The present disclosure is directed to the field of polymer electrolyte membrane fuel cells and fuel cell electrodes.
A typical polymer electrolyte membrane (PEM) fuel cell (also known as a Proton Exchange Membrane fuel cell) has several components. It has a polymer membrane serving as an electrolyte, which provides the function of protonic conductivity when sufficiently hydrated, as well as segregation of the highly reactive gases, i.e., hydrogen and oxygen. Catalysts are used to promote the electrochemical reactions that enable the cell to produce power—specifically to dissociate the hydrogen on the anode side into its constituent electrons and protons, and to form activated oxygen-containing species on the cathode side.
The anode electrode catalyst and the cathode electrode catalyst are typically applied to their respective sides of the cell in one of two ways: (1) in the form of a gas diffusion electrode (GDE), wherein the catalyst and its support are impregnated onto a gas diffusion media (typically a matte of pyrolized carbon or graphite fibers) placed between the reactant flowfield and the membrane; or (2) in the form of a catalytically coated membrane (CCM), wherein the catalyst and its support are fixed onto an ionomeric extension of the polymer membrane surface on their respective sides. Regardless of which form is used, during assembly of the cell an electrical connection is established between the gas diffusion media and the polymer membrane, with the catalyst located in between. The side of the membrane that is in contact with an anode catalyst is the anode side, while the side of the membrane that is in contact with a cathode catalyst is the cathode side.
A fuel cell also has two separator plates (also known as “bipolar plates”), which serve to conduct electricity while segregating adjacent fluidic compartments. An anode compartment is the space that is between the anode side of the membrane and a separator plate. A cathode compartment is the space that is between the cathode side of the membrane and the separator plate.
A fuel gas, e.g., a hydrogen-containing gas, is fed to the anode compartment. An oxidant-containing gas, e.g., air, is fed to the cathode compartment. For the fuel cell to work, hydrogen must be able to reach the anode side of the membrane while oxygen must reach the cathode side. Electrically conductive spacers are used to create passages in the anode compartment and the cathode compartment respectively. These spacers also serve as the flowfields through which reactant gases and product water are convected. As used herein, the terms “flowfield” and “flowfield spacer” and “spacer,” all of which refer to a component with multiple functions, are used interchangeably in this disclosure.
This disclosure provides a fuel cell, which comprises a flowfield having a first surface and a second surface, a polymer membrane, and an electrode catalyst. The first surface of the flowfield is adjacent to the polymer membrane and the electrode catalyst is interposed between the first surface of the flowfield and the polymer membrane.
In certain embodiments the flowfield is a porous metal foam or a corrugated metal sheet with perforations. Furthermore, the electrode catalyst may be deposited on the flowfield. In certain embodiments, the fuel cell further comprises an intermediate structure interposed between the flowfield and the polymer membrane and the electrode catalyst is deposited on the intermediate structure.
In some embodiments, the intermediate structure can be a carbon-based catalyst support layer. In other embodiments the intermediate structure is chosen from a metal wire mesh, a wire mesh comprising metal wires and a non-metal component, a metal screen, and an expanded metal sheet. The non-metal component may be electrically conductive, such as carbon fiber.
The disclosure further provides a fuel cell electrode, which comprises a porous structure chosen from a porous metal foam, a metal wire mesh, a wire mesh comprising metal wires and a non-metal component, a metal screen, a metal felt, an expanded metal sheet, a corrugated metal sheet with perforations, and a corrugated metal sheet without perforations. The fuel cell electrode further comprises an electrode catalyst deposited on the porous structure.
In certain embodiments, the electrode comprises a carbon-based catalyst support wherein the electrode catalyst is affixed to the catalyst support. The catalyst support may comprise carbon filaments.
A plate (typically graphite or metal) containing discrete flow channels is one of the commonly used flowfields. However, since the directed flow is limited within the flow channels in these plates, and the contact area between the plate with the anode or cathode of the fuel cell masks catalytically active regions, these types of flowfields suffer from mass transfer limitations and generally cannot operate at high power density, i.e., above 1 Watt/cm2. In contrast, high porosity open structure materials, such as metal foam, metal mesh, metal screen, corrugated plates that include perforations, or laminates composed of such elements, etc., do not have well defined flow passages. These porous spacers are also referred to as open flowfields.
This disclosure describes a fuel cell in which either (1) the anode, (2) the cathode, or (3) both, comprises the catalyst, and optionally its support, applied directly to a metallic flowfield spacer.
The metal foam has a reticulated structure with an interconnected network of ligaments. Because of this unique structure, the foam material in an uncompressed state can have a porosity that reaches at 75%, such as greater than 80%, greater than 85%, greater than 90%, greater than 95%, and up to 98%. An example of metal foams that are commercially available is can be obtained from Porvair Advanced Materials, Inc.
Another suitable flowfield is an expanded metal mesh. An expanded metal mesh is made from sheets of solid metal that are uniformly slit and stretched to create openings of certain geometric shapes, e.g., a diamond shape. In a standard expanded metal, each row of diamond-shaped openings is offset from the next, creating an uneven structure. The standard expanded metal sheet can be rolled to produce a flattened expanded metal.
A metal wire mesh can also be used as an open flowfield. It can be made by weaving or welding metal wires together. Both metal wire mesh and expanded metal mesh are commercially available, for example, from Mechanical Metals, Inc. of Newtown, Pa. When used as a spacer, the expanded metal mesh and the metal wire mesh may first be processed to form a non-flat geometric shape.
The flowfield can have a uniform pore size distribution and/or void fraction or the flowfield can have a spatially varying (e.g. functionally gradient or discontinuous) pore size distribution and/or void fraction. In the embodiment according to
The flowfields conceived herein may have a regular or an irregular lattice structure. A regular lattice structure contains identical repeating units cells. Its pore size and void fraction are all well-defined. For an irregular structure, its pore size and void fraction is based on a statistically significant number of pores or control volume size. In certain embodiments of this disclosure, the size of flowfield pores can be less than 1 mm and the void fraction can be at least 75%, for example, greater than 80%, greater than 85%, greater than 90%, and up to 98% in the bulk of the flowfield away from the membrane.
In certain embodiments, void fractions of less than 75% may lead to high flow resistances, which adversely impact system efficiency and reduce power density. In certain embodiments, when the void fraction is higher than 98%, the flowfield may not have enough material for effective heat transfer and electronic conduction. In the region contacting or adjacent to the electrode, the pore size and void fractions can be equal to or smaller than those away from the membrane.
The pore structure of the flowfield can be created by one or more of the following methods: initial processing methods, post-production after-treatments, or layering and/or bonding of discrete subcomponents having either uniform or variable porosity, herein meaning pore size distribution and/or void fraction into a composite structure (see
The embodiment according to
In some embodiments, the portion of the spacer having a higher porosity is adjacent to the separator plate to facilitate fluid flow. Meanwhile, the portion of the spacer having a lower porosity is adjacent to the membrane to facilitate electrode preparation, to mitigate risk of mechanical damage to the membrane, to provide more uniform mechanical loading under cell compression, and/or to improve water and thermal management inside the cell.
According to an embodiment illustrated in
The flowfield according to
In another embodiment depicted in
A further embodiment of this disclosure is directed to an electrode catalyst, with or without a support, which is physico-chemically bonded to an electrically-conducting but non-metallic intermediate structure, e.g. a carbon fiber. The metallic intermediate structure is disclosed above. To establish electrical connectivity between the spacer and the electrode, the intermediate structure and the spacer are mechanically connected, e.g., by interweaving (for example, composite metal fiber/carbon fiber cloth), “hooking” via co-penetration subsequent to application of compressive force (velcro-like), tying, or encircling.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit of the invention. The present invention covers all such modifications and variations, provided they come within the scope of the claims and their equivalents.
This application is a continuation application of U.S. patent application Ser. No. 12/489,406, filed Jun. 22, 2009, which claims the benefit of U.S. Provisional Application No. 61/074,814, filed Jun. 23, 2008, both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61074814 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12489406 | Jun 2009 | US |
Child | 14935734 | US |