for a notification about a customer project and assignments of project tasks to customer transaction document items, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as a project and customer transaction document assignment notification message entity and a project package including a project entity. The project entity includes a universally unique identifier, a project identifier (ID), a language code, a responsible company ID, a responsible cost centre ID, an intercompany settlement indicator, a main business process variant type code, a project life cycle status code, and a task blocking status code. The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.
In another aspect, a computer-readable medium includes program code for providing a message-based interface for exchanging information about projects. The medium comprises program code for receiving, via a message-based interface exposing at least one service as defined in a service registry and from a heterogeneous application executing in an environment of computer systems providing message-based services, a first message for a request to create a customer project based on a sales order. The first message includes a message package hierarchically organized as a sales order project create request sync message entity and a sales order package including a sales order entity. The sales order entity includes a universally unique identifier (UUID) and an identifier (ID. The sales order entity further includes a buyer party entity, a create project action elements entity and at least one item entity from the sales order package. The buyer party entity includes a party UUID, a party type code and a party internal ID. The create project action elements entity includes a project responsible employee ID, a project responsible cost centre ID and a project creation method code. Each item entity includes a UUID, an ID and a customer project invoicing method code. The medium further comprises program code for sending a second message to the heterogeneous application responsive to the first message.
Implementations can include the following. The sales order entity further includes a name.
In another aspect, a distributed system operates in a landscape of computer systems providing message-based services defined in a service registry. The system comprises a graphical user interface comprising computer readable instructions, embedded on tangible media, for a request to create a customer project based on a sales order, the instructions using a request. The system further comprises a first memory storing a user interface controller for processing the request and involving a message including a message package hierarchically organized as a sales order project create request sync message entity and a sales order package including a sales order entity. The sales order entity includes a universally unique identifier (UUID) and an identifier (ID. The sales order entity further includes a buyer party entity, a create project action elements entity and at least one item entity from the sales order package. The buyer party entity includes a party UUID, a party type code and a party internal ID. The create project action elements entity includes a project responsible employee ID, a project responsible cost centre ID and a project creation method code. Each item entity includes a UUID, an ID and a customer project invoicing method code. The system further comprises a second memory, remote from the graphical user interface, storing a plurality of service interfaces, wherein one of the service interfaces is operable to process the message via the service interface.
Implementations can include the following. The first memory is remote from the graphical user interface. The first memory is remote from the second memory.
A. Overview
Methods and systems consistent with the subject matter described herein facilitate e-commerce by providing consistent interfaces that are suitable for use across industries, across businesses, and across different departments within a business during a business transaction. To generate consistent interfaces, methods and systems consistent with the subject matter described herein utilize a business object model, which reflects the data that will be used during a given business transaction. An example of a business transaction is the exchange of purchase orders and order confirmations between a buyer and a seller. The business object model is generated in a hierarchical manner to ensure that the same type of data is represented the same way throughout the business object model. This ensures the consistency of the information in the business object model. Consistency is also reflected in the semantic meaning of the various structural elements. That is, each structural element has a consistent business meaning. For example, the location entity, regardless of in which package it is located, refers to a location.
From this business object model, various interfaces are derived to accomplish the functionality of the business transaction. Interfaces provide an entry point for components to access the functionality of an application. For example, the interface for a Purchase Order Request provides an entry point for components to access the functionality of a Purchase Order, in particular, to transmit and/or receive a Purchase Order Request. One skilled in the art will recognize that each of these interfaces may be provided, sold, distributed, utilized, or marketed as a separate product or as a major component of a separate product. Alternatively, a group of related interfaces may be provided, sold, distributed, utilized, or marketed as a product or as a major component of a separate product. Because the interfaces are generated from the business object model, the information in the interfaces is consistent, and the interfaces are consistent among the business entities. Such consistency facilitates heterogeneous business entities in cooperating to accomplish the business transaction.
Generally, the business object is a representation of a type of a uniquely identifiable business entity (an object instance) described by a structural model. In the architecture, processes may typically operate on business objects. Business objects represent a specific view on some well-defined business content. In other words, business objects represent content, which a typical business user would expect and understand with little explanation. Business objects are further categorized as business process objects and master data objects. A master data object is an object that encapsulates master data (i.e., data that is valid for a period of time). A business process object, which is the kind of business object generally found in a process component, is an object that encapsulates transactional data (i.e., data that is valid for a point in time). The term business object will be used generically to refer to a business process object and a master data object, unless the context requires otherwise. Properly implemented, business objects are implemented free of redundancies.
The architectural elements also include the process component. The process component is a software package that realizes a business process and generally exposes its functionality as services. The functionality contains business transactions. In general, the process component contains one or more semantically related business objects. Often, a particular business object belongs to no more than one process component. Interactions between process component pairs involving their respective business objects, process agents, operations, interfaces, and messages are described as process component interactions, which generally determine the interactions of a pair of process components across a deployment unit boundary. Interactions between process components within a deployment unit are typically not constrained by the architectural design and can be implemented in any convenient fashion. Process components may be modular and context-independent. In other words, process components may not be specific to any particular application and as such, may be reusable. In some implementations, the process component is the smallest (most granular) element of reuse in the architecture. An external process component is generally used to represent the external system in describing interactions with the external system; however, this should be understood to require no more of the external system than that able to produce and receive messages as required by the process component that interacts with the external system. For example, process components may include multiple operations that may provide interaction with the external system. Each operation generally belongs to one type of process component in the architecture. Operations can be synchronous or asynchronous, corresponding to synchronous or asynchronous process agents, which will be described below. The operation is often the smallest, separately-callable function, described by a set of data types used as input, output, and fault parameters serving as a signature.
The architectural elements may also include the service interface, referred to simply as the interface. The interface is a named group of operations. The interface often belongs to one process component and process component might contain multiple interfaces. In one implementation, the service interface contains only inbound or outbound operations, but not a mixture of both. One interface can contain both synchronous and asynchronous operations. Normally, operations of the same type (either inbound or outbound) which belong to the same message choreography will belong to the same interface. Thus, generally, all outbound operations to the same other process component are in one interface.
The architectural elements also include the message. Operations transmit and receive messages. Any convenient messaging infrastructure can be used. A message is information conveyed from one process component instance to another, with the expectation that activity will ensue. Operation can use multiple message types for inbound, outbound, or error messages. When two process components are in different deployment units, invocation of an operation of one process component by the other process component is accomplished by the operation on the other process component sending a message to the first process component.
The architectural elements may also include the process agent. Process agents do business processing that involves the sending or receiving of messages. Each operation normally has at least one associated process agent. Each process agent can be associated with one or more operations. Process agents can be either inbound or outbound and either synchronous or asynchronous. Asynchronous outbound process agents are called after a business object changes such as after a “create”, “update”, or “delete” of a business object instance. Synchronous outbound process agents are generally triggered directly by business object. An outbound process agent will generally perform some processing of the data of the business object instance whose change triggered the event. The outbound agent triggers subsequent business process steps by sending messages using well-defined outbound services to another process component, which generally will be in another deployment unit, or to an external system. The outbound process agent is linked to the one business object that triggers the agent, but it is sent not to another business object but rather to another process component. Thus, the outbound process agent can be implemented without knowledge of the exact business object design of the recipient process component. Alternatively, the process agent may be inbound. For example, inbound process agents may be used for the inbound part of a message-based communication. Inbound process agents are called after a message has been received. The inbound process agent starts the execution of the business process step requested in a message by creating or updating one or multiple business object instances. Inbound process agent is not generally the agent of business object but of its process component. Inbound process agent can act on multiple business objects in a process component. Regardless of whether the process agent is inbound or outbound, an agent may be synchronous if used when a process component requires a more or less immediate response from another process component, and is waiting for that response to continue its work.
The architectural elements also include the deployment unit. Each deployment unit may include one or more process components that are generally deployed together on a single computer system platform. Conversely, separate deployment units can be deployed on separate physical computing systems. The process components of one deployment unit can interact with those of another deployment unit using messages passed through one or more data communication networks or other suitable communication channels. Thus, a deployment unit deployed on a platform belonging to one business can interact with a deployment unit software entity deployed on a separate platform belonging to a different and unrelated business, allowing for business-to-business communication. More than one instance of a given deployment unit can execute at the same time, on the same computing system or on separate physical computing systems. This arrangement allows the functionality offered by the deployment unit to be scaled to meet demand by creating as many instances as needed.
Since interaction between deployment units is through process component operations, one deployment unit can be replaced by other another deployment unit as long as the new deployment unit supports the operations depended upon by other deployment units as appropriate. Thus, while deployment units can depend on the external interfaces of process components in other deployment units, deployment units are not dependent on process component interaction within other deployment units. Similarly, process components that interact with other process components or external systems only through messages, e.g., as sent and received by operations, can also be replaced as long as the replacement generally supports the operations of the original.
Services (or interfaces) may be provided in a flexible architecture to support varying criteria between services and systems. The flexible architecture may generally be provided by a service delivery business object. The system may be able to schedule a service asynchronously as necessary, or on a regular basis. Services may be planned according to a schedule manually or automatically. For example, a follow-up service may be scheduled automatically upon completing an initial service. In addition, flexible execution periods may be possible (e.g. hourly, daily, every three months, etc.). Each customer may plan the services on demand or reschedule service execution upon request.
After creating the business scenario, the developers add details to each step of the business scenario (step 104). In particular, for each step of the business scenario, the developers identify the complete process steps performed by each business entity. A discrete portion of the business scenario reflects a “business transaction,” and each business entity is referred to as a “component” of the business transaction. The developers also identify the messages that are transmitted between the components. A “process interaction model” represents the complete process steps between two components.
After creating the process interaction model, the developers create a “message choreography” (step 106), which depicts the messages transmitted between the two components in the process interaction model. The developers then represent the transmission of the messages between the components during a business process in a “business document flow” (step 108). Thus, the business document flow illustrates the flow of information between the business entities during a business process.
During the Contract transaction 220, the SRM 214 sends a Source of Supply Notification 232 to the SCP 210. This step is optional, as illustrated by the optional control line 230 coupling this step to the remainder of the business document flow 200. During the Ordering transaction 222, the SCP 210 sends a Purchase Requirement Request 234 to the FC 212, which forwards a Purchase Requirement Request 236 to the SRM 214. The SRM 214 then sends a Purchase Requirement Confirmation 238 to the FC 212, and the FC 212 sends a Purchase Requirement Confirmation 240 to the SCP 210. The SRM 214 also sends a Purchase Order Request 242 to the Supplier 216, and sends Purchase Order Information 244 to the FC 212. The FC 212 then sends a Purchase Order Planning Notification 246 to the SCP 210. The Supplier 216, after receiving the Purchase Order Request 242, sends a Purchase Order Confirmation 248 to the SRM 214, which sends a Purchase Order Information confirmation message 254 to the FC 212, which sends a message 256 confirming the Purchase Order Planning Notification to the SCP 210. The SRM 214 then sends an Invoice Due Notification 258 to Invoicing 206.
During the Delivery transaction 224, the FC 212 sends a Delivery Execution Request 260 to the SCE 208. The Supplier 216 could optionally (illustrated at control line 250) send a Dispatched Delivery Notification 252 to the SCE 208. The SCE 208 then sends a message 262 to the FC 212 notifying the FC 212 that the request for the Delivery Information was created. The FC 212 then sends a message 264 notifying the SRM 214 that the request for the Delivery Information was created. The FC 212 also sends a message 266 notifying the SCP 210 that the request for the Delivery Information was created. The SCE 208 sends a message 268 to the FC 212 when the goods have been set aside for delivery. The FC 212 sends a message 270 to the SRM 214 when the goods have been set aside for delivery. The FC 212 also sends a message 272 to the SCP 210 when the goods have been set aside for delivery.
The SCE 208 sends a message 274 to the FC 212 when the goods have been delivered. The FC 212 then sends a message 276 to the SRM 214 indicating that the goods have been delivered, and sends a message 278 to the SCP 210 indicating that the goods have been delivered. The SCE 208 then sends an Inventory Change Accounting Notification 280 to Accounting 202, and an Inventory Change Notification 282 to the SCP 210. The FC 212 sends an Invoice Due Notification 284 to Invoicing 206, and SCE 208 sends a Received Delivery Notification 286 to the Supplier 216.
During the Billing/Payment transaction 226, the Supplier 216 sends an Invoice Request 287 to Invoicing 206. Invoicing 206 then sends a Payment Due Notification 288 to Payment 204, a Tax Due Notification 289 to Payment 204, an Invoice Confirmation 290 to the Supplier 216, and an Invoice Accounting Notification 291 to Accounting 202. Payment 204 sends a Payment Request 292 to the Bank 218, and a Payment Requested Accounting Notification 293 to Accounting 202. Bank 218 sends a Bank Statement Information 296 to Payment 204. Payment 204 then sends a Payment Done Information 294 to Invoicing 206 and a Payment Done Accounting Notification 295 to Accounting 202.
Within a business document flow, business documents having the same or similar structures are marked. For example, in the business document flow 200 depicted in
From the business document flow, the developers identify the business documents having identical or similar structures, and use these business documents to create the business object model (step 110). The business object model includes the objects contained within the business documents. These objects are reflected as packages containing related information, and are arranged in a hierarchical structure within the business object model, as discussed below.
Methods and systems consistent with the subject matter described herein then generate interfaces from the business object model (step 112). The heterogeneous programs use instantiations of these interfaces (called “business document objects” below) to create messages (step 114), which are sent to complete the business transaction (step 116). Business entities use these messages to exchange information with other business entities during an end-to-end business transaction. Since the business object model is shared by heterogeneous programs, the interfaces are consistent among these programs. The heterogeneous programs use these consistent interfaces to communicate in a consistent manner, thus facilitating the business transactions.
Standardized Business-to-Business (“B2B”) messages are compliant with at least one of the e-business standards (i.e., they include the business-relevant fields of the standard). The e-business standards include, for example, RosettaNet for the high-tech industry, Chemical Industry Data Exchange (“CIDX”), Petroleum Industry Data Exchange (“PIDX”) for the oil industry, UCCnet for trade, PapiNet for the paper industry, Odette for the automotive industry, HR-XML for human resources, and XML Common Business Library (“xCBL”). Thus, B2B messages enable simple integration of components in heterogeneous system landscapes. Application-to-Application (“A2A”) messages often exceed the standards and thus may provide the benefit of the full functionality of application components. Although various steps of
B. Implementation Details
As discussed above, methods and systems consistent with the subject matter described herein create consistent interfaces by generating the interfaces from a business object model. Details regarding the creation of the business object model, the generation of an interface from the business object model, and the use of an interface generated from the business object model are provided below.
Turning to the illustrated embodiment in
As illustrated (but not required), the server 302 is communicably coupled with a relatively remote repository 335 over a portion of the network 312. The repository 335 is any electronic storage facility, data processing center, or archive that may supplement or replace local memory (such as 327). The repository 335 may be a central database communicably coupled with the one or more servers 302 and the clients 304 via a virtual private network (VPN), SSH (Secure Shell) tunnel, or other secure network connection. The repository 335 may be physically or logically located at any appropriate location including in one of the example enterprises or off-shore, so long as it remains operable to store information associated with the environment 300 and communicate such data to the server 302 or at least a subset of plurality of the clients 304.
Illustrated server 302 includes local memory 327. Memory 327 may include any memory or database module and may take the form of volatile or non-volatile memory including, without limitation, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), removable media, or any other suitable local or remote memory component. Illustrated memory 327 includes an exchange infrastructure (“XI”) 314, which is an infrastructure that supports the technical interaction of business processes across heterogeneous system environments. XI 314 centralizes the communication between components within a business entity and between different business entities. When appropriate, XI 314 carries out the mapping between the messages. XI 314 integrates different versions of systems implemented on different platforms (e.g., Java and ABAP). XI 314 is based on an open architecture, and makes use of open standards, such as eXtensible Markup Language (XML)™ and Java environments. XI 314 offers services that are useful in a heterogeneous and complex system landscape. In particular, XI 314 offers a runtime infrastructure for message exchange, configuration options for managing business processes and message flow, and options for transforming message contents between sender and receiver systems.
XI 314 stores data types 316, a business object model 318, and interfaces 320. The details regarding the business object model are described below. Data types 316 are the building blocks for the business object model 318. The business object model 318 is used to derive consistent interfaces 320. XI 314 allows for the exchange of information from a first company having one computer system to a second company having a second computer system over network 312 by using the standardized interfaces 320.
While not illustrated, memory 327 may also include business objects and any other appropriate data such as services, interfaces, VPN applications or services, firewall policies, a security or access log, print or other reporting files, HTML files or templates, data classes or object interfaces, child software applications or sub-systems, and others. This stored data may be stored in one or more logical or physical repositories. In some embodiments, the stored data (or pointers thereto) may be stored in one or more tables in a relational database described in terms of SQL statements or scripts. In the same or other embodiments, the stored data may also be formatted, stored, or defined as various data structures in text files, XML documents, Virtual Storage Access Method (VSAM) files, flat files, Btrieve files, comma-separated-value (CSV) files, internal variables, or one or more libraries. For example, a particular data service record may merely be a pointer to a particular piece of third party software stored remotely. In another example, a particular data service may be an internally stored software object usable by authenticated customers or internal development. In short, the stored data may comprise one table or file or a plurality of tables or files stored on one computer or across a plurality of computers in any appropriate format. Indeed, some or all of the stored data may be local or remote without departing from the scope of this disclosure and store any type of appropriate data.
Server 302 also includes processor 325. Processor 325 executes instructions and manipulates data to perform the operations of server 302 such as, for example, a central processing unit (CPU), a blade, an application specific integrated circuit (ASIC), or a field-programmable gate array (FPGA). Although
At a high level, business application 330 is any application, program, module, process, or other software that utilizes or facilitates the exchange of information via messages (or services) or the use of business objects. For example, application 330 may implement, utilize or otherwise leverage an enterprise service-oriented architecture (enterprise SOA), which may be considered a blueprint for an adaptable, flexible, and open IT architecture for developing services-based, enterprise-scale business solutions. This example enterprise service may be a series of web services combined with business logic that can be accessed and used repeatedly to support a particular business process. Aggregating web services into business-level enterprise services helps provide a more meaningful foundation for the task of automating enterprise-scale business scenarios Put simply, enterprise services help provide a holistic combination of actions that are semantically linked to complete the specific task, no matter how many cross-applications are involved. In certain cases, environment 300 may implement a composite application 330, as described below in
More specifically, as illustrated in
Returning to
Network 312 facilitates wireless or wireline communication between computer server 302 and any other local or remote computer, such as clients 304. Network 312 may be all or a portion of an enterprise or secured network. In another example, network 312 may be a VPN merely between server 302 and client 304 across wireline or wireless link. Such an example wireless link may be via 802.11a, 802.11b, 802.11g, 802.20, WiMax, and many others. While illustrated as a single or continuous network, network 312 may be logically divided into various sub-nets or virtual networks without departing from the scope of this disclosure, so long as at least portion of network 312 may facilitate communications between server 302 and at least one client 304. For example, server 302 may be communicably coupled to one or more “local” repositories through one sub-net while communicably coupled to a particular client 304 or “remote” repositories through another. In other words, network 312 encompasses any internal or external network, networks, sub-network, or combination thereof operable to facilitate communications between various computing components in environment 300. Network 312 may communicate, for example, Internet Protocol (IP) packets, Frame Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, and other suitable information between network addresses. Network 312 may include one or more local area networks (LANs), radio access networks (RANs), metropolitan area networks (MANs), wide area networks (WANs), all or a portion of the global computer network known as the Internet, and/or any other communication system or systems at one or more locations. In certain embodiments, network 312 may be a secure network associated with the enterprise and certain local or remote vendors 306 and customers 308. As used in this disclosure, customer 308 is any person, department, organization, small business, enterprise, or any other entity that may use or request others to use environment 300. As described above, vendors 306 also may be local or remote to customer 308. Indeed, a particular vendor 306 may provide some content to business application 330, while receiving or purchasing other content (at the same or different times) as customer 308. As illustrated, customer 308 and vendor 306 each typically perform some processing (such as uploading or purchasing content) using a computer, such as client 304.
Client 304 is any computing device operable to connect or communicate with server 302 or network 312 using any communication link. For example, client 304 is intended to encompass a personal computer, touch screen terminal, workstation, network computer, kiosk, wireless data port, smart phone, personal data assistant (PDA), one or more processors within these or other devices, or any other suitable processing device used by or for the benefit of business 308, vendor 306, or some other user or entity. At a high level, each client 304 includes or executes at least GUI 336 and comprises an electronic computing device operable to receive, transmit, process and store any appropriate data associated with environment 300. It will be understood that there may be any number of clients 304 communicably coupled to server 302. Further, “client 304,” “business,” “business analyst,” “end user,” and “user” may be used interchangeably as appropriate without departing from the scope of this disclosure. Moreover, for ease of illustration, each client 304 is described in terms of being used by one user. But this disclosure contemplates that many users may use one computer or that one user may use multiple computers. For example, client 304 may be a PDA operable to wirelessly connect with external or unsecured network. In another example, client 304 may comprise a laptop that includes an input device, such as a keypad, touch screen, mouse, or other device that can accept information, and an output device that conveys information associated with the operation of server 302 or clients 304, including digital data, visual information, or GUI 336. Both the input device and output device may include fixed or removable storage media such as a magnetic computer disk, CD-ROM, or other suitable media to both receive input from and provide output to users of clients 304 through the display, namely the client portion of GUI or application interface 336.
GUI 336 comprises a graphical user interface operable to allow the user of client 304 to interface with at least a portion of environment 300 for any suitable purpose, such as viewing application or other transaction data. Generally, GUI 336 provides the particular user with an efficient and user-friendly presentation of data provided by or communicated within environment 300. For example, GUI 336 may present the user with the components and information that is relevant to their task, increase reuse of such components, and facilitate a sizable developer community around those components. GUI 336 may comprise a plurality of customizable frames or views having interactive fields, pull-down lists, and buttons operated by the user. For example, GUI 336 is operable to display data involving business objects and interfaces in a user-friendly form based on the user context and the displayed data. In another example, GUI 336 is operable to display different levels and types of information involving business objects and interfaces based on the identified or supplied user role. GUI 336 may also present a plurality of portals or dashboards. For example, GUI 336 may display a portal that allows users to view, create, and manage historical and real-time reports including role-based reporting and such. Of course, such reports may be in any appropriate output format including PDF, HTML, and printable text. Real-time dashboards often provide table and graph information on the current state of the data, which may be supplemented by business objects and interfaces. It should be understood that the term graphical user interface may be used in the singular or in the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Indeed, reference to GUI 336 may indicate a reference to the front-end or a component of business application 330, as well as the particular interface accessible via client 304, as appropriate, without departing from the scope of this disclosure. Therefore, GUI 336 contemplates any graphical user interface, such as a generic web browser or touchscreen, that processes information in environment 300 and efficiently presents the results to the user. Server 302 can accept data from client 304 via the web browser (e.g., Microsoft Internet Explorer or Netscape Navigator) and return the appropriate HTML or XML responses to the browser using network 312.
More generally in environment 300 as depicted in
Various components of the present disclosure may be modeled using a model-driven environment. For example, the model-driven framework or environment may allow the developer to use simple drag-and-drop techniques to develop pattern-based or freestyle user interfaces and define the flow of data between them. The result could be an efficient, customized, visually rich online experience. In some cases, this model-driven development may accelerate the application development process and foster business-user self-service. It further enables business analysts or IT developers to compose visually rich applications that use analytic services, enterprise services, remote function calls (RFCs), APIs, and stored procedures. In addition, it may allow them to reuse existing applications and create content using a modeling process and a visual user interface instead of manual coding.
According to some embodiments, a modeler (or other analyst) may use the model-driven modeling environment 516 to create pattern-based or freestyle user interfaces using simple drag-and-drop services. Because this development may be model-driven, the modeler can typically compose an application using models of business objects without having to write much, if any, code. In some cases, this example modeling environment 516 may provide a personalized, secure interface that helps unify enterprise applications, information, and processes into a coherent, role-based portal experience. Further, the modeling environment 516 may allow the developer to access and share information and applications in a collaborative environment. In this way, virtual collaboration rooms allow developers to work together efficiently, regardless of where they are located, and may enable powerful and immediate communication that crosses organizational boundaries while enforcing security requirements. Indeed, the modeling environment 516 may provide a shared set of services for finding, organizing, and accessing unstructured content stored in third-party repositories and content management systems across various networks 312. Classification tools may automate the organization of information, while subject-matter experts and content managers can publish information to distinct user audiences. Regardless of the particular implementation or architecture, this modeling environment 516 may allow the developer to easily model hosted business objects 140 using this model-driven approach.
In certain embodiments, the modeling environment 516 may implement or utilize a generic, declarative, and executable GUI language (generally described as XGL). This example XGL is generally independent of any particular GUI framework or runtime platform. Further, XGL is normally not dependent on characteristics of a target device on which the graphic user interface is to be displayed and may also be independent of any programming language. XGL is used to generate a generic representation (occasionally referred to as the XGL representation or XGL-compliant representation) for a design-time model representation. The XGL representation is thus typically a device-independent representation of a GUI. The XGL representation is declarative in that the representation does not depend on any particular GUI framework, runtime platform, device, or programming language. The XGL representation can be executable and therefore can unambiguously encapsulate execution semantics for the GUI described by a model representation. In short, models of different types can be transformed to XGL representations.
The XGL representation may be used for generating representations of various different GUIs and supports various GUI features including full windowing and componentization support, rich data visualizations and animations, rich modes of data entry and user interactions, and flexible connectivity to any complex application data services. While a specific embodiment of XGL is discussed, various other types of XGLs may also be used in alternative embodiments. In other words, it will be understood that XGL is used for example description only and may be read to include any abstract or modeling language that can be generic, declarative, and executable.
Turning to the illustrated embodiment in
Illustrated modeling environment 516 also includes an abstract representation generator (or XGL generator) 504 operable to generate an abstract representation (for example, XGL representation or XGL-compliant representation) 506 based upon model representation 502. Abstract representation generator 504 takes model representation 502 as input and outputs abstract representation 506 for the model representation. Model representation 502 may include multiple instances of various forms or types depending on the tool/language used for the modeling. In certain cases, these various different model representations may each be mapped to one or more abstract representations 506. Different types of model representations may be transformed or mapped to XGL representations. For each type of model representation, mapping rules may be provided for mapping the model representation to the XGL representation 506. Different mapping rules may be provided for mapping a model representation to an XGL representation.
This XGL representation 506 that is created from a model representation may then be used for processing in the runtime environment. For example, the XGL representation 506 may be used to generate a machine-executable runtime GUI (or some other runtime representation) that may be executed by a target device. As part of the runtime processing, the XGL representation 506 may be transformed into one or more runtime representations, which may indicate source code in a particular programming language, machine-executable code for a specific runtime environment, executable GUI, and so forth, which may be generated for specific runtime environments and devices. Since the XGL representation 506, rather than the design-time model representation, is used by the runtime environment, the design-time model representation is decoupled from the runtime environment. The XGL representation 506 can thus serve as the common ground or interface between design-time user interface modeling tools and a plurality of user interface runtime frameworks. It provides a self-contained, closed, and deterministic definition of all aspects of a graphical user interface in a device-independent and programming-language independent manner. Accordingly, abstract representation 506 generated for a model representation 502 is generally declarative and executable in that it provides a representation of the GUI of model representation 502 that is not dependent on any device or runtime platform, is not dependent on any programming language, and unambiguously encapsulates execution semantics for the GUI. The execution semantics may include, for example, identification of various components of the GUI, interpretation of connections between the various GUI components, information identifying the order of sequencing of events, rules governing dynamic behavior of the GUI, rules governing handling of values by the GUI, and the like. The abstract representation 506 is also not GUI runtime-platform specific. The abstract representation 506 provides a self-contained, closed, and deterministic definition of all aspects of a graphical user interface that is device independent and language independent.
Abstract representation 506 is such that the appearance and execution semantics of a GUI generated from the XGL representation work consistently on different target devices irrespective of the GUI capabilities of the target device and the target device platform. For example, the same XGL representation may be mapped to appropriate GUIs on devices of differing levels of GUI complexity (i.e., the same abstract representation may be used to generate a GUI for devices that support simple GUIs and for devices that can support complex GUIs), the GUI generated by the devices are consistent with each other in their appearance and behavior.
Abstract representation generator 504 may be configured to generate abstract representation 506 for models of different types, which may be created using different modeling tools 340. It will be understood that modeling environment 516 may include some, none, or other sub-modules or components as those shown in this example illustration. In other words, modeling environment 516 encompasses the design-time environment (with or without the abstract generator or the various representations), a modeling toolkit (such as 340) linked with a developer's space, or any other appropriate software operable to decouple models created during design-time from the runtime environment. Abstract representation 506 provides an interface between the design time environment and the runtime environment. As shown, this abstract representation 506 may then be used by runtime processing.
As part of runtime processing, modeling environment 516 may include various runtime tools 508 and may generate different types of runtime representations based upon the abstract representation 506. Examples of runtime representations include device or language-dependent (or specific) source code, runtime platform-specific machine-readable code, GUIs for a particular target device, and the like. The runtime tools 508 may include compilers, interpreters, source code generators, and other such tools that are configured to generate runtime platform-specific or target device-specific runtime representations of abstract representation 506. The runtime tool 508 may generate the runtime representation from abstract representation 506 using specific rules that map abstract representation 506 to a particular type of runtime representation. These mapping rules may be dependent on the type of runtime tool, characteristics of the target device to be used for displaying the GUI, runtime platform, and/or other factors. Accordingly, mapping rules may be provided for transforming the abstract representation 506 to any number of target runtime representations directed to one or more target GUI runtime platforms. For example, XGL-compliant code generators may conform to semantics of XGL, as described below. XGL-compliant code generators may ensure that the appearance and behavior of the generated user interfaces is preserved across a plurality of target GUI frameworks, while accommodating the differences in the intrinsic characteristics of each and also accommodating the different levels of capability of target devices.
For example, as depicted in example
It should be apparent that abstract representation 506 may be used to generate GUIs for Extensible Application Markup Language (XAML) or various other runtime platforms and devices. The same abstract representation 506 may be mapped to various runtime representations and device-specific and runtime platform-specific GUIs. In general, in the runtime environment, machine executable instructions specific to a runtime environment may be generated based upon the abstract representation 506 and executed to generate a GUI in the runtime environment. The same XGL representation may be used to generate machine executable instructions specific to different runtime environments and target devices.
According to certain embodiments, the process of mapping a model representation 502 to an abstract representation 506 and mapping an abstract representation 506 to some runtime representation may be automated. For example, design tools may automatically generate an abstract representation for the model representation using XGL and then use the XGL abstract representation to generate GUIs that are customized for specific runtime environments and devices. As previously indicated, mapping rules may be provided for mapping model representations to an XGL representation. Mapping rules may also be provided for mapping an XGL representation to a runtime platform-specific representation.
Since the runtime environment uses abstract representation 506 rather than model representation 502 for runtime processing, the model representation 502 that is created during design-time is decoupled from the runtime environment. Abstract representation 506 thus provides an interface between the modeling environment and the runtime environment. As a result, changes may be made to the design time environment, including changes to model representation 502 or changes that affect model representation 502, generally to not substantially affect or impact the runtime environment or tools used by the runtime environment. Likewise, changes may be made to the runtime environment generally to not substantially affect or impact the design time environment. A designer or other developer can thus concentrate on the design aspects and make changes to the design without having to worry about the runtime dependencies such as the target device platform or programming language dependencies.
One or more runtime representations 550a, including GUIs for specific runtime environment platforms, may be generated from abstract representation 506. A device-dependent runtime representation may be generated for a particular type of target device platform to be used for executing and displaying the GUI encapsulated by the abstract representation. The GUIs generated from abstract representation 506 may comprise various types of GUI elements such as buttons, windows, scrollbars, input boxes, etc. Rules may be provided for mapping an abstract representation to a particular runtime representation. Various mapping rules may be provided for different runtime environment platforms.
Methods and systems consistent with the subject matter described herein provide and use interfaces 320 derived from the business object model 318 suitable for use with more than one business area, for example different departments within a company such as finance, or marketing. Also, they are suitable across industries and across businesses. Interfaces 320 are used during an end-to-end business transaction to transfer business process information in an application-independent manner. For example the interfaces can be used for fulfilling a sales order.
1. Message Overview
To perform an end-to-end business transaction, consistent interfaces are used to create business documents that are sent within messages between heterogeneous programs or modules.
a) Message Categories
As depicted in
(1) Information
Information 606 is a message sent from a sender 602 to a recipient 604 concerning a condition or a statement of affairs. No reply to information is expected. Information 606 is sent to make business partners or business applications aware of a situation. Information 606 is not compiled to be application-specific. Examples of “information” are an announcement, advertising, a report, planning information, and a message to the business warehouse.
(2) Notification
A notification 608 is a notice or message that is geared to a service. A sender 602 sends the notification 608 to a recipient 604. No reply is expected for a notification. For example, a billing notification relates to the preparation of an invoice while a dispatched delivery notification relates to preparation for receipt of goods.
(3) Query
A query 610 is a question from a sender 602 to a recipient 604 to which a response 612 is expected. A query 610 implies no assurance or obligation on the part of the sender 602. Examples of a query 610 are whether space is available on a specific flight or whether a specific product is available. These queries do not express the desire for reserving the flight or purchasing the product.
(4) Response
A response 612 is a reply to a query 610. The recipient 604 sends the response 612 to the sender 602. A response 612 generally implies no assurance or obligation on the part of the recipient 604. The sender 602 is not expected to reply. Instead, the process is concluded with the response 612. Depending on the business scenario, a response 612 also may include a commitment, i.e., an assurance or obligation on the part of the recipient 604. Examples of responses 612 are a response stating that space is available on a specific flight or that a specific product is available. With these responses, no reservation was made.
(5) Request
A request 614 is a binding requisition or requirement from a sender 602 to a recipient 604. Depending on the business scenario, the recipient 604 can respond to a request 614 with a confirmation 616. The request 614 is binding on the sender 602. In making the request 614, the sender 602 assumes, for example, an obligation to accept the services rendered in the request 614 under the reported conditions. Examples of a request 614 are a parking ticket, a purchase order, an order for delivery and a job application.
(6) Confirmation
A confirmation 616 is a binding reply that is generally made to a request 614. The recipient 604 sends the confirmation 616 to the sender 602. The information indicated in a confirmation 616, such as deadlines, products, quantities and prices, can deviate from the information of the preceding request 614. A request 614 and confirmation 616 may be used in negotiating processes. A negotiating process can consist of a series of several request 614 and confirmation 616 messages. The confirmation 616 is binding on the recipient 604. For example, 100 units of X may be ordered in a purchase order request; however, only the delivery of 80 units is confirmed in the associated purchase order confirmation.
b) Message Choreography
A message choreography is a template that specifies the sequence of messages between business entities during a given transaction. The sequence with the messages contained in it describes in general the message “lifecycle” as it proceeds between the business entities. If messages from a choreography are used in a business transaction, they appear in the transaction in the sequence determined by the choreography. This illustrates the template character of a choreography, i.e., during an actual transaction, it is not necessary for all messages of the choreography to appear. Those messages that are contained in the transaction, however, follow the sequence within the choreography. A business transaction is thus a derivation of a message choreography. The choreography makes it possible to determine the structure of the individual message types more precisely and distinguish them from one another.
2. Components of the Business Object Model
The overall structure of the business object model ensures the consistency of the interfaces that are derived from the business object model. The derivation ensures that the same business-related subject matter or concept is represented and structured in the same way in all interfaces.
The business object model defines the business-related concepts at a central location for a number of business transactions. In other words, it reflects the decisions made about modeling the business entities of the real world acting in business transactions across industries and business areas. The business object model is defined by the business objects and their relationship to each other (the overall net structure).
Each business object is generally a capsule with an internal hierarchical structure, behavior offered by its operations, and integrity constraints. Business objects are semantically disjoint, i.e., the same business information is represented once. In the business object model, the business objects are arranged in an ordering framework. From left to right, they are arranged according to their existence dependency to each other. For example, the customizing elements may be arranged on the left side of the business object model, the strategic elements may be arranged in the center of the business object model, and the operative elements may be arranged on the right side of the business object model. Similarly, the business objects are arranged from the top to the bottom based on defined order of the business areas, e.g., finance could be arranged at the top of the business object model with CRM below finance and SRM below CRM.
To ensure the consistency of interfaces, the business object model may be built using standardized data types as well as packages to group related elements together, and package templates and entity templates to specify the arrangement of packages and entities within the structure.
a) Data Types
Data types are used to type object entities and interfaces with a structure. This typing can include business semantic. Such data types may include those generally described at pages 96 through 1642 (which are incorporated by reference herein) of U.S. patent application Ser. No. 11/803,178, filed on May 11, 2007 and entitled “Consistent Set Of Interfaces Derived From
A Business Object Model”. For example, the data type BusinessTransactionDocumentID is a unique identifier for a document in a business transaction. Also, as an example, Data type BusinessTransactionDocumentParty contains the information that is exchanged in business documents about a party involved in a business transaction, and includes the party's identity, the party's address, the party's contact person and the contact person's address. BusinessTransactionDocumentParty also includes the role of the party, e.g., a buyer, seller, product recipient, or vendor.
The data types are based on Core Component Types (“CCTs”), which themselves are based on the World Wide Web Consortium (“W3C”) data types. “Global” data types represent a business situation that is described by a fixed structure. Global data types include both context-neutral generic data types (“GDTs”) and context-based context data types (“CDTs”). GDTs contain business semantics, but are application-neutral, i.e., without context. CDTs, on the other hand, are based on GDTs and form either a use-specific view of the GDTs, or a context-specific assembly of GDTs or CDTs. A message is typically constructed with reference to a use and is thus a use-specific assembly of GDTs and CDTs. The data types can be aggregated to complex data types.
To achieve a harmonization across business objects and interfaces, the same subject matter is typed with the same data type. For example, the data type “GeoCoordinates” is built using the data type “Measure” so that the measures in a GeoCoordinate (i.e., the latitude measure and the longitude measure) are represented the same as other “Measures” that appear in the business object model.
b) Entities
Entities are discrete business elements that are used during a business transaction. Entities are not to be confused with business entities or the components that interact to perform a transaction. Rather, “entities” are one of the layers of the business object model and the interfaces. For example, a Catalogue entity is used in a Catalogue Publication Request and a Purchase Order is used in a Purchase Order Request. These entities are created using the data types defined above to ensure the consistent representation of data throughout the entities.
c) Packages
Packages group the entities in the business object model and the resulting interfaces into groups of semantically associated information. Packages also may include “sub”-packages, i.e., the packages may be nested.
Packages may group elements together based on different factors, such as elements that occur together as a rule with regard to a business-related aspect. For example, as depicted in
Packages also may combine different components that result in a new object. For example, as depicted in
Another grouping within a package may be subtypes within a type. In these packages, the components are specialized forms of a generic package. For example, as depicted in
Packages also may be used to represent hierarchy levels. For example, as depicted in
Packages can be represented in the XML schema as a comment. One advantage of this grouping is that the document structure is easier to read and is more understandable. The names of these packages are assigned by including the object name in brackets with the suffix “Package.” For example, as depicted in
d) Relationships
Relationships describe the interdependencies of the entities in the business object model, and are thus an integral part of the business object model.
(1) Cardinality of Relationships
(2) Types of Relationships
(a) Composition
A composition or hierarchical relationship type is a strong whole-part relationship which is used to describe the structure within an object. The parts, or dependent entities, represent a semantic refinement or partition of the whole, or less dependent entity. For example, as depicted in
(b) Aggregation
An aggregation or an aggregating relationship type is a weak whole-part relationship between two objects. The dependent object is created by the combination of one or several less dependent objects. For example, as depicted in
(c) Association
An association or a referential relationship type describes a relationship between two objects in which the dependent object refers to the less dependent object. For example, as depicted in
(3) Specialization
Entity types may be divided into subtypes based on characteristics of the entity types. For example,
Subtypes may be defined based on related attributes. For example, although ships and cars are both vehicles, ships have an attribute, “draft,” that is not found in cars. Subtypes also may be defined based on certain methods that can be applied to entities of this subtype and that modify such entities. For example, “drop anchor” can be applied to ships. If outgoing relationships to a specific object are restricted to a subset, then a subtype can be defined which reflects this subset.
As depicted in
e) Structural Patterns
(1) Item
An item is an entity type which groups together features of another entity type. Thus, the features for the entity type chart of accounts are grouped together to form the entity type chart of accounts item. For example, a chart of accounts item is a category of values or value flows that can be recorded or represented in amounts of money in accounting, while a chart of accounts is a superordinate list of categories of values or value flows that is defined in accounting.
The cardinality between an entity type and its item is often either 1:n or 1:cn. For example, in the case of the entity type chart of accounts, there is a hierarchical relationship of the cardinality 1:n with the entity type chart of accounts item since a chart of accounts has at least one item in all cases.
(2) Hierarchy
A hierarchy describes the assignment of subordinate entities to superordinate entities and vice versa, where several entities of the same type are subordinate entities that have, at most, one directly superordinate entity. For example, in the hierarchy depicted in
Because each entity has at most one superordinate entity, the cardinality between a subordinate entity and its superordinate entity is 1:c. Similarly, each entity may have 0, 1 or many subordinate entities. Thus, the cardinality between a superordinate entity and its subordinate entity is 1:cn.
3. Creation of the Business Object Model
As discussed above, the designers create message choreographies that specify the sequence of messages between business entities during a transaction. After identifying the messages, the developers identify the fields contained in one of the messages (step 2100,
Next, the designers determine the proper name for the object according to the ISO 11179 naming standards (step 2104). In the example above, the proper name for the “Main Object” is “Purchase Order.” After naming the object, the system that is creating the business object model determines whether the object already exists in the business object model (step 2106). If the object already exists, the system integrates new attributes from the message into the existing object (step 2108), and the process is complete.
If at step 2106 the system determines that the object does not exist in the business object model, the designers model the internal object structure (step 2110). To model the internal structure, the designers define the components. For the above example, the designers may define the components identified below.
During the step of modeling the internal structure, the designers also model the complete internal structure by identifying the compositions of the components and the corresponding cardinalities, as shown below.
After modeling the internal object structure, the developers identify the subtypes and generalizations for all objects and components (step 2112). For example, the Purchase Order may have subtypes Purchase Order Update, Purchase Order Cancellation and Purchase Order Information. Purchase Order Update may include Purchase Order Request, Purchase Order Change, and Purchase Order Confirmation. Moreover, Party may be identified as the generalization of Buyer and Seller. The subtypes and generalizations for the above example are shown below.
After identifying the subtypes and generalizations, the developers assign the attributes to these components (step 2114). The attributes for a portion of the components are shown below.
The system then determines whether the component is one of the object nodes in the business object model (step 2116,
During the integration step, the designers classify the relationship (i.e., aggregation or association) between the object node and the object being integrated into the business object model. The system also integrates the new attributes into the object node (step 2120). If at step 2116, the system determines that the component is not in the business object model, the system adds the component to the business object model (step 2122).
Regardless of whether the component was in the business object model at step 2116, the next step in creating the business object model is to add the integrity rules (step 2124). There are several levels of integrity rules and constraints which should be described. These levels include consistency rules between attributes, consistency rules between components, and consistency rules to other objects. Next, the designers determine the services offered, which can be accessed via interfaces (step 2126). The services offered in the example above include PurchaseOrderCreateRequest, PurchaseOrderCancellationRequest, and PurchaseOrderReleaseRequest. The system then receives an indication of the location for the object in the business object model (step 2128). After receiving the indication of the location, the system integrates the object into the business object model (step 2130).
4. Structure of the Business Object Model
The business object model, which serves as the basis for the process of generating consistent interfaces, includes the elements contained within the interfaces. These elements are arranged in a hierarchical structure within the business object model.
5. Interfaces Derived from Business Object Model
Interfaces are the starting point of the communication between two business entities. The structure of each interface determines how one business entity communicates with another business entity. The business entities may act as a unified whole when, based on the business scenario, the business entities know what an interface contains from a business perspective and how to fill the individual elements or fields of the interface. As illustrated in
As illustrated in
To illustrate the hierarchization process,
For example, object A 27016, object B 27018, and object C 27020 have information that characterize object X. Because object A 27016, object B 27018, and object C 27020 are superordinate to leading object X 27014, the dependencies of these relationships change so that object A 27016, object B 27018, and object C 27020 become dependent and subordinate to leading object X 27014. This procedure is known as “derivation of the business document object by hierarchization.”
Business-related objects generally have an internal structure (parts). This structure can be complex and reflect the individual parts of an object and their mutual dependency. When creating the operation signature, the internal structure of an object is strictly hierarchized. Thus, dependent parts keep their dependency structure, and relationships between the parts within the object that do not represent the hierarchical structure are resolved by prioritizing one of the relationships.
Relationships of object X to external objects that are referenced and whose information characterizes object X are added to the operation signature. Such a structure can be quite complex (see, for example,
The newly created business document object contains all required information, including the incorporated master data information of the referenced objects. As depicted in
The following provides certain rules that can be adopted singly or in combination with regard to the hierarchization process. A business document object always refers to a leading business document object and is derived from this object. The name of the root entity in the business document entity is the name of the business object or the name of a specialization of the business object or the name of a service specific view onto the business object. The nodes and elements of the business object that are relevant (according to the semantics of the associated message type) are contained as entities and elements in the business document object.
The name of a business document entity is predefined by the name of the corresponding business object node. The name of the superordinate entity is not repeated in the name of the business document entity. The “full” semantic name results from the concatenation of the entity names along the hierarchical structure of the business document object.
The structure of the business document object is, except for deviations due to hierarchization, the same as the structure of the business object. The cardinalities of the business document object nodes and elements are adopted identically or more restrictively to the business document object. An object from which the leading business object is dependent can be adopted to the business document object. For this arrangement, the relationship is inverted, and the object (or its parts, respectively) are hierarchically subordinated in the business document object.
Nodes in the business object representing generalized business information can be adopted as explicit entities to the business document object (generally speaking, multiply TypeCodes out). When this adoption occurs, the entities are named according to their more specific semantic (name of TypeCode becomes prefix). Party nodes of the business object are modeled as explicit entities for each party role in the business document object. These nodes are given the name <Prefix><Party Role>Party, for example, BuyerParty, ItemBuyerParty. BTDReference nodes are modeled as separate entities for each reference type in the business document object. These nodes are given the name <Qualifier><BO><Node>Reference, for example SalesOrderReference, OriginSalesOrderReference, SalesOrderItemReference. A product node in the business object comprises all of the information on the Product, ProductCategory, and Batch. This information is modeled in the business document object as explicit entities for Product, ProductCategory, and Batch.
Entities which are connected by a 1:1 relationship as a result of hierarchization can be combined to a single entity, if they are semantically equivalent. Such a combination can often occurs if a node in the business document object that results from an assignment node is removed because it does not have any elements.
The message type structure is typed with data types. Elements are typed by GDTs according to their business objects. Aggregated levels are typed with message type specific data types (Intermediate Data Types), with their names being built according to the corresponding paths in the message type structure. The whole message type structured is typed by a message data type with its name being built according to the root entity with the suffix “Message”. For the message type, the message category (e.g., information, notification, query, response, request, confirmation, etc.) is specified according to the suited transaction communication pattern.
In one variation, the derivation by hierarchization can be initiated by specifying a leading business object and a desired view relevant for a selected service operation. This view determines the business document object. The leading business object can be the source object, the target object, or a third object. Thereafter, the parts of the business object required for the view are determined. The parts are connected to the root node via a valid path along the hierarchy. Thereafter, one or more independent objects (object parts, respectively) referenced by the leading object which are relevant for the service may be determined (provided that a relationship exists between the leading object and the one or more independent objects).
Once the selection is finalized, relevant nodes of the leading object node that are structurally identical to the message type structure can then be adopted. If nodes are adopted from independent objects or object parts, the relationships to such independent objects or object parts are inverted. Linearization can occur such that a business object node containing certain TypeCodes is represented in the message type structure by explicit entities (an entity for each value of the TypeCode). The structure can be reduced by checking all 1:1 cardinalities in the message type structure. Entities can be combined if they are semantically equivalent, one of the entities carries no elements, or an entity solely results from an n:m assignment in the business object.
After the hierarchization is completed, information regarding transmission of the business document object (e.g., CompleteTransmissionIndicator, ActionCodes, message category, etc.) can be added. A standardized message header can be added to the message type structure and the message structure can be typed. Additionally, the message category for the message type can be designated.
Invoice Request and Invoice Confirmation are examples of interfaces. These invoice interfaces are used to exchange invoices and invoice confirmations between an invoicing party and an invoice recipient (such as between a seller and a buyer) in a B2B process. Companies can create invoices in electronic as well as in paper form. Traditional methods of communication, such as mail or fax, for invoicing are cost intensive, prone to error, and relatively slow, since the data is recorded manually. Electronic communication eliminates such problems. The motivating business scenarios for the Invoice Request and Invoice Confirmation interfaces are the Procure to Stock (PTS) and Sell from Stock (SFS) scenarios. In the PTS scenario, the parties use invoice interfaces to purchase and settle goods. In the SFS scenario, the parties use invoice interfaces to sell and invoice goods. The invoice interfaces directly integrate the applications implementing them and also form the basis for mapping data to widely-used XML standard formats such as RosettaNet, PIDX, xCBL, and CIDX.
The invoicing party may use two different messages to map a B2B invoicing process: (1) the invoicing party sends the message type InvoiceRequest to the invoice recipient to start a new invoicing process; and (2) the invoice recipient sends the message type InvoiceConfirmation to the invoicing party to confirm or reject an entire invoice or to temporarily assign it the status “pending.”
An InvoiceRequest is a legally binding notification of claims or liabilities for delivered goods and rendered services—usually, a payment request for the particular goods and services. The message type InvoiceRequest is based on the message data type InvoiceMessage. The InvoiceRequest message (as defined) transfers invoices in the broader sense. This includes the specific invoice (request to settle a liability), the debit memo, and the credit memo.
InvoiceConfirmation is a response sent by the recipient to the invoicing party confirming or rejecting the entire invoice received or stating that it has been assigned temporarily the status “pending.” The message type InvoiceConfirmation is based on the message data type InvoiceMessage. An InvoiceConfirmation is not mandatory in a B2B invoicing process, however, it automates collaborative processes and dispute management.
Usually, the invoice is created after it has been confirmed that the goods were delivered or the service was provided. The invoicing party (such as the seller) starts the invoicing process by sending an InvoiceRequest message. Upon receiving the InvoiceRequest message, the invoice recipient (for instance, the buyer) can use the InvoiceConfirmation message to completely accept or reject the invoice received or to temporarily assign it the status “pending.” The InvoiceConfirmation is not a negotiation tool (as is the case in order management), since the options available are either to accept or reject the entire invoice. The invoice data in the InvoiceConfirmation message merely confirms that the invoice has been forwarded correctly and does not communicate any desired changes to the invoice. Therefore, the InvoiceConfirmation includes the precise invoice data that the invoice recipient received and checked. If the invoice recipient rejects an invoice, the invoicing party can send a new invoice after checking the reason for rejection (AcceptanceStatus and ConfirmationDescription at Invoice and InvoiceItem level). If the invoice recipient does not respond, the invoice is generally regarded as being accepted and the invoicing party can expect payment.
Package templates specify the arrangement of packages within a business transaction document. Package templates are used to define the overall structure of the messages sent between business entities. Methods and systems consistent with the subject matter described herein use package templates in conjunction with the business object model to derive the interfaces.
The system also receives an indication of the message type from the designer (step 2202). The system selects a package from the package template (step 2204), and receives an indication from the designer whether the package is required for the interface (step 2206). If the package is not required for the interface, the system removes the package from the package template (step 2208). The system then continues this analysis for the remaining packages within the package template (step 2210).
If, at step 2206, the package is required for the interface, the system copies the entity template from the package in the business object model into the package in the package template (step 2212,
At step 2210, after the system completes its analysis for the packages within the package template, the system selects one of the packages remaining in the package template (step 2218,
If, at step 2222, the entity is required for the interface, the system retrieves the cardinality between a superordinate entity and the entity from the business object model (step 2230,
The system then selects a leading object from the package template (step 2240,
The system then selects an entity that is subordinate to the leading object (step 2250,
6. Use of an Interface
The XI stores the interfaces (as an interface type). At runtime, the sending party's program instantiates the interface to create a business document, and sends the business document in a message to the recipient. The messages are preferably defined using XML. In the example depicted in
From the component's perspective, the interface is represented by an interface proxy 2400, as depicted in
When the message arrives, the recipient's inbound proxy 2508 calls its component-specific method 2514 for creating a document. The proxy 2508 at the receiving end downloads the data and converts the XML structure into the internal data structure of the recipient component 2504 for further processing.
As depicted in
In collaborative processes as well as Q&A processes, messages should refer to documents from previous messages. A simple business document object ID or object ID is insufficient to identify individual messages uniquely because several versions of the same business document object can be sent during a transaction. A business document object ID with a version number also is insufficient because the same version of a business document object can be sent several times. Thus, messages require several identifiers during the course of a transaction.
As depicted in
The administrative information in the business document message header 2624 of the payload or business document 2620 includes a BusinessDocumentMessageID (“ID3”) 2628. The business entity or component 2632 of the business entity manages and sets the BusinessDocumentMessageID 2628. The business entity or component 2632 also can refer to other business documents using the BusinessDocumentMessageID 2628. The receiving component 2632 requires no knowledge regarding the structure of this ID. The BusinessDocumentMessageID 2628 is, as an ID, unique. Creation of a message refers to a point in time. No versioning is typically expressed by the ID. Besides the BusinessDocumentMessageID 2628, there also is a business document object ID 2630, which may include versions.
The component 2632 also adds its own component object ID 2634 when the business document object is stored in the component. The component object ID 2634 identifies the business document object when it is stored within the component. However, not all communication partners may be aware of the internal structure of the component object ID 2634. Some components also may include a versioning in their ID 2634.
7. Use of Interfaces Across Industries
Methods and systems consistent with the subject matter described herein provide interfaces that may be used across different business areas for different industries. Indeed, the interfaces derived using methods and systems consistent with the subject matter described herein may be mapped onto the interfaces of different industry standards. Unlike the interfaces provided by any given standard that do not include the interfaces required by other standards, methods and systems consistent with the subject matter described herein provide a set of consistent interfaces that correspond to the interfaces provided by different industry standards. Due to the different fields provided by each standard, the interface from one standard does not easily map onto another standard. By comparison, to map onto the different industry standards, the interfaces derived using methods and systems consistent with the subject matter described herein include most of the fields provided by the interfaces of different industry standards. Missing fields may easily be included into the business object model. Thus, by derivation, the interfaces can be extended consistently by these fields. Thus, methods and systems consistent with the subject matter described herein provide consistent interfaces or services that can be used across different industry standards.
For example,
Accordingly, the third layer 2903 separates the inherent data of the first layer 2901 and the technologies used to access the inherent data. As a result of the described structure, the business object reveals only an interface that includes a set of clearly defined methods. Thus, applications access the business object via those defined methods. An application wanting access to the business object and the data associated therewith usually includes the information or data to execute the clearly defined methods of the business object's interface. Such clearly defined methods of the business object's interface represent the business object's behavior. That is, when the methods are executed, the methods may change the business object's data. Therefore, an application may utilize any business object by providing the information or data without having any concern for the details related to the internal operation of the business object. Returning to method 2800, a service provider class and data dictionary elements are generated within a development environment at step 2803. In step 2804, the service provider class is implemented within the development environment.
Regardless of the particular hardware or software architecture used, the disclosed systems or software are generally capable of implementing business objects and deriving (or otherwise utilizing) consistent interfaces that are suitable for use across industries, across businesses, and across different departments within a business in accordance with some or all of the following description. In short, system 100 contemplates using any appropriate combination and arrangement of logical elements to implement some or all of the described functionality.
Moreover, the preceding flowcharts and accompanying description illustrate example methods. The present services environment contemplates using or implementing any suitable technique for performing these and other tasks. It will be understood that these methods are for illustration purposes only and that the described or similar techniques may be performed at any appropriate time, including concurrently, individually, or in combination. In addition, many of the steps in these flowcharts may take place simultaneously and/or in different orders than as shown. Moreover, the services environment may use methods with additional steps, fewer steps, and/or different steps, so long as the methods remain appropriate.
The message type Intercompany Settlement Project Task Request is derived from the business object Project as a leading object together with its operation signature. The message type Intercompany Settlement Project Task Request is a request to derive an intercompany settlement project task. The structure of the message type Intercompany Settlement Project Task Request is determined by the message data type IntercompanySettlementProjectTaskRequestMessage. The message data type IntercompanySettlementProjectTaskRequestMessage includes the Message Header package and the Project Task package. The package Message Header includes the sub-packages Party and Business Scope, and the entity MessageHeader. MessageHeader is typed by datatype BusinessDocumentMessageHeader.
The package Project Task includes the entity ProjectTask. ProjectTask includes the following non-node elements: ObjectNodeSenderTechnicalID, ID, UUID, SellerCompanyID, SellerCompanyUUID, ServicePerformerEmployeeID, ServicePerformerEmployeeUUID, and ServiceProvisioningDate. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1, is a technical identifier assigned by a sender of a message to an object node that triggers a request, can be used to link one or more line items in a response message to corresponding line items in a request message, can be omitted if only one line item is included in the request message or if the line items of the response messages can be linked to the line items in the request message using a project task ID or UUID, and may be based on datatype BGDT:ObjectNodePartyTechnicalID. ID may have a multiplicity of 0 . . . 1, is an identifier of a project task for which an intercompany settlement task is to be derived, and may be based on datatype BGDT:ProjectElementID. UUID may have a multiplicity of 0 . . . 1, is a universally unique identifier of a project task for which an intercompany settlement task is to be derived, and may be based on datatype BGDT:UUID. SellerCompanyID may have a multiplicity of 0 . . . 1, is an identifier of a company that acts as a seller in an intercompany scenario, and may be based on datatype BGDT:OrganisationalCentreID. SellerCompanyUUID may have a multiplicity of 0 . . . 1, is a universally unique identifier of a company that acts as a seller in an intercompany scenario, and may be based on datatype BGDT:UUID. ServicePerformerEmployeeID may have a multiplicity of 0 . . . 1, is an identifier of an employee that acts as a service performer in an intercompany scenario, and may be based on datatype BGDT:EmployeeID. ServicePerformerEmployeeUUID may have a multiplicity of 0 . . . 1, is a universally unique identifier of an employee that acts as a service performer in an intercompany scenario, and may be based on datatype BGDT:UUID. ServiceProvisioningDate may have a multiplicity of 0 . . . 1, is a date on which a service is performed, can be used to find a correct intercompany settlement task in case several purchase orders exist for different periods of time, and may be based on datatype CDT:Date. In some implementations, either an ID or a UUID are provided.
The message type Intercompany Settlement Project Task Response is derived from the business object Project as a leading object together with its operation signature, and is a response concerning an inquiry to derive an intercompany settlement project task. The structure of the message type Intercompany Settlement Project Task Response is determined by the message data type IntercompanySettlementProjectTaskResponseMessage. The message data type IntercompanySettlementProjectTaskResponseMessage includes the Message Header package and the Project Task package. The package Message Header includes the sub-packages Party and Business Scope, and the entity MessageHeader. MessageHeader is typed by datatype BusinessDocumentMessageHeader.
The package Project Task includes the sub-package Intercompany Settlement Project Task and the entity ProjectTask. ProjectTask includes the following non-node elements: ObjectNodeSenderTechnicalID, ID, and UUID. ObjectNodeSenderTechnicalID may have a multiplicity of 0 . . . 1, is a technical identifier assigned by a sender of a message to an object node that triggers a request, can be used to link one or more line items in a response message to corresponding line items in a request message, can be omitted if the request message includes only one line item or if the line items of the response messages can be linked to the line items in the request message using a project task ID or UUID, and may be based on datatype BGDT:ObjectNodePartyTechnicalID. ID may have a multiplicity of 1, is an identifier of a project task for which a derivation of an intercompany settlement task has been requested, and may be based on datatype BGDT:ProjectElementID. UUID may have a multiplicity of 1, is a universally unique identifier of a project task for which a derivation of an intercompany settlement task has been requested, and may be based on datatype BGDT:UUID.
ProjectTask includes the IntercompanySettlementProjectTask node element, in a 1:CN cardinality relationship. The package Project TaskIntercompany Settlement Project Task includes the entity IntercompanySettlementProjectTask. IntercompanySettlementProjectTask includes the following non-node elements: ID, UUID, ProjectID, ProjectUUID, PurchaseOrderReference, and SalesOrderReference. ID may have a multiplicity of 1, is an identifier of an intercompany settlement project task, and may be based on datatype BGDT:ProjectElementID. UUID may have a multiplicity of 1, is a universally unique identifier of an intercompany settlement project task, and may be based on datatype BGDT:UUID. ProjectID may have a multiplicity of 1, is an identifier of a project of an intercompany settlement project task, and may be based on datatype BGDT:ProjectID. ProjectUUID may have a multiplicity of 1, is a universally unique identifier of a project of an intercompany settlement project task, and may be based on datatype BGDT:UUID. PurchaseOrderReference may have a multiplicity of 1, is a reference to a purchase order in a buying company that is used to purchase one or more services in an intercompany scenario, and may be based on datatype AGDT:BusinessTransactionDocumentReference. SalesOrderReference may have a multiplicity of 1, is a reference to a sales order in a selling company that is used to provide one or more services in an intercompany scenario, and may be based on datatype AGDT:BusinessTransactionDocumentReference.
The message type Project and Customer Transaction Document Assignment Notification is derived from the business object Project as a leading object together with its operation signature. The message type Project and Customer Transaction Document Assignment Notification is a notification about a customer project and assignments of project tasks to customer transaction document items. The structure of the message type Project and Customer Transaction Document Assignment Notification is determined by the message data type ProjectAndCustomerTransactionDocumentAssignmentMessage. The message data type ProjectAndCustomerTransactionDocumentAssignmentMessage includes the MessageHeader package and the Project package. The package MessageHeader includes the sub-packages Party and Business Scope, and the entity MessageHeader. MessageHeader is typed by datatype BusinessDocumentMessageHeader.
The package Project includes the sub-package Task and the entity Project. Project includes the following attributes: actionCode, taskListCompleteTransmissionIndicator, and reconciliationPeriodCounterValue. The attribute actionCode may have a multiplicity of 1 and may be based on datatype BGDT:ActionCode. The attribute taskListCompleteTransmissionIndicator may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator. The attribute reconciliationPeriodCounterValue may have a multiplicity of 1 and may be based on datatype BGDT:CounterValue.
Project includes the following non-node elements: UUID, ProjectID, LanguageCode, ResponsibleCompanyID, ResponsibleCostCentreID, IntercompanySettlementIndicator, MainBusinessProcessVariantTypeCode, ProjectLifeCycleStatusCode, and TaskBlockingStatusCode. UUID may have a multiplicity of 1, is a universally unique identifier of a project, and may be based on datatype BGDT:UUID. ProjectID may have a multiplicity of 1, is an identifier for a project, and may be based on datatype BGDT:ProjectID. LanguageCode may have a multiplicity of 1, indicates a language used for communication in a project, e.g., a language in which texts are created, and may be based on datatype BGDT:LanguageCode. ResponsibleCompanyID may have a multiplicity of 1, is an identifier for a company to which a responsible cost centre belongs, and may be based on datatype BGDT:OrganisationalCentreID. ResponsibleCostCentreID may have a multiplicity of 1, is an identifier for a cost center that is responsible for a project, and may be based on datatype BGDT:OrganisationalCentreID. IntercompanySettlementIndicator may have a multiplicity of 1 and may be based on datatype CDT:Indicator. MainBusinessProcessVariantTypeCode may have a multiplicity of 1 and may be based on datatype BGDT:BusinessProcessVariantTypeCode. ProjectLifeCycleStatusCode may have a multiplicity of 1 and may be based on datatype BGDT:ProjectLifeCycleStatusCode. TaskBlockingStatusCode may have a multiplicity of 1 and may be based on datatype BGDT:BlockingStatusCode. Project includes the following node elements: BuyerParty, in a 1:C cardinality relationship; and Task, in a 1:CN cardinality relationship.
The package Project includes the sub-packages Address and Contact Person, and the entity BuyerParty. BuyerParty is a Party that buys services delivered by a project. BuyerParty is typed by datatype INTERNAL_BusinessTransactionDocumentParty. The BuyerParty elements InternalID, UUID, and TypeCode can be used with a Project.
The package ProjectTask includes the entity Task. Task includes the following attributes: actionCode, taskNameListCompleteTransmissionIndicator, and customerTransactionDocumentItemAssignmentListCompleteTransmissionIndicator. The attribute actionCode may have a multiplicity of 1 and may be based on datatype BGDT:ActionCode. The attribute taskNameListCompleteTransmissionIndicator may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator. The attribute customerTransactionDocumentItemAssignmentListCompleteTransmissionIndicator may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator.
Task includes the following non-node elements: UUID, ID, ParentTaskUUID, ResponsibleEmployeeID, PhaseIndicator, MilestoneIndicator, LifeCycleStatusCode, FulfilmentProcessingStatusCode, BlockingStatusCode, MilestoneCompletionDate, and PlannedPeriod. UUID may have a multiplicity of 1, is a universally unique identifier for a task, and may be based on datatype BGDT:UUID. ID may have a multiplicity of 1, is an identifier for a task, and may be based on datatype BGDT:ProjectElementID. ParentTaskUUID may have a multiplicity of 0 . . . 1, is a universally unique identifier for a superordinate task, and may be based on datatype BGDT:UUID. ResponsibleEmployeeID may have a multiplicity of 0 . . . 1, is an identifier for an employee who is responsible for a task, and may be based on datatype BGDT:EmployeeID. PhaseIndicator may have a multiplicity of 1, is an indicator showing whether a task is a phase, and may be based on datatype CDT:Indicator. A phase is a section of a project that is executed in a defined period of time and that is distinct from other sections in term of content. MilestoneIndicator may have a multiplicity of 1, is an indicator that specifies whether a task is a milestone, and may be based on datatype CDT:Indicator. A milestone is an important intermediate goal that is to be achieved during a project. LifeCycleStatusCode may have a multiplicity of 1, is a coded representation of a life cycle status of a task, and may be based on datatype BGDT:ProjectTaskLifeCycleStatusCode. FulfilmentProcessingStatusCode may have a multiplicity of 1 and may be based on datatype BGDT:NOTSTARTEDINPROCESSFINISHED_ProcessingStatusCode. BlockingStatusCode may have a multiplicity of 1, is a coded representation of a blocking status of a project, and may be based on datatype BGDT:BlockingStatusCode. MilestoneCompletionDate may have a multiplicity of 0 . . . 1, is a date when a milestone has been or will be completed, can be determined to be a completion date of a task if the task is already completed, can be determined to be a start date of an earliest planned period if the task is not completed, can be provided if the task is a milestone, and may be based on datatype CDT:Date. PlannedPeriod may have a multiplicity of 1, is a planned time period for executing a task, can start at the earlier of the two time points EarliestPlannedPeriod-StartDateTime and LatestPlannedPeriod-StartDateTime, can end at the latest of the two time points EarliestPlannedPeriod-EndDateTime and LatestPlannedPeriod-EndDateTime, and may be based on datatype AGDT:UPPEROPEN_GLOBAL_DateTimePeriod.
Task includes the following node elements: TaskName, with a cardinality of 1:CN; and TaskCustomerTransactionDocumentItemAssignment, with a cardinality of 1:CN. The package ProjectTask includes the entities TaskName and TaskCustomerTransactionDocumentItemAssignment. TaskName includes the actionCode attribute, which may have a multiplicity of 1 and may be based on datatype BGDT:ActionCode. TaskName includes the Name non-node element, which may have a multiplicity of 1, is a language-dependent name for a task, and may be based on datatype CDT:MEDIUM_Name.
TaskCustomerTransactionDocumentItemAssignment includes the actionCode attribute, which may have a multiplicity of 1 and may be based on datatype BGDT:ActionCode. TaskCustomerTransactionDocumentItemAssignment includes the following non-node elements: CustomerTransactionDocumentReference, FulfillmentRelevanceIndicator, and MilestoneInvoiceScheduleRelevanceIndicator. CustomerTransactionDocumentReference may have a multiplicity of 1, is a unique reference to a customer transaction document, and may be based on datatype AGDT:BusinessTransactionDocumentReference. FulfillmentRelevanceIndicator may have a multiplicity of 1, is an indicator that specifies whether a task is relevant for the fulfillment of an assigned customer transaction document item, and may be based on datatype CDT:Indicator. MilestoneInvoiceScheduleRelevanceIndicator may have a multiplicity of 1, is an indicator that specifies whether a task is relevant for a milestone-based billing of an assigned customer transaction document item, and may be based on datatype CDT:Indicator.
The message type Sales Order Project Create Request_Sync is derived from the business object Sales Order as a leading object together with its operation signature. The message type Sales Order Project Create Request_Sync is a request to create a customer project based on a sales order. The structure of the message type Sales Order Project Create Request_Sync is determined by the message data type SalesOrderProjectCreateMessage_Sync. The message data type SalesOrderProjectCreateMessage_Sync includes the MessageHeader package and the SalesOrder package. The package MessageHeader includes the sub-packages Party and Business Scope and the entity MessageHeader. MessageHeader is typed by datatype BusinessDocumentMessageHeader.
The package SalesOrder includes the entity SalesOrder. SalesOrder includes the following non-node elements: UUID, ID, and Name. UUID may have a multiplicity of 1 and may be based on datatype BGDT:UUID. ID may have a multiplicity of 1 and may be based on datatype BGDT:BusinessTransactionDocumentID. Name may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:EXTENDED_Name. SalesOrder includes the following node elements: BuyerParty, with a cardinality of 1:1; CreateProjectActionElements, with a cardinality of 1:1; and Item, with a cardinality of 1:N.
The package SalesOrder includes the entities BuyerParty, CreateProjectActionElements, and Item. BuyerParty includes the following non-node elements: PartyUUID, PartyTypeCode, and PartyInternalID. PartyUUID may have a multiplicity of 1 and may be based on datatype BGDT:UUID. PartyTypeCode may have a multiplicity of 1 and may be based on datatype BGDT:BusinessObjectTypeCode. PartyInternalID may have a multiplicity of 1 and may be based on datatype BGDT:PartyInternalID.
CreateProjectActionElements includes the following non-node elements: ProjectResponsibleEmployeeID, ProjectResponsibleCostCentreID, ProjectCreationMethodCode, and ProjectIntercompanySettlementIndicator. ProjectResponsibleEmployeeID may have a multiplicity of 1 and may be based on datatype BGDT:EmployeeID. ProjectResponsibleCostCentreID may have a multiplicity of 1 and may be based on datatype BGDT:OrganisationalCentreID. ProjectCreationMethodCode may have a multiplicity of 1 and may be based on datatype BGDT:ProjectCreationMethodCode. ProjectIntercompanySettlementIndicator may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Indicator. In some implementations, if the Project Intercompany Settlement Indicator is not provided, a corresponding indicator in the project is set to false.
Item includes the following non-node elements: UUID, ID, CustomerProjectInvoicingMethodCode, Description, ProductInternalID, ProductTypeCode, RequestedQuantity, and RequestedQuantityTypeCode. UUID may have a multiplicity of 1 and may be based on datatype BGDT:UUID. ID may have a multiplicity of 1 and may be based on datatype BGDT:BusinessTransactionDocumentItemID CustomerProjectInvoicingMethodCode may have a multiplicity of 1 and may be based on datatype BGDT:InvoicingMethodCode. Description may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:SHORT_Description. ProductInternalID may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ProductInternalID. ProductTypeCode may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:ProductTypeCode. RequestedQuantity may have a multiplicity of 0 . . . 1 and may be based on datatype CDT:Quantity. RequestedQuantityTypeCode may have a multiplicity of 0 . . . 1 and may be based on datatype BGDT:QuantityTypeCode.
The message type Sales Order Project Create Confirmation_Sync is derived from the business object Project as a leading object together with its operation signature. The message type Sales Order Project Create Confirmation_Sync is a confirmation about a customer project created based on a sales order and assignments between project tasks and sales order items. The structure of the message type Sales Order Project Create Confirmation_Sync is determined by the message data type SalesOrderProjectCreateConfirmationMessage_Sync. The message data type SalesOrderProjectCreateConfirmationMessage_Sync includes the MessageHeader package, the Project package, and the Log package. The package Log includes the entity Log. Log is typed by datatype Log. The package MessageHeader includes the sub-packages Party and Business Scope, and the entity MessageHeader. MessageHeader is typed by datatype BusinessDocumentMessageHeader.
The package Project includes the entity Project. Project includes the following non-node elements: UUID, ProjectID, ResponsibleCompanyID, and ResponsibleCostCentreID. UUID may have a multiplicity of 1 and may be based on datatype BGDT:UUID. ProjectID may have a multiplicity of 1 and may be based on datatype BGDT:ProjectID. ResponsibleCompanyID may have a multiplicity of 1 and may be based on datatype BGDT:OrganisationalCentreID. ResponsibleCostCentreID may have a multiplicity of 1 and may be based on datatype BGDT:OrganisationalCentreID.
Project includes the following node elements: BuyerParty, with a cardinality of 1:1; and Task, with a cardinality of 1:CN. The package Project includes the entities BuyerParty and Task. BuyerParty includes the following non-node elements: PartyUUID, PartyTypeCode, and PartyInternalID. PartyUUID may have a multiplicity of 1 and may be based on datatype BGDT:UUID. PartyTypeCode may have a multiplicity of 1 and may be based on datatype BGDT:BusinessObjectTypeCode. PartyInternalID may have a multiplicity of 1 and may be based on datatype BGDT:PartyInternalID.
Task includes the following non-node elements: UUID, ID, LifeCycleStatusCode, and BlockingStatusCode. UUID may have a multiplicity of 1 and may be based on datatype BGDT:UUID. ID may have a multiplicity of 1 and may be based on datatype BGDT:ProjectElementID. LifeCycleStatusCode may have a multiplicity of 1 and may be based on datatype BGDT:ProjectTaskLifeCycleStatusCode. BlockingStatusCode may have a multiplicity of 1 and may be based on datatype BGDT:BlockingStatusCode.
Task includes the following node elements: TaskName, with a cardinality of 1:CN; and TaskCustomerTransactionDocumentItemAssignment, with a cardinality of 1:CN. TaskName includes the Name non-node element, which may have a multiplicity of 1 and may be based on datatype CDT:MEDIUM_Name. TaskCustomerTransactionDocumentItemAssignment includes the CustomerTransactionDocumentReference non-node element, which may have a multiplicity of 1 and may be based on datatype AGDT:BusinessTransactionDocumentReference.
The IntercompanySettlementProjectTaskRequest 37000 package is an IntercompanySettlementProjectTaskRequestMessage 37004 data type. The IntercompanySettlementProjectTaskRequest 37000 package includes an IntercompanySettlementProjectTaskRequest 37002 entity. The IntercompanySettlementProjectTaskRequest 37000 package includes various packages, namely a MessageHeader 37006 and a ProjectTask 37014.
The MessageHeader 37006 package is a BusinessDocumentMessageHeader 37012 data type. The MessageHeader 37006 package includes a MessageHeader 37008 entity. The MessageHeader 37008 entity has a cardinality of 1 37010 meaning that for each instance of the MessageHeader 37006 package there is one MessageHeader 37008 entity.
The ProjectTask 37014 package is an IntercompanySettlementProjectTaskRequestProjectTask 37020 data type. The ProjectTask 37014 package includes a ProjectTask 37016 entity. The ProjectTask 37016 entity has a cardinality of 1 . . . N 37018 meaning that for each instance of the ProjectTask 37014 package there are one or more ProjectTask 37016 entities. The ProjectTask 37016 entity includes various attributes, namely an ObjectNodeSenderTechnicalID 37022, an ID 37028, an UUID 37034, a SellerCompanyID 37040, a SellerCompanyUUID 37046, a ServicePerformerEmployeeID 37052, a ServicePerformerEmployeeUUID 37058 and a ServiceProvisioningDate 37064.
The ObjectNodeSenderTechnicalID 37022 attribute is an ObjectNodePartyTechnicalID 37026 data type. The ObjectNodeSenderTechnicalID 37022 attribute has a cardinality of 0 . . . 1 37024 meaning that for each instance of the ProjectTask 37016 entity there may be one ObjectNodeSenderTechnicalID 37022 attribute. The ID 37028 attribute is a ProjectElementID 37032 data type. The ID 37028 attribute has a cardinality of 0 . . . 1 37030 meaning that for each instance of the ProjectTask 37016 entity there may be one ID 37028 attribute.
The UUID 37034 attribute is an UUID 37038 data type. The UUID 37034 attribute has a cardinality of 0 . . . 1 37036 meaning that for each instance of the ProjectTask 37016 entity there may be one UUID 37034 attribute. The SellerCompanyID 37040 attribute is an OrganisationalCentreID 37044 data type. The SellerCompanyID 37040 attribute has a cardinality of 0 . . . 1 37042 meaning that for each instance of the ProjectTask 37016 entity there may be one SellerCompanyID 37040 attribute.
The SellerCompanyUUID 37046 attribute is an UUID 37050 data type. The SellerCompanyUUID 37046 attribute has a cardinality of 0 . . . 1 37048 meaning that for each instance of the ProjectTask 37016 entity there may be one SellerCompanyUUID 37046 attribute. The ServicePerformerEmployeeID 37052 attribute is an EmployeeID 37056 data type. The ServicePerformerEmployeeID 37052 attribute has a cardinality of 0 . . . 1 37054 meaning that for each instance of the ProjectTask 37016 entity there may be one ServicePerformerEmployeeID 37052 attribute.
The ServicePerformerEmployeeUUID 37058 attribute is an UUID 37062 data type. The ServicePerformerEmployeeUUID 37058 attribute has a cardinality of 0 . . . 1 37060 meaning that for each instance of the ProjectTask 37016 entity there may be one ServicePerformerEmployeeUUID 37058 attribute. The ServiceProvisioningDate 37064 attribute is a Date 37068 data type. The ServiceProvisioningDate 37064 attribute has a cardinality of 0 . . . 1 37066 meaning that for each instance of the ProjectTask 37016 entity there may be one ServiceProvisioningDate 37064 attribute.
The IntercompanySettlementProjectTaskResponse 38000 package is an IntercompanySettlementProjectTaskResponseMessage 38004 data type. The IntercompanySettlementProjectTaskResponse 38000 package includes an IntercompanySettlementProjectTaskResponse 38002 entity. The IntercompanySettlementProjectTaskResponse 38000 package includes various packages, namely a MessageHeader 38006 and a ProjectTask 38014.
The MessageHeader 38006 package is a BusinessDocumentMessageHeader 38012 data type. The MessageHeader 38006 package includes a MessageHeader 38008 entity. The MessageHeader 38008 entity has a cardinality of 1 38010 meaning that for each instance of the MessageHeader 38006 package there is one MessageHeader 38008 entity.
The ProjectTask 38014 package is an IntercompanySettlementProjectTaskResponseProjectTask 38020 data type. The ProjectTask 38014 package includes a ProjectTask 38016 entity. The ProjectTask 38014 package includes an IntercompanySettlementProjectTask 38040 package. The ProjectTask 38016 entity has a cardinality of 1 . . . N 38018 meaning that for each instance of the ProjectTask 38014 package there are one or more ProjectTask 38016 entities. The ProjectTask 38016 entity includes various attributes, namely an ObjectNodeSenderTechnicalID 38022, an ID 38028 and an UUID 38034.
The ObjectNodeSenderTechnicalID 38022 attribute is an ObjectNodePartyTechnicalID 38026 data type. The ObjectNodeSenderTechnicalID 38022 attribute has a cardinality of 0 . . . 1 38024 meaning that for each instance of the ProjectTask 38016 entity there may be one ObjectNodeSenderTechnicalID 38022 attribute. The ID 38028 attribute is a ProjectElementID 38032 data type. The ID 38028 attribute has a cardinality of 1 38030 meaning that for each instance of the ProjectTask 38016 entity there is one ID 38028 attribute. The UUID 38034 attribute is an UUID 38038 data type. The UUID 38034 attribute has a cardinality of 1 38036 meaning that for each instance of the ProjectTask 38016 entity there is one UUID 38034 attribute.
The IntercompanySettlementProjectTask 38040 package is an IntercompanySettlementProjectTaskResponseProjectTaskIntercompanySettlementProjectTas k 38046 data type. The IntercompanySettlementProjectTask 38040 package includes an IntercompanySettlementProjectTask 38042 entity. The IntercompanySettlementProjectTask 38042 entity has a cardinality of 0 . . . N 38044 meaning that for each instance of the IntercompanySettlementProjectTask 38040 package there may be one or more IntercompanySettlementProjectTask 38042 entities. The IntercompanySettlementProjectTask 38042 entity includes various attributes, namely an ID 38048, an UUID 38054, a ProjectID 38060, a ProjectUUID 38066, a PurchaseOrderReference 38072 and a SalesOrderReference 38078.
The ID 38048 attribute is a ProjectElementID 38052 data type. The ID 38048 attribute has a cardinality of 1 38050 meaning that for each instance of the IntercompanySettlementProjectTask 38042 entity there is one ID 38048 attribute. The UUID 38054 attribute is an UUID 38058 data type. The UUID 38054 attribute has a cardinality of 1 38056 meaning that for each instance of the IntercompanySettlementProjectTask 38042 entity there is one UUID 38054 attribute.
The ProjectID 38060 attribute is a ProjectID 38064 data type. The ProjectID 38060 attribute has a cardinality of 1 38062 meaning that for each instance of the IntercompanySettlementProjectTask 38042 entity there is one ProjectID 38060 attribute. The ProjectUUID 38066 attribute is an UUID 38070 data type. The ProjectUUID 38066 attribute has a cardinality of 1 38068 meaning that for each instance of the IntercompanySettlementProjectTask 38042 entity there is one ProjectUUID 38066 attribute.
The PurchaseOrderReference 38072 attribute is a BusinessTransactionDocumentReference 38076 data type. The PurchaseOrderReference 38072 attribute has a cardinality of 1 38074 meaning that for each instance of the IntercompanySettlementProjectTask 38042 entity there is one PurchaseOrderReference 38072 attribute. The SalesOrderReference 38078 attribute is a BusinessTransactionDocumentReference 38082 data type. The SalesOrderReference 38078 attribute has a cardinality of 1 38080 meaning that for each instance of the IntercompanySettlementProjectTask 38042 entity there is one SalesOrderReference 38078 attribute.
The ProjectandCustomerTransactionDocumentAssignmentNotification 39000 package is a ProjectAndCustomerTransactionDocumentAssignmentMessage 39004 data type. The ProjectandCustomerTransactionDocumentAssignmentNotification 39000 package includes a ProjectandCustomerTransactionDocumentAssignmentNotification 39002 entity. The ProjectandCustomerTransactionDocumentAssignmentNotification 39000 package includes various packages, namely a MessageHeader 39006 and a Project 39014.
The MessageHeader 39006 package is a BusinessDocumentMessageHeader 39012 data type. The MessageHeader 39006 package includes a MessageHeader 39008 entity. The MessageHeader 39008 entity has a cardinality of 1 39010 meaning that for each instance of the MessageHeader 39006 package there is one MessageHeader 39008 entity.
The Project 39014 package is a ProjectAndCustomerTransactionDocumentAssignment 39020 data type. The Project 39014 package includes a Project 39016 entity. The Project 39014 package includes a Task 39100 package. The Project 39016 entity has a cardinality of 1 39018 meaning that for each instance of the Project 39014 package there is one Project 39016 entity. The Project 39016 entity includes various attributes, namely an actionCode 39022, a taskListCompleteTransmissionIndicator 39028, a reconciliationPeriodCounterValue 39034, an UUID 39040, a ProjectID 39046, a LanguageCode 39052, a ResponsibleCompanyID 39058, a ResponsibleCostCentreID 39064, an IntercompanySettlementIndicator 39070, a MainBusinessProcessVariantTypeCode 39076, a ProjectLifeCycleStatusCode 39082, a TaskBlockingStatusCode 39088 and a BuyerParty 39094.
The actionCode 39022 attribute is an ActionCode 39026 data type. The actionCode 39022 attribute has a cardinality of 1 39024 meaning that for each instance of the Project 39016 entity there is one actionCode 39022 attribute. The taskListCompleteTransmissionIndicator 39028 attribute is an Indicator 39032 data type. The taskListCompleteTransmissionIndicator 39028 attribute has a cardinality of 0 . . . 1 39030 meaning that for each instance of the Project 39016 entity there may be one taskListCompleteTransmissionIndicator 39028 attribute.
The reconciliationPeriodCounterValue 39034 attribute is a CounterValue 39038 data type. The reconciliationPeriodCounterValue 39034 attribute has a cardinality of 1 39036 meaning that for each instance of the Project 39016 entity there is one reconciliationPeriodCounterValue 39034 attribute. The UUID 39040 attribute is an UUID 39044 data type. The UUID 39040 attribute has a cardinality of 1 39042 meaning that for each instance of the Project 39016 entity there is one UUID 39040 attribute.
The ProjectID 39046 attribute is a ProjectID 39050 data type. The ProjectID 39046 attribute has a cardinality of 1 39048 meaning that for each instance of the Project 39016 entity there is one ProjectID 39046 attribute. The LanguageCode 39052 attribute is a LanguageCode 39056 data type. The LanguageCode 39052 attribute has a cardinality of 1 39054 meaning that for each instance of the Project 39016 entity there is one LanguageCode 39052 attribute.
The ResponsibleCompanyID 39058 attribute is an OrganisationalCentreID 39062 data type. The ResponsibleCompanyID 39058 attribute has a cardinality of 1 39060 meaning that for each instance of the Project 39016 entity there is one ResponsibleCompanyID 39058 attribute. The ResponsibleCostCentreID 39064 attribute is an OrganisationalCentreID 39068 data type. The ResponsibleCostCentreID 39064 attribute has a cardinality of 1 39066 meaning that for each instance of the Project 39016 entity there is one ResponsibleCostCentreID 39064 attribute.
The IntercompanySettlementIndicator 39070 attribute is an Indicator 39074 data type. The IntercompanySettlementIndicator 39070 attribute has a cardinality of 1 39072 meaning that for each instance of the Project 39016 entity there is one IntercompanySettlementIndicator 39070 attribute. The MainBusinessProcessVariantTypeCode 39076 attribute is a BusinessProcessVariantTypeCode 39080 data type. The MainBusinessProcessVariantTypeCode 39076 attribute has a cardinality of 1 39078 meaning that for each instance of the Project 39016 entity there is one MainBusinessProcessVariantTypeCode 39076 attribute.
The ProjectLifeCycleStatusCode 39082 attribute is a ProjectLifeCycleStatusCode 39086 data type. The ProjectLifeCycleStatusCode 39082 attribute has a cardinality of 1 39084 meaning that for each instance of the Project 39016 entity there is one ProjectLifeCycleStatusCode 39082 attribute. The TaskBlockingStatusCode 39088 attribute is a BlockingStatusCode 39092 data type. The TaskBlockingStatusCode 39088 attribute has a cardinality of 1 39090 meaning that for each instance of the Project 39016 entity there is one TaskBlockingStatusCode 39088 attribute. The BuyerParty 39094 attribute is an INTERNAL_BusinessTransactionDocumentParty 39098 data type. The BuyerParty 39094 attribute has a cardinality of 0 . . . 1 39096 meaning that for each instance of the Project 39016 entity there may be one BuyerParty 39094 attribute.
The Task 39100 package is a ProjectAndCustomerTransactionDocumentAssignmentTask 39106 data type. The Task 39100 package includes a Task 39102 entity. The Task 39102 entity has a cardinality of 0 . . . N 39104 meaning that for each instance of the Task 39100 package there may be one or more Task 39102 entities. The Task 39102 entity includes various attributes, namely an actionCode 39108, a taskNameListCompleteTransmissionIndicator 39114, a customerTransactionDocumentItemAssignmentListCompleteTransmissionIndicator 39120, an UUID 39126, an ID 39132, a ParentTaskUUID 39138, a ResponsibleEmployeeID 39144, a PhaseIndicator 39150, a MilestoneIndicator 39156, a LifeCycleStatusCode 39162, a FulfilmentProcessingStatusCode 39168, a BlockingStatusCode 39174, a MilestoneCompletionDate 39180 and a PlannedPeriod 39186. The Task 39102 entity includes various subordinate entities, namely a TaskName 39192 and a TaskCustomerTransactionDocumentItemAssignment 39210.
The actionCode 39108 attribute is an ActionCode 39112 data type. The actionCode 39108 attribute has a cardinality of 1 39110 meaning that for each instance of the Task 39102 entity there is one actionCode 39108 attribute. The taskNameListCompleteTransmissionIndicator 39114 attribute is an Indicator 39118 data type. The taskNameListCompleteTransmissionIndicator 39114 attribute has a cardinality of 0 . . . 1 39116 meaning that for each instance of the Task 39102 entity there may be one taskNameListCompleteTransmissionIndicator 39114 attribute.
The customerTransactionDocumentItemAssignmentListCompleteTransmissionIndicator 39120 attribute is an Indicator 39124 data type. The customerTransactionDocumentItemAssignmentListCompleteTransmissionIndicator 39120 attribute has a cardinality of 0 . . . 1 39122 meaning that for each instance of the Task 39102 entity there may be one customerTransactionDocumentItemAssignmentListCompleteTransmissionIndicator 39120 attribute. The UUID 39126 attribute is an UUID 39130 data type. The UUID 39126 attribute has a cardinality of 1 39128 meaning that for each instance of the Task 39102 entity there is one UUID 39126 attribute.
The ID 39132 attribute is a ProjectElementID 39136 data type. The ID 39132 attribute has a cardinality of 1 39134 meaning that for each instance of the Task 39102 entity there is one ID 39132 attribute. The ParentTaskUUID 39138 attribute is an UUID 39142 data type. The ParentTaskUUID 39138 attribute has a cardinality of 0 . . . 1 39140 meaning that for each instance of the Task 39102 entity there may be one ParentTaskUUID 39138 attribute.
The ResponsibleEmployeeID 39144 attribute is an EmployeeID 39148 data type. The ResponsibleEmployeeID 39144 attribute has a cardinality of 0 . . . 1 39146 meaning that for each instance of the Task 39102 entity there may be one ResponsibleEmployeeID 39144 attribute. The PhaseIndicator 39150 attribute is an Indicator 39154 data type. The PhaseIndicator 39150 attribute has a cardinality of 1 39152 meaning that for each instance of the Task 39102 entity there is one PhaseIndicator 39150 attribute.
The MilestoneIndicator 39156 attribute is an Indicator 39160 data type. The MilestoneIndicator 39156 attribute has a cardinality of 1 39158 meaning that for each instance of the Task 39102 entity there is one MilestoneIndicator 39156 attribute. The LifeCycleStatusCode 39162 attribute is a ProjectTaskLifeCycleStatusCode 39166 data type. The LifeCycleStatusCode 39162 attribute has a cardinality of 1 39164 meaning that for each instance of the Task 39102 entity there is one LifeCycleStatusCode 39162 attribute.
The FulfilmentProcessingStatusCode 39168 attribute is a NOTSTARTEDINPROCESSFINISHED_ProcessingStatusCode 39172 data type. The FulfilmentProcessingStatusCode 39168 attribute has a cardinality of 1 39170 meaning that for each instance of the Task 39102 entity there is one FulfilmentProcessingStatusCode 39168 attribute. The BlockingStatusCode 39174 attribute is a BlockingStatusCode 39178 data type. The BlockingStatusCode 39174 attribute has a cardinality of 1 39176 meaning that for each instance of the Task 39102 entity there is one BlockingStatusCode 39174 attribute.
The MilestoneCompletionDate 39180 attribute is a Date 39184 data type. The MilestoneCompletionDate 39180 attribute has a cardinality of 0 . . . 1 39182 meaning that for each instance of the Task 39102 entity there may be one MilestoneCompletionDate 39180 attribute. The PlannedPeriod 39186 attribute is an UPPEROPEN_GLOBAL_DateTimePeriod 39190 data type. The PlannedPeriod 39186 attribute has a cardinality of 1 39188 meaning that for each instance of the Task 39102 entity there is one PlannedPeriod 39186 attribute.
The TaskName 39192 entity has a cardinality of 0 . . . N 39194 meaning that for each instance of the Task 39102 entity there may be one or more TaskName 39192 entities. The TaskName 39192 entity includes various attributes, namely an actionCode 39198 and a Name 39204.
The actionCode 39198 attribute is an ActionCode 39202 data type. The actionCode 39198 attribute has a cardinality of 1 39200 meaning that for each instance of the TaskName 39192 entity there is one actionCode 39198 attribute.
The Name 39204 attribute is a MEDIUM_Name 39208 data type. The Name 39204 attribute has a cardinality of 1 39206 meaning that for each instance of the TaskName 39192 entity there is one Name 39204 attribute. The TaskCustomerTransactionDocumentItemAssignment 39210 entity has a cardinality of 0 . . . N 39212 meaning that for each instance of the Task 39102 entity there may be one or more TaskCustomerTransactionDocumentItemAssignment 39210 entities. The TaskCustomerTransactionDocumentItemAssignment 39210 entity includes various attributes, namely an actionCode 39216, a CustomerTransactionDocumentReference 39222, a FulfillmentRelevanceIndicator 39228 and a MilestoneInvoiceScheduleRelevanceIndicator 39234.
The actionCode 39216 attribute is an ActionCode 39220 data type. The actionCode 39216 attribute has a cardinality of 1 39218 meaning that for each instance of the TaskCustomerTransactionDocumentItemAssignment 39210 entity there is one actionCode 39216 attribute. The CustomerTransactionDocumentReference 39222 attribute is a Business TransactionDocumentReference 39226 data type. The CustomerTransactionDocumentReference 39222 attribute has a cardinality of 1 39224 meaning that for each instance of the TaskCustomerTransactionDocumentItemAssignment 39210 entity there is one CustomerTransactionDocumentReference 39222 attribute.
The FulfillmentRelevanceIndicator 39228 attribute is an Indicator 39232 data type. The FulfillmentRelevanceIndicator 39228 attribute has a cardinality of 1 39230 meaning that for each instance of the TaskCustomerTransactionDocumentItemAssignment 39210 entity there is one FulfillmentRelevanceIndicator 39228 attribute. The MilestoneInvoiceScheduleRelevanceIndicator 39234 attribute is an Indicator 39238 data type. The MilestoneInvoiceScheduleRelevanceIndicator 39234 attribute has a cardinality of 39236 meaning that for each instance of the TaskCustomerTransactionDocumentItemAssignment 39210 entity there is one MilestoneInvoiceScheduleRelevanceIndicator 39234 attribute.
The SalesOrderProjectCreateRequest_Sync 40000 package is a SalesOrderProjectCreateMessage_Sync 40004 data type. The SalesOrderProjectCreateRequest_Sync 40000 package includes a SalesOrderProjectCreateRequest_Sync 40002 entity. The SalesOrderProjectCreateRequest_Sync 40000 package includes various packages, namely a MessageHeader 40006 and a SalesOrder 40014.
The MessageHeader 40006 package is a BusinessDocumentMessageHeader 40012 data type. The MessageHeader 40006 package includes a MessageHeader 40008 entity. The MessageHeader 40008 entity has a cardinality of 1 40010 meaning that for each instance of the MessageHeader 40006 package there is one MessageHeader 40008 entity.
The SalesOrder 40014 package is a SalesOrderProjectCreate 40020 data type. The SalesOrder 40014 package includes a SalesOrder 40016 entity. The SalesOrder 40016 entity has a cardinality of 1 40018 meaning that for each instance of the SalesOrder 40014 package there is one SalesOrder 40016 entity. The SalesOrder 40016 entity includes various attributes, namely an UUID 40022, an ID 40028 and a Name 40034. The SalesOrder 40016 entity includes various subordinate entities, namely a BuyerParty 40040, a CreateProjectActionElements 40064 and an Item 40094.
The UUID 40022 attribute is an UUID 40026 data type. The UUID 40022 attribute has a cardinality of 1 40024 meaning that for each instance of the SalesOrder 40016 entity there is one UUID 40022 attribute. The ID 40028 attribute is a BusinessTransactionDocumentID 40032 data type. The ID 40028 attribute has a cardinality of 1 40030 meaning that for each instance of the SalesOrder 40016 entity there is one ID 40028 attribute. The Name 40034 attribute is an EXTENDED_Name 40038 data type. The Name 40034 attribute has a cardinality of 0 . . . 1 40036 meaning that for each instance of the SalesOrder 40016 entity there may be one Name 40034 attribute.
The BuyerParty 40040 entity has a cardinality of 1 40042 meaning that for each instance of the SalesOrder 40016 entity there is one BuyerParty 40040 entity. The BuyerParty 40040 entity includes various attributes, namely a PartyUUID 40046, a PartyTypeCode 40052 and a PartyInternalID 40058.
The PartyUUID 40046 attribute is an UUID 40050 data type. The PartyUUID 40046 attribute has a cardinality of 1 40048 meaning that for each instance of the BuyerParty 40040 entity there is one PartyUUID 40046 attribute. The PartyTypeCode 40052 attribute is a BusinessObjectTypeCode 40056 data type. The PartyTypeCode 40052 attribute has a cardinality of 1 40054 meaning that for each instance of the BuyerParty 40040 entity there is one PartyTypeCode 40052 attribute. The PartyInternalID 40058 attribute is a PartyInternalID 40062 data type. The PartyInternalID 40058 attribute has a cardinality of 1 40060 meaning that for each instance of the BuyerParty 40040 entity there is one PartyInternalID 40058 attribute.
The CreateProjectActionElements 40064 entity has a cardinality of 1 40066 meaning that for each instance of the SalesOrder 40016 entity there is one CreateProjectActionElements 40064 entity. The CreateProjectActionElements 40064 entity includes various attributes, namely a ProjectResponsibleEmployeeID 40070, a ProjectResponsibleCostCentreID 40076, a ProjectCreationMethodCode 40082 and a ProjectIntercompanySettlementIndicator 40088.
The ProjectResponsibleEmployeeID 40070 attribute is an EmployeeID 40074 data type. The ProjectResponsibleEmployeeID 40070 attribute has a cardinality of 1 40072 meaning that for each instance of the CreateProjectActionElements 40064 entity there is one ProjectResponsibleEmployeeID 40070 attribute. The ProjectResponsibleCostCentreID 40076 attribute is an OrganisationalCentreID 40080 data type. The ProjectResponsibleCostCentreID 40076 attribute has a cardinality of 1 40078 meaning that for each instance of the CreateProjectActionElements 40064 entity there is one ProjectResponsibleCostCentreID 40076 attribute.
The ProjectCreationMethodCode 40082 attribute is a ProjectCreationMethodCode 40086 data type. The ProjectCreationMethodCode 40082 attribute has a cardinality of 1 40084 meaning that for each instance of the CreateProjectActionElements 40064 entity there is one ProjectCreationMethodCode 40082 attribute. The ProjectIntercompanySettlementIndicator 40088 attribute is an Indicator 40092 data type. The ProjectIntercompanySettlementIndicator 40088 attribute has a cardinality of 0 . . . 1 40090 meaning that for each instance of the CreateProjectActionElements 40064 entity there may be one ProjectIntercompanySettlementIndicator 40088 attribute.
The Item 40094 entity has a cardinality of 1 . . . N 40096 meaning that for each instance of the SalesOrder 40016 entity there are one or more Item 40094 entities. The Item 40094 entity includes various attributes, namely an UUID 40100, an ID 40106, a CustomerProjectInvoicingMethodCode 40112, a Description 40118, a ProductInternalID 40124, a ProductTypeCode 40130, a RequestedQuantity 40136 and a RequestedQuantityTypeCode 40142.
The UUID 40100 attribute is an UUID 40104 data type. The UUID 40100 attribute has a cardinality of 1 40102 meaning that for each instance of the Item 40094 entity there is one UUID 40100 attribute. The ID 40106 attribute is a BusinessTransactionDocumentItemID 40110 data type. The ID 40106 attribute has a cardinality of 1 40108 meaning that for each instance of the Item 40094 entity there is one ID 40106 attribute.
The CustomerProjectInvoicingMethodCode 40112 attribute is an InvoicingMethodCode 40116 data type. The CustomerProjectInvoicingMethodCode 40112 attribute has a cardinality of 1 40114 meaning that for each instance of the Item 40094 entity there is one CustomerProjectInvoicingMethodCode 40112 attribute. The Description 40118 attribute is a SHORT_Description 40122 data type. The Description 40118 attribute has a cardinality of 0 . . . 1 40120 meaning that for each instance of the Item 40094 entity there may be one Description 40118 attribute.
The ProductInternalID 40124 attribute is a ProductInternalID 40128 data type. The ProductInternalID 40124 attribute has a cardinality of 0 . . . 1 40126 meaning that for each instance of the Item 40094 entity there may be one ProductInternalID 40124 attribute. The ProductTypeCode 40130 attribute is a ProductTypeCode 40134 data type. The ProductTypeCode 40130 attribute has a cardinality of 0 . . . 1 40132 meaning that for each instance of the Item 40094 entity there may be one ProductTypeCode 40130 attribute.
The RequestedQuantity 40136 attribute is a Quantity 40140 data type. The RequestedQuantity 40136 attribute has a cardinality of 0 . . . 1 40138 meaning that for each instance of the Item 40094 entity there may be one RequestedQuantity 40136 attribute. The RequestedQuantityTypeCode 40142 attribute is a QuantityTypeCode 40146 data type. The RequestedQuantityTypeCode 40142 attribute has a cardinality of 0 . . . 1 40144 meaning that for each instance of the Item 40094 entity there may be one RequestedQuantityTypeCode 40142 attribute.
The SalesOrderProjectCreateConfirmation_Sync 41000 package is a SalesOrderProjectCreateConfirmationMessage_Sync 41004 data type. The SalesOrderProjectCreateConfirmation_Sync 41000 package includes a SalesOrderProjectCreateConfirmation_Sync 41002 entity. The SalesOrderProjectCreateConfirmation_Sync 41000 package includes various packages, namely a MessageHeader 41006, a Project 41014 and a Log 41124.
The MessageHeader 41006 package is a BusinessDocumentMessageHeader 41012 data type. The MessageHeader 41006 package includes a MessageHeader 41008 entity. The MessageHeader 41008 entity has a cardinality of 1 41010 meaning that for each instance of the MessageHeader 41006 package there is one MessageHeader 41008 entity.
The Project 41014 package is a SalesOrderProjectCreateConfirmation 41020 data type. The Project 41014 package includes a Project 41016 entity. The Project 41016 entity has a cardinality of 1 41018 meaning that for each instance of the Project 41014 package there is one Project 41016 entity. The Project 41016 entity includes various attributes, namely an UUID 41022, a ProjectID 41028, a ResponsibleCompanyID 41034 and a ResponsibleCostCentreID 41040. The Project 41016 entity includes various subordinate entities, namely a BuyerParty 41046 and a Task 41070.
The UUID 41022 attribute is an UUID 41026 data type. The UUID 41022 attribute has a cardinality of 1 41024 meaning that for each instance of the Project 41016 entity there is one UUID 41022 attribute. The ProjectID 41028 attribute is a ProjectID 41032 data type. The ProjectID 41028 attribute has a cardinality of 1 41030 meaning that for each instance of the Project 41016 entity there is one ProjectID 41028 attribute.
The ResponsibleCompanyID 41034 attribute is an OrganisationalCentreID 41038 data type. The ResponsibleCompanyID 41034 attribute has a cardinality of 1 41036 meaning that for each instance of the Project 41016 entity there is one ResponsibleCompanyID 41034 attribute. The ResponsibleCostCentreID 41040 attribute is an OrganisationalCentreID 41044 data type. The ResponsibleCostCentreID 41040 attribute has a cardinality of 1 41042 meaning that for each instance of the Project 41016 entity there is one ResponsibleCostCentreID 41040 attribute.
The BuyerParty 41046 entity has a cardinality of 1 41048 meaning that for each instance of the Project 41016 entity there is one BuyerParty 41046 entity. The BuyerParty 41046 entity includes various attributes, namely a PartyUUID 41052, a PartyTypeCode 41058 and a PartyInternalID 41064.
The PartyUUID 41052 attribute is an UUID 41056 data type. The PartyUUID 41052 attribute has a cardinality of 1 41054 meaning that for each instance of the BuyerParty 41046 entity there is one PartyUUID 41052 attribute. The PartyTypeCode 41058 attribute is a BusinessObjectTypeCode 41062 data type. The PartyTypeCode 41058 attribute has a cardinality of 1 41060 meaning that for each instance of the BuyerParty 41046 entity there is one PartyTypeCode 41058 attribute. The PartyInternalID 41064 attribute is a PartyInternalID 41068 data type. The PartyInternalID 41064 attribute has a cardinality of 1 41066 meaning that for each instance of the BuyerParty 41046 entity there is one PartyInternalID 41064 attribute.
The Task 41070 entity has a cardinality of 0 . . . N 41072 meaning that for each instance of the Project 41016 entity there may be one or more Task 41070 entities. The Task 41070 entity includes various attributes, namely an UUID 41076, an ID 41082, a LifeCycleStatusCode 41088 and a BlockingStatusCode 41094. The Task 41070 entity includes various subordinate entities, namely a TaskName 41100 and a TaskCustomerTransactionDocumentItemAssignment 41112.
The UUID 41076 attribute is an UUID 41080 data type. The UUID 41076 attribute has a cardinality of 1 41078 meaning that for each instance of the Task 41070 entity there is one UUID 41076 attribute. The ID 41082 attribute is a ProjectElementID 41086 data type. The ID 41082 attribute has a cardinality of 1 41084 meaning that for each instance of the Task 41070 entity there is one ID 41082 attribute.
The LifeCycleStatusCode 41088 attribute is a ProjectTaskLifeCycleStatusCode 41092 data type. The LifeCycleStatusCode 41088 attribute has a cardinality of 1 41090 meaning that for each instance of the Task 41070 entity there is one LifeCycleStatusCode 41088 attribute. The BlockingStatusCode 41094 attribute is a BlockingStatusCode 41098 data type. The BlockingStatusCode 41094 attribute has a cardinality of 1 41096 meaning that for each instance of the Task 41070 entity there is one BlockingStatusCode 41094 attribute.
The TaskName 41100 entity has a cardinality of 0 . . . N 41102 meaning that for each instance of the Task 41070 entity there may be one or more TaskName 41100 entities. The TaskName 41100 entity includes a Name 41106 attribute. The Name 41106 attribute is a MEDIUM_Name 41110 data type. The Name 41106 attribute has a cardinality of 1 41108 meaning that for each instance of the TaskName 41100 entity there is one Name 41106 attribute.
The TaskCustomerTransactionDocumentItemAssignment 41112 entity has a cardinality of 0 . . . N 41114 meaning that for each instance of the Task 41070 entity there may be one or more TaskCustomerTransactionDocumentItemAssignment 41112 entities. The TaskCustomerTransactionDocumentItemAssignment 41112 entity includes a CustomerTransactionDocumentReference 41118 attribute. The CustomerTransactionDocumentReference 41118 attribute is a Business TransactionDocumentReference 41122 data type. The CustomerTransactionDocumentReference 41118 attribute has a cardinality of 1 41120 meaning that for each instance of the TaskCustomerTransactionDocumentItemAssignment 41112 entity there is one CustomerTransactionDocumentReference 41118 attribute.
The Log 41124 package is a Log 41130 data type. The Log 41124 package includes a Log 41126 entity. The Log 41126 entity has a cardinality of 0 . . . 1 41128 meaning that for each instance of the Log 41124 package there may be one Log 41126 entity.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.