Consolidating agent emulsions and associated methods

Information

  • Patent Grant
  • 8443885
  • Patent Number
    8,443,885
  • Date Filed
    Thursday, August 30, 2007
    17 years ago
  • Date Issued
    Tuesday, May 21, 2013
    11 years ago
Abstract
Methods are provided that include a method comprising providing a consolidating agent emulsion composition comprising an aqueous fluid, an emulsifying agent, and a consolidating agent; and introducing the consolidating agent emulsion composition into at least a portion of a subterranean formation. In some embodiments, the consolidating agent emulsion composition may be introduced into at least a portion of a propped fracture that comprises proppant particulates and allowed to at least partially consolidate at least a portion of the propped fracture. In some embodiments, the consolidating agent emulsion composition comprises a resin composition. Additional methods are also provided.
Description
BACKGROUND

The present invention relates to methods and compositions useful in treating subterranean formations, and more particularly, to consolidating relatively unconsolidated portions of subterranean formations and minimizing the flow back of unconsolidated particulate material (referred to collectively herein as “particulate migration.”) This invention also relates to modifying the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations.


In the production of hydrocarbons from a subterranean formation, the subterranean formation preferably should be sufficiently conductive to permit desirable fluids, such as oil and gas, to flow to a well bore that penetrates a subterranean formation. One type of treatment that may be used to increase the conductivity of a subterranean formation is hydraulic fracturing. Hydraulic fracturing operations generally involve pumping a treatment fluid (e.g., a fracturing fluid or a “pad” fluid) into a well bore that penetrates a subterranean formation at a sufficient hydraulic pressure to create or enhance one or more fractures in the subterranean formation. The fluid used in the treatment may comprise particulates, often referred to as “proppant particulates,” that are deposited in the resultant fractures. These proppant particulates are thought to prevent the fractures from fully closing upon the release of hydraulic pressure, forming conductive channels through which fluids may flow to a well bore. The term “propped fracture” as used herein refers to a fracture (naturally-occurring or otherwise) in a portion of a subterranean formation that contains at least a plurality of proppant particulates. The term “proppant pack” refers to a collection of proppant particulates within a fracture.


A type of particulate migration that may affect fluid conductivity in the formation is the flow back of unconsolidated particulate material (e.g., formation fines, proppant particulates, etc.) through the conductive channels in the subterranean formation, which can, for example, clog the conductive channels and/or damage the interior of the formation or equipment. There are several known techniques used to control particulate migration, some of which may involve the use of consolidating agents. The term “consolidating agent” as used herein includes any compound that is capable of minimizing particulate migration in a subterranean formation and/or modifying the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations.


One well-known technique used to control particulate migration in subterranean formations is commonly referred to as “gravel packing,” which involves the placement of a filtration bed of gravel particulates in the subterranean formation that acts as a barrier to prevent particulates from flowing into the well bore. These gravel packing operations may involve the use of consolidating agents to bind the gravel particulates together in order to form a porous matrix through which formation fluids can pass.


In some situations, a hydraulic fracturing treatment and a gravel-packing treatment may be combined into a single treatment (commonly referred to as FRACPAC™ operations). In such “frac pack” operations, the fracturing and gravel-packing treatments are combined and may generally be completed with a gravel pack screen assembly in place with the hydraulic fracturing treatment being pumped through the annular space between the casing and screen. In this situation, the hydraulic fracturing treatment ends in a screen-out condition, creating an annular gravel pack between the screen and casing. In other cases, the fracturing treatment may be performed prior to installing the screen and placing a gravel pack.


Another technique that may be used to control particulate migration involves coating proppant particulates with a consolidating agent to facilitate their consolidation within the formation and to prevent their subsequent flow-back through the conductive channels in the subterranean formation.


Another method used to control particulate migration involves consolidating unconsolidated portions of subterranean zones into relatively stable permeable masses by applying a consolidating agent to an unconsolidated portion of the subterranean formation. One example of this method is applying a resin to a portion of the zone, followed by a spacer fluid and then a catalyst. Such resin application may be problematic when, for example, an insufficient amount of spacer fluid is used between the application of the resin and the application of the external catalyst. In that case, the resin may come into contact with the external catalyst earlier in the process such as in the well bore itself rather than in the unconsolidated subterranean formation. Furthermore, there may be uncertainty as to whether there is adequate contact between the resin and the catalyst. The terms “catalyst,” “hardening agent,” and “curing agent” may be used herein interchangeably and collectively may refer to a composition that effects the hardening of a resin composition by any means or mechanism. Another example of this method involves applying a tackifying composition (aqueous or non-aqueous) to a portion of the formation in an effort to reduce the migration of particulates therein. Whereas a curable resin composition produces a hard mass, the use of a tackifying composition is thought to result in a more malleable consolidated mass.


Although consolidating agents are used frequently, they may be difficult to handle, transport and clean-up due to their inherent tendency to stick to equipment or anything else with which they may come into contact. Therefore, it would be desirable to provide compositions and methods that would, among other things, help ease the handling, transport and clean up when using consolidating agents.


One additional problem that can negatively impact conductivity and further complicate the effects of particulate migration is the tendency of mineral surfaces in a subterranean formation to undergo chemical reactions caused, at least in part, by conditions created by mechanical stresses on those minerals (e.g., fracturing of mineral surfaces, compaction of mineral particulates). These reactions are herein referred to as “stress-activated reactions” or “stress-activated reactivity.” As used herein, the term “mineral surface in a subterranean formation” and derivatives thereof refer to any surface in a subterranean formation comprised of minerals and/or the surface of a particulate. These minerals may comprise any mineral found in subterranean formations, including silicate minerals (e.g., quartz, feldspars, clay minerals), carbonaceous minerals, metal oxide minerals, and the like. The mineral surface in a subterranean formation treated in the methods of the present invention may have been formed at any time. The term “modifying the stress-activated reactivity of a mineral surface” and its derivatives as used herein refers to increasing or decreasing the tendency of a mineral surface in a subterranean formation to undergo one or more stress-activated reactions, or attaching a compound to the mineral surface that is capable of participating in one or more subsequent reactions with a second compound.


One type of reaction caused, at least in part, by conditions created by mechanical stresses on minerals may be referred to as a diagenic reaction, which also may be known as a “diageneous reaction.” As used herein, the terms “diagenic reaction,” “diagenic reactivity,” and “diagenesis” or any derivatives thereof include chemical and physical processes that move a portion of a mineral sediment and/or convert the mineral sediment into some other mineral form in the presence of water. A mineral sediment that has been so moved or converted is herein referred to as a “diagenic product.” Any mineral sediment may be susceptible to these diagenic reactions, including silicate minerals (e.g., quartz, feldspars, scale, clay minerals), carbonaceous minerals, metal oxide minerals, and the like.


Two mechanisms that diagenic reactions are thought to involve are pressure solution and precipitation processes. Where two water-wetted mineral surfaces are in contact with each other at a point under strain, the localized mineral solubility near that point is thought to increase, causing the minerals to dissolve. Minerals in solution may diffuse through the water film outside of the region where the mineral surfaces are in contact (e.g., in the pore spaces of a proppant pack), where they may precipitate out of solution. The dissolution and precipitation of minerals in the course of these reactions may reduce the conductivity of the formations by, among other things, clogging the conductive channels in the formation with mineral precipitate and/or collapsing those conductive channels by dissolving solid minerals in the surfaces of those channels.


Moreover, in the course of a fracturing treatment, new mineral surfaces may be created in the “walls” surrounding the open space of the fracture. These new walls created in the course of a fracturing treatment are herein referred to as “fracture faces.” Such fracture faces may exhibit different types and levels of reactivity, for example, stress-activated reactivity. In some instances, fracture faces may exhibit an increased tendency to undergo diagenic reactions. In other instances, fracture faces also may exhibit an increased tendency to react with substances in formation fluids and/or treatment fluids that are in contact with those fracture faces, such as water, polymers (e.g., polysaccharides, biopolymers, surfactants, etc.), and other substances commonly found in these fluids, whose molecules may become anchored to the fracture face. This reactivity may further decrease the conductivity of the formation through, inter alia, increased diagenic reactions and/or the obstruction of conductive fractures in the formation by any molecules that have become anchored to the fracture faces.


SUMMARY

The present invention relates to methods and compositions useful for minimizing particulate migration. This invention also relates to modifying the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations.


In one embodiment, the present invention provides a method comprising providing a consolidating agent emulsion composition comprising an aqueous fluid, an emulsifying agent, and a consolidating agent; and introducing the consolidating agent emulsion composition into at least a portion of a subterranean formation.


In another embodiment, the present invention provides a method comprising providing a consolidating agent emulsion composition comprising an aqueous fluid, an emulsifying agent, and a consolidating agent; introducing the consolidating agent emulsion composition into at least a portion of a propped fracture that comprises proppant particulates; allowing the consolidating agent to at least partially consolidate at least a portion of the propped fracture.


In yet another embodiment, the present invention provides a method comprising providing a consolidating agent emulsion composition comprising an aqueous fluid, an emulsifying agent, and a consolidating agent that comprises a resin composition; introducing the consolidating agent emulsion composition into at least a portion of a subterranean formation; and allowing the consolidating agent to at least partially consolidate at least a portion of the subterranean formation.


The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.



FIG. 1 is a micrograph image of untreated proppant particulates.



FIG. 2 is a micrograph image of untreated proppant particulates after being subjected to a stress load of 10,000 psi at 250° F.



FIG. 3 is a micrograph image of proppant particulates that have been treated with a consolidating agent emulsion in accordance with an embodiment of the present invention after being subjected to a stress load of 10,000 psi at 250° F.



FIG. 4 is a micrograph image of a Salt Wash South Core that has been treated with a consolidating agent emulsion in accordance with an embodiment of the present invention.



FIG. 5 is a micrograph image of a Salt Wash South Core that has been treated with a consolidating agent emulsion in accordance with an embodiment of the present invention.



FIG. 6 illustrates the unconfined compressive strength of sample sand packs treated with a consolidating agent emulsion of the present invention.



FIG. 7 illustrates the regained permeability of sample sand packs treated with a consolidating agent emulsion of the present invention.



FIG. 8 is a CT scan image of a Castlegate Core sample that was subjected to pretreatment flow and subsequently treated with a consolidating agent emulsion in accordance with an embodiment of the present invention.



FIG. 9 is a CT scan image of a Castlegate Core sample that has been treated with a consolidating agent emulsion in accordance with an embodiment of the present invention.





DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to methods and compositions useful for minimizing particulate migration. This invention also relates to modifying the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations.


One of the many potential advantages of the methods and compositions of the present invention is that they may allow, inter alia, for the consolidation of relatively unconsolidated portions of subterranean formations and may also minimize the flow back of unconsolidated particulate material. As a result, in some embodiments, it may be possible to utilize larger sized proppant particulates that provide higher conductivity, without damage to the proppant pack due to formation fines movement and without compromising proppant flow back control requirements. It is also possible, in some embodiments, to minimize the amount of consolidating agent that might otherwise be required through the use of a consolidating agent emulsion, to achieve, inter alia, good strength performance and high regained permeability of the subterranean formation.


In addition, in some embodiments, the consolidating agent emulsions of the present invention may also eliminate the need for an expensive and/or flammable solvent that might otherwise be necessary when using consolidating agents and may thereby reduce possible undesirable safety and environmental concerns related to the use and disposal of such solvents. In some embodiments, the consolidating agent emulsions may also reduce the possibility of oil sheen, which may be of particular importance in gulf coast regions. Furthermore, the consolidating agent emulsions of the present invention may also allow for relatively easy clean up of equipment and reduced potential damage to equipment due to the buildup of the consolidation agent on the equipment.


A. Examples of Certain Embodiments of the Consolidating Agent Emulsions of the Present Invention

The consolidating agent emulsions of the present invention comprise an aqueous fluid, an emulsifying agent, and a consolidating agent. In some embodiments, these consolidating agent emulsions have an aqueous external phase and organic based internal phase. The term “emulsion” and any derivatives thereof as used herein refers to a mixture of two or more immiscible phases and includes, but is not limited to, dispersions and suspensions.


1. Examples of Suitable Aqueous Fluids


The consolidating agent emulsions of the present invention comprise an aqueous external phase comprising an aqueous fluid. Suitable aqueous fluids that may be used in the consolidating agent emulsions of the present invention include fresh water, salt water, brine, seawater, or any other aqueous fluid that, preferably, does not adversely react with the other components used in accordance with this invention or with the subterranean formation. One should note, however, that if long-term stability of the emulsion is desired, in some embodiments, the preferred aqueous fluid may be one that is substantially free of salts. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much salt may be tolerated in the consolidating agent emulsions of the present invention before it becomes problematic for the stability of the emulsion. The aqueous fluid may be present in the consolidating agent emulsions of the present invention in an amount in the range of about 20% to about 99.9% by weight of the consolidating agent emulsion composition. In some embodiments, the aqueous fluid may be present in the consolidating agent emulsions of the present invention in an amount in the range of about 60% to about 99.9% by weight of the consolidating agent emulsion composition. In some embodiments, the aqueous fluid may be present in the consolidating agent emulsions of the present invention in an amount in the range of about 95% to about 99.9% by weight of the consolidating agent emulsion composition. Other ranges may be suitable as well, depending on the other components of the emulsion.


2. Examples of Suitable Types of Consolidating Agents


The consolidating agents suitable for use in the compositions and methods of the present invention generally comprise any compound that is capable of minimizing particulate migration and/or modifying the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations. In some embodiments, the consolidating agent may comprise compounds such as non-aqueous tackifying agents and resins. The consolidating agents may be present in the consolidating agent emulsions of the present invention in an amount in the range of about 0.1% to about 80% by weight of the consolidating agent emulsion composition. In some embodiments, the consolidating agent may be present in the consolidating agent emulsions of the present invention in an amount in the range of about 0.1% to about 40% by weight of the composition. In some embodiments, the consolidating agent may be present in the consolidating agent emulsions of the present invention in an amount in the range of about 0.1% to about 5% by weight of the composition. The type and amount of consolidating agent included in a particular composition or method of the invention may depend upon, among other factors, the composition and/or temperature of the subterranean formation, the chemical composition of formations fluids, flow rate of fluids present in the formation, the effective porosity and/or permeability of the subterranean formation, pore throat size and distribution, and the like. Furthermore, the concentration of the consolidating agent can be varied, inter alia, to either enhance bridging to provide for a more rapid coating of the consolidating agent or to minimize bridging to allow deeper penetration into the subterranean formation. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine the type and amount of consolidating agent to include in the consolidating agent emulsions of the present invention to achieve the desired results.


The consolidating agents suitable for use in the present invention may be provided in any suitable form, including in a particle form, which may be in a solid form and/or a liquid form. In those embodiments where the consolidating agent is provided in a particle form, the size of the particle can vary widely. In some embodiments, the consolidating agent particles may have an average particle diameter of about 0.01 micrometers (“μm”) to about 300 μm. In some embodiments, the consolidating agent particles may have an average particle diameter of about 0.01 μm to about 100 μm. In some embodiments, the consolidating agent particles may have an average particle diameter of about 0.01 μm to about 10 μm. The size distribution of the consolidating agent particles used in a particular composition or method of the invention may depend upon several factors including, but not limited to, the size distribution of the particulates present in the subterranean formation, the effective porosity and/or permeability of the subterranean formation, pore throat size and distribution, and the like.


In some embodiments, it may be desirable to use a consolidating agent particle with a size distribution such that the consolidating agent particles are placed at contact points between formation particulates. For example, in some embodiments, the size distribution of the consolidating agent particles may be within a smaller size range, e.g. of about 0.01 μm to about 10 μm. It may be desirable in some embodiments to provide consolidating agent particles with a smaller particle size distribution, inter alia, to promote deeper penetration of the consolidating agent particles through a body of unconsolidated particulates or in low permeability formations.


In other embodiments, the size distribution of the consolidating agent particles may be within a larger range, e.g. of about 30 μm to about 300 μm. It may be desirable in some embodiments to provide consolidating agent particles with a larger particle size distribution, inter alia, to promote the filtering out of consolidating agent particles at or near the spaces between neighboring unconsolidated particulates or in high permeability formations. A person of ordinary skill in the art, with the benefit of this disclosure, will be able to select an appropriate particle size distribution for the consolidating agent particles suitable for use in the present invention and will appreciate that methods of creating consolidating agent particles of any relevant size are well known in the art.


a. Non-Aqueous Tackifying Agents


In some embodiments of the present invention, the consolidating agent may comprise a non-aqueous tackifying agent. A particularly preferred group of non-aqueous tackifying agents comprises polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation. A particularly preferred product is a condensation reaction product comprised of commercially available polyacids and a polyamine. Such commercial products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids that are reacted with polyamines. Other polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride, acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc. and Witco Corporation.


Additional compounds which may be used as non-aqueous tackifying agents include liquids and solutions of, for example, polyesters, polycarbonates, silyl-modified polyamide compounds, polycarbamates, urethanes, natural resins such as shellac, and the like.


Other suitable non-aqueous tackifying agents are described in U.S. Pat. Nos. 5,853,048 and 5,833,000 both issued to Weaver, et al., and U.S. Patent Publication Nos. 2007/0131425 and 2007/0131422, the relevant disclosures of which are herein incorporated by reference.


Non-aqueous tackifying agents suitable for use in the present invention may either be used such that they form a non-hardening coating on a surface or they may be combined with a multifunctional material capable of reacting with the non-aqueous tackifying agent to form a hardened coating. A “hardened coating” as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. In this instance, the non-aqueous tackifying agent may function similarly to a hardenable resin.


Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfuraldehyde, glutaraldehyde, aldehyde condensates, and silyl-modified polyamide compounds and the like, and combinations thereof. Suitable silyl-modified polyamide compounds that may be used in the present invention are those that are substantially self-hardening compositions capable of at least partially adhering to a surface or to a particulate in the unhardened state, and that are further capable of self-hardening themselves to a substantially non-tacky state to which individual particulates such as formation fines will not adhere, for example, in formation or proppant pack pore throats. Such silyl-modified polyamides may be based, for example, on the reaction product of a silating compound with a polyamide or a mixture of polyamides. The polyamide or mixture of polyamides may be one or more polyamide intermediate compounds obtained, for example, from the reaction of a polyacid (e.g., diacid or higher) with a polyamine (e.g., diamine or higher) to form a polyamide polymer with the elimination of water.


In some embodiments of the present invention, the multifunctional material may be mixed with the tackifying compound in an amount of about 0.01% to about 50% by weight of the tackifying compound to effect formation of the reaction product. In other embodiments, the multifunctional material is present in an amount of about 0.5% to about 1% by weight of the tackifying compound. Suitable multifunctional materials are described in U.S. Pat. No. 5,839,510 issued to Weaver, et al., the relevant disclosure of which is herein incorporated by reference.


b. Resins


In some embodiments of the present invention, the consolidating agent may comprise a resin. The term “resin” as used herein refers to any of numerous physically similar polymerized synthetics or chemically modified natural resins including thermoplastic materials and thermosetting materials. Resins suitable for use in the present invention include substantially all resins known and used in the art.


One type of resin suitable for use in the compositions and methods of the present invention is a two-component epoxy based resin comprising a liquid hardenable resin component and a liquid hardening agent component. The liquid hardenable resin component is comprised of a hardenable resin and an optional solvent. The solvent may be added to the resin to reduce its viscosity for ease of handling, mixing and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent may be needed to achieve a viscosity suitable to the subterranean conditions. Factors that may affect this decision include geographic location of the well, the surrounding weather conditions, and the desired long-term stability of the consolidating agent emulsion. An alternate way to reduce the viscosity of the hardenable resin is to heat it. The second component is the liquid hardening agent component, which is comprised of a hardening agent, an optional silane coupling agent, a surfactant, an optional hydrolyzable ester for, among other things, breaking gelled fracturing fluid films on proppant particulates, and an optional liquid carrier fluid for, among other things, reducing the viscosity of the hardening agent component.


Examples of hardenable resins that can be used in the liquid hardenable resin component include, but are not limited to, organic resins such as bisphenol A diglycidyl ether resins, butoxymethyl butyl glycidyl ether resins, bisphenol A-epichlorohydrin resins, bisphenol F resins, polyepoxide resins, novolak resins, polyester resins, phenol-aldehyde resins, urea-aldehyde resins, furan resins, urethane resins, glycidyl ether resins, other epoxide resins and combinations thereof. In some embodiments, the hardenable resin may comprise a urethane resin. Examples of suitable urethane resins may comprise a polyisocyanate component and a polyhydroxy component. Examples of suitable hardenable resins, including urethane resins, that may be suitable for use in the methods of the present invention include those described in U.S. Pat. Nos. 6,582,819 issued to McDaniel, et al., 4,585,064 issued to Graham, et al., 6,677,426 issued to Noro, et al., and 7,153,575 issued to Anderson, et al., the relevant disclosures of which are herein incorporated by reference.


The hardenable resin may be included in the liquid hardenable resin component in an amount in the range of about 5% to about 100% by weight of the liquid hardenable resin component. It is within the ability of one skilled in the art with the benefit of this disclosure to determine how much of the liquid hardenable resin component may be needed to achieve the desired results. Factors that may affect this decision include which type of liquid hardenable resin component and liquid hardening agent component are used.


Any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect may be suitable for use in the liquid hardenable resin component. Suitable solvents may include butyl lactate, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, methanol, butyl alcohol, d'limonene, fatty acid methyl esters, and combinations thereof. Other preferred solvents may include aqueous dissolvable solvents such as, methanol, isopropanol, butanol, glycol ether solvents, and combinations thereof. Suitable glycol ether solvents include, but are not limited to, diethylene glycol methyl ether, dipropylene glycol methyl ether, 2-butoxy ethanol, ethers of a C2 to C6 dihydric alkanol containing at least one C1 to C6 alkyl group, mono ethers of dihydric alkanols, methoxypropanol, butoxyethanol, hexoxyethanol, and isomers thereof. Selection of an appropriate solvent is dependent on the resin composition chosen and is within the ability of one skilled in the art with the benefit of this disclosure.


As described above, use of a solvent in the liquid hardenable resin component is optional but may be desirable to reduce the viscosity of the hardenable resin component for ease of handling, mixing, and transferring. However, as previously stated, it may be desirable in some embodiments to not use such a solvent for environmental or safety reasons. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine if and how much solvent is needed to achieve a suitable viscosity. In some embodiments, the amount of the solvent used in the liquid hardenable resin component may be in the range of about 0.1% to about 30% by weight of the liquid hardenable resin component. Optionally, the liquid hardenable resin component may be heated to reduce its viscosity, in place of, or in addition to, using a solvent.


Examples of the hardening agents that can be used in the liquid hardening agent component include, but are not limited to, cyclo-aliphatic amines, such as piperazine, derivatives of piperazine (e.g., aminoethylpiperazine) and modified piperazines; aromatic amines, such as methylene dianiline, derivatives of methylene dianiline and hydrogenated forms, and 4,4′-diaminodiphenyl sulfone; aliphatic amines, such as ethylene diamine, diethylene triamine, triethylene tetraamine, and tetraethylene pentaamine; imidazole; pyrazole; pyrazine; pyrimidine; pyridazine; 1H-indazole; purine; phthalazine; naphthyridine; quinoxaline; quinazoline; phenazine; imidazolidine; cinnoline; imidazoline; 1,3,5-triazine; thiazole; pteridine; indazole; amines; polyamines; amides; polyamides; 2-ethyl-4-methyl imidazole; and combinations thereof. The chosen hardening agent often effects the range of temperatures over which a hardenable resin is able to cure. By way of example and not of limitation, in subterranean formations having a temperature of about 60° F. to about 250° F., amines and cyclo-aliphatic amines such as piperidine, triethylamine, tris(dimethylaminomethyl)phenol, and dimethylaminomethyl)phenol may be preferred. In subterranean formations having higher temperatures, 4,4′-diaminodiphenyl sulfone may be a suitable hardening agent. Hardening agents that comprise piperazine or a derivative of piperazine have been shown capable of curing various hardenable resins from temperatures as low as about 50° F. to as high as about 350° F.


The hardening agent used may be included in the liquid hardening agent component in an amount sufficient to at least partially harden the resin composition. In some embodiments of the present invention, the hardening agent used is included in the liquid hardening agent component in the range of about 0.1% to about 95% by weight of the liquid hardening agent component. In other embodiments, the hardening agent used may be included in the liquid hardening agent component in an amount of about 15% to about 85% by weight of the liquid hardening agent component. In other embodiments, the hardening agent used may be included in the liquid hardening agent component in an amount of about 15% to about 55% by weight of the liquid hardening agent component.


In some embodiments, the consolidating agent emulsions of the present invention may comprise a liquid hardenable resin component emulsified in a liquid hardening agent component, wherein the liquid hardenable resin component is the internal phase of the emulsion and the liquid hardening agent component is the external phase of the emulsion. In other embodiments, the liquid hardenable resin component may be emulsified in water and the liquid hardening agent component may be present in the water. In other embodiments, the liquid hardenable resin component may be emulsified in water and the liquid hardening agent component may be provided separately. Similarly, in other embodiments, both the liquid hardenable resin component and the liquid hardening agent component may both be emulsified in water.


The optional silane coupling agent may be used, among other things, to act as a mediator to help bond the resin to formation particulates or proppant particulates. Examples of suitable silane coupling agents include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and combinations thereof. The silane coupling agent may be included in the liquid hardening agent component in an amount capable of sufficiently bonding the resin to the particulate. In some embodiments of the present invention, the silane coupling agent used is included in the liquid hardening agent component in the range of about 0.1% to about 3% by weight of the liquid hardening agent component.


Any surfactant compatible with the hardening agent and capable of facilitating the coating of the resin onto particulates in the subterranean formation may be used in the liquid hardening agent component. Such surfactants include, but are not limited to, an alkyl phosphonate surfactant (e.g., a C12-C22 alkyl phosphonate surfactant), an ethoxylated nonyl phenol phosphate ester, one or more cationic surfactants, and one or more nonionic surfactants. Mixtures of one or more cationic and nonionic surfactants also may be suitable. Examples of such surfactant mixtures are described in U.S. Pat. No. 6,311,773 issued to Todd et al. on Nov. 6, 2001, the relevant disclosure of which is incorporated herein by reference. The surfactant or surfactants that may be used are included in the liquid hardening agent component in an amount in the range of about 1% to about 10% by weight of the liquid hardening agent component.


While not required, examples of hydrolyzable esters that may be used in the liquid hardening agent component include, but are not limited to, a mixture of dimethylglutarate, dimethyladipate, and dimethylsuccinate; dimethylthiolate; methyl salicylate; dimethyl salicylate; dimethylsuccinate; and combinations thereof. When used, a hydrolyzable ester is included in the liquid hardening agent component in an amount in the range of about 0.1% to about 3% by weight of the liquid hardening agent component. In some embodiments a hydrolyzable ester is included in the liquid hardening agent component in an amount in the range of about 1% to about 2.5% by weight of the liquid hardening agent component.


Use of a diluent or liquid carrier fluid in the liquid hardening agent component is optional and may be used to reduce the viscosity of the liquid hardening agent component for ease of handling, mixing and transferring. As previously stated, it may be desirable in some embodiments to not use such a solvent for environmental or safety reasons. Any suitable carrier fluid that is compatible with the liquid hardening agent component and achieves the desired viscosity effects is suitable for use in the present invention. Some suitable liquid carrier fluids are those having high flash points (e.g., about 125° F.) because of, among other things, environmental and safety concerns; such solvents include, but are not limited to, butyl lactate, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, methanol, butyl alcohol, d'limonene, fatty acid methyl esters, and combinations thereof. Other suitable liquid carrier fluids include aqueous dissolvable solvents such as, for example, methanol, isopropanol, butanol, glycol ether solvents, and combinations thereof. Suitable glycol ether liquid carrier fluids include, but are not limited to, diethylene glycol methyl ether, dipropylene glycol methyl ether, 2-butoxy ethanol, ethers of a C2 to C6 dihydric alkanol having at least one C1 to C6 alkyl group, mono ethers of dihydric alkanols, methoxypropanol, butoxyethanol, hexoxyethanol, and isomers thereof. Selection of an appropriate liquid carrier fluid is dependent on, inter alia, the resin composition chosen.


Other resins suitable for use in the present invention are furan-based resins. Suitable furan-based resins include, but are not limited to, furfuryl alcohol resins, furfural resins, mixtures furfuryl alcohol resins and aldehydes, and a mixture of furan resins and phenolic resins. Of these, furfuryl alcohol resins may be preferred. A furan-based resin may be combined with a solvent to control viscosity if desired. Suitable solvents for use in the furan-based consolidation fluids of the present invention include, but are not limited to 2-butoxy ethanol, butyl lactate, butyl acetate, tetrahydrofurfuryl methacrylate, tetrahydrofurfuryl acrylate, esters of oxalic, maleic and succinic acids, and furfuryl acetate. Of these, 2-butoxy ethanol is preferred. In some embodiments, the furan-based resins suitable for use in the present invention may be capable of enduring temperatures well in excess of 350° F. without degrading. In some embodiments, the furan-based resins suitable for use in the present invention are capable of enduring temperatures up to about 700° F. without degrading.


Optionally, the furan-based resins suitable for use in the present invention may further comprise a curing agent, inter alia, to facilitate or accelerate curing of the furan-based resin at lower temperatures. The presence of a curing agent may be particularly useful in embodiments where the furan-based resin may be placed within subterranean formations having temperatures below about 350° F. Examples of suitable curing agents include, but are not limited to, organic or inorganic acids, such as, inter alia, maleic acid, fumaric acid, sodium bisulfate, hydrochloric acid, hydrofluoric acid, acetic acid, formic acid, phosphoric acid, sulfonic acid, alkyl benzene sulfonic acids such as toluene sulfonic acid and dodecyl benzene sulfonic acid (“DDBSA”), and combinations thereof. In those embodiments where a curing agent is not used, the furan-based resin may cure autocatalytically.


Still other resins suitable for use in the methods of the present invention are phenolic-based resins. Suitable phenolic-based resins include, but are not limited to, terpolymers of phenol, phenolic formaldehyde resins, and a mixture of phenolic and furan resins. In some embodiments, a mixture of phenolic and furan resins may be preferred. A phenolic-based resin may be combined with a solvent to control viscosity if desired. Suitable solvents for use in the present invention include, but are not limited to butyl acetate, butyl lactate, furfuryl acetate, and 2-butoxy ethanol. Of these, 2-butoxy ethanol may be preferred in some embodiments.


Yet another resin-type material suitable for use in the methods of the present invention is a phenol/phenol formaldehyde/furfuryl alcohol resin comprising of about 5% to about 30% phenol, of about 40% to about 70% phenol formaldehyde, of about 10% to about 40% furfuryl alcohol, of about 0.1% to about 3% of a silane coupling agent, and of about 1% to about 15% of a surfactant. In the phenol/phenol formaldehyde/furfuryl alcohol resins suitable for use in the methods of the present invention, suitable silane coupling agents include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, and 3-glycidoxypropyltrimethoxysilane. Suitable surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and an alkyl phosphonate surfactant.


In some embodiments, resins suitable for use in the consolidating agent emulsion compositions of the present invention may optionally comprise filler particles. Suitable filler particles may include any particle that does not adversely react with the other components used in accordance with this invention or with the subterranean formation. Examples of suitable filler particles include silica, glass, clay, alumina, fumed silica, carbon black, graphite, mica, meta-silicate, calcium silicate, calcine, kaoline, talc, zirconia, titanium dioxide, fly ash, boron, and combinations thereof. In some embodiments, the filler particles may range in size of about 0.01 μm to about 100 μm. As will be understood by one skilled in the art, particles of smaller average size may be particularly useful in situations where it is desirable to obtain high proppant pack permeability (i.e., conductivity), and/or high consolidation strength. In certain embodiments, the filler particles may be included in the resin composition in an amount of about 0.1% to about 70% by weight of the resin composition. In other embodiments, the filler particles may be included in the resin composition in an amount of about 0.5% to about 40% by weight of the resin composition. In some embodiments, the filler particles may be included in the resin composition in an amount of about 1% to about 10% by weight of the resin composition. Some examples of suitable resin compositions comprising filler particles are described in U.S. Ser. No. 11/482,601 issued to Rickman, et al., the relevant disclosure of which is herein incorporated by reference.


2. Examples of Suitable Emulsifying Agents


As previously stated, the consolidating agent emulsions of the present invention comprise an emulsifying agent. Examples of suitable emulsifying agents may include surfactants, proteins, hydrolyzed proteins, lipids, glycolipids, and nanosized particulates, including, but not limited to, fumed silica.


Surfactants suitable for use in the present invention are those capable of emulsifying an organic based component in an aqueous based component so that the emulsion has an aqueous external phase and an organic internal phase. In some embodiments, the surfactant may comprise an amine surfactant. Such preferred amine surfactants include, but are not limited to, amine ethoxylates and amine ethoxylated quaternary salts such as tallow diamine and tallow triamine exthoxylates and quaternary salts. Examples of suitable surfactants are ethoxylated C12-C22 diamine, ethoxylated C12-C22 triamine, ethoxylated C12-C22 tetraamine, ethoxylated C12-C22 diamine methylchloride quat, ethoxylated C12-C22 triamine methylchloride quat, ethoxylated C12-C22 tetraamine methylchloride quat, ethoxylated C12-C22 diamine reacted with sodium chloroacetate, ethoxylated C12-C22 triamine reacted with sodium chloroacetate, ethoxylated C12-C22 tetraamine reacted with sodium chloroacetate, ethoxylated C12-C22 diamine acetate salt, ethoxylated C12-C22 diamine hydrochloric acid salt, ethoxylated C12-C22 diamine glycolic acid salt, ethoxylated C12-C22 diamine DDBSA salt, ethoxylated C12-C22 triamine acetate salt, ethoxylated C12-C22 triamine hydrochloric acid salt, ethoxylated C12-C22 triamine glycolic acid salt, ethoxylated C12-C22 triamine DDBSA salt, ethoxylated C12-C22 tetraamine acetate salt, ethoxylated C12-C22 tetraamine hydrochloric acid salt, ethoxylated C12-C22 tetraamine glycolic acid salt, ethoxylated C12-C22 tetraamine DDBSA salt, pentamethylated C12-C22 diamine quat, heptamethylated C12-C22 diamine quat, nonamethylated C12-C22 diamine quat, and combinations thereof.


In some embodiments of the present invention, a suitable amine surfactant may have the general formula:




embedded image



wherein R is a C12-C22 aliphatic hydrocarbon; R′ is independently selected from hydrogen or a C1 to C3 alkyl group; A is independently selected from NH or O, and x+y has a value greater than or equal to one but also less than or equal to three. Preferably the R group is a non-cyclic aliphatic. In some embodiments, the R group contains at least one degree of unsaturation, i.e., at least one carbon-carbon double bond. In other embodiments, the R group may be a commercially recognized mixture of aliphatic hydrocarbons such as soya, which is a mixture of C14 to C20 hydrocarbons, or tallow, which is a mixture of C16 to C20 aliphatic hydrocarbons, or tall oil, which is a mixture of C14 to C18 aliphatic hydrocarbons. In other embodiments, one in which the A group is NH, the value of x+y is preferably two, with x having a preferred value of one. In other embodiments, in which the A group is 0, the preferred value of x+y is two, with the value of x being preferably one. One example of a commercially available amine surfactant is TER 2168 Series available from Champion Chemicals located in Fresno, Tex. Other commercially available examples include ETHOMEEN T/12, a diethoxylated tallow amine; ETHOMEEN S/12, a diethoxylated soya amine; DUOMEEN O, a N-oleyl-1,3-diaminopropane; DUOMEEN T, a N-tallow-1,3-diaminopropane; all of which are commercially available from Akzo Nobel.


In other embodiments, the surfactant may be a tertiary alkyl amine ethoxylate (a cationic surfactant). TRITON RW-100 surfactant (x+y=10 moles of ethylene oxide) and TRITON RW-150 surfactant (x+y=15 moles of ethylene oxide) are examples of tertiary alkyl amine ethoxylates that are commercially available from Dow Chemical Company.


In other embodiments, the surfactant may be a combination of an amphoteric surfactant and an anionic surfactant. In some embodiments, the relative amounts of the amphoteric surfactant and the anionic surfactant in the surfactant mixture may be of about 30% to about 45% by weight of the surfactant mixture and of about 55% to about 70% by weight of the surfactant mixture, respectively. The amphoteric surfactant may be lauryl amine oxide, a mixture of lauryl amine oxide and myristyl amine oxide (i.e., a lauryl/myristyl amine oxide), cocoamine oxide, lauryl betaine, oleyl betaine, or combinations thereof, with the lauryl/myristyl amine oxide being preferred. The cationic surfactant may be cocoalkyltriethyl ammonium chloride, hexadecyltrimethyl ammonium chloride, or combinations thereof, with a 50/50 mixture by weight of the cocoalkyltriethyl ammonium chloride and the hexadecyltrimethyl ammonium chloride being preferred.


In other embodiments, the surfactant may be a nonionic surfactant. Examples of suitable nonionic surfactants include, but are not limited to, alcohol oxylalkylates, alkyl phenol oxylalkylates, nonionic esters, such as sorbitan esters, and alkoxylates of sorbitan esters. Examples of suitable surfactants include, but are not limited to, castor oil alkoxylates, fatty acid alkoxylates, lauryl alcohol alkoxylates, nonylphenol alkoxylates, octylphenol alkoxylates, tridecyl alcohol alkoxylates, such as polyoxyethylene (“POE”)-10 nonylphenol ethoxylate, POE-100 nonylphenol ethoxylate, POE-12 nonylphenol ethoxylate, POE-12 octylphenol ethoxylate, POE-12 tridecyl alcohol ethoxylate, POE-14 nonylphenol ethoxylate, POE-15 nonylphenol ethoxylate, POE-18 tridecyl alcohol ethoxylate, POE-20 nonylphenol ethoxylate, POE-20 oleyl alcohol ethoxylate, POE-20 stearic acid ethoxylate, POE-3 tridecyl alcohol ethoxylate, POE-30 nonylphenol ethoxylate, POE-30 octylphenol ethoxylate, POE-34 nonylphenol ethoxylate, POE-4 nonylphenol ethoxylate, POE-40 castor oil ethoxylate, POE-40 nonylphenol ethoxylate, POE-40 octylphenol ethoxylate, POE-50 nonylphenol ethoxylate, POE-50 tridecyl alcohol ethoxylate, POE-6 nonylphenol ethoxylate, POE-6 tridecyl alcohol ethoxylate, POE-8 nonylphenol ethoxylate, POE-9 octylphenol ethoxylate, mannide monooleate, sorbitan isostearate, sorbitan laurate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monooleate, sorbitan monopalmitate, sorbitan monostearate, sorbitan oleate, sorbitan palmitate, sorbitan sesquioleate, sorbitan stearate, sorbitan trioleate, sorbitan tristearate, POE-20 sorbitan monoisostearate ethoxylate, POE-20 sorbitan monolaurate ethoxylate, POE-20 sorbitan monooleate ethoxylate, POE-20 sorbitan monopalmitate ethoxylate, POE-20 sorbitan monostearate ethoxylate, POE-20 sorbitan trioleate ethoxylate, POE-20 sorbitan tristearate ethoxylate, POE-30 sorbitan tetraoleate ethoxylate, POE-40 sorbitan tetraoleate ethoxylate, POE-6 sorbitan hexastearate ethoxylate, POE-6 sorbitan monstearate ethoxylate, POE-6 sorbitan tetraoleate ethoxylate, and/or POE-60 sorbitan tetrastearate ethoxylate. Preferred nonionic surfactants include alcohol oxyalkyalates such as POE-23 lauryl alcohol and alkyl phenol ethoxylates such as POE (20) nonyl phenyl ether.


While cationic, amphoteric, and nonionic surfactants are preferred, any suitable emulsifying surfactant may be used. Good surfactants for emulsification typically need to be either ionic, to give charge stabilization, to have a sufficient hydrocarbon chain length or cause a tighter packing of the hydrophobic groups at the oil/water interface to increase the stability of the emulsion. One of ordinary skill in the art with the benefit of this disclosure will be able to select a suitable surfactant depending upon the consolidating agent that is being emulsified. Additional suitable surfactants may include other cationic surfactants and even anionic surfactants. Examples include, but are not limited to, hexahydro-1 3,5-tris (2-hydroxyethyl) triazine, alkyl ether phosphate, ammonium lauryl sulfate, ammonium nonylphenol ethoxylate sulfate, branched isopropyl amine dodecylbenzene sulfonate, branched sodium dodecylbenzene sulfonate, dodecylbenzene sulfonic acid, branched dodecylbenzene sulfonic acid, fatty acid sulfonate potassium salt, phosphate esters, POE-1 ammonium lauryl ether sulfate, OE-1 sodium lauryl ether sulfate, POE-10 nonylphenol ethoxylate phosphate ester, POE-12 ammonium lauryl ether sulfate, POE-12 linear phosphate ester, POE-12 sodium lauryl ether sulfate, POE-12 tridecyl alcohol phosphate ester, POE-2 ammonium lauryl ether sulfate, POE-2 sodium lauryl ether sulfate, POE-3 ammonium lauryl ether sulfate, POE-3 disodium alkyl ether sulfosuccinate, POE-3 linear phosphate ester, POE-3 sodium lauryl ether sulfate, POE-3 sodium octylphenol ethoxylate sulfate, POE-3 sodium tridecyl ether sulfate, POE-3 tridecyl alcohol phosphate ester, POE-30 ammonium lauryl ether sulfate, POE-30 sodium lauryl ether sulfate, POE-4 ammonium lauryl ether sulfate, POE-4 ammonium nonylphenol ethoxylate sulfate, POE-4 nonyl phenol ether sulfate, POE-4 nonylphenol ethoxylate phosphate ester, POE-4 sodium lauryl ether sulfate, POE-4 sodium nonylphenol ethoxylate sulfate, POE-4 sodium tridecyl ether sulfate, POE-50 sodium lauryl ether sulfate, POE-6 disodium alkyl ether sulfosuccinate, POE-6 nonylphenol ethoxylate phosphate ester, POE-6 tridecyl alcohol phosphate ester, POE-7 linear phosphate ester, POE-8 nonylphenol ethoxylate phosphate ester, potassium dodecylbenzene sulfonate, sodium 2-ethyl hexyl sulfate, sodium alkyl ether sulfate, sodium alkyl sulfate, sodium alpha olefin sulfonate, sodium decyl sulfate, sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium lauryl sulfoacetate, sodium nonylphenol ethoxylate sulfate, and/or sodium octyl sulfate.


Other suitable emulsifying agents are described in U.S. Pat. Nos. 6,653,436 and 6,956,086 both issued to Back, et al., the relevant disclosures of which are herein incorporated by reference.


In some embodiments, the emulsifying agent may function in more than one capacity. For example, in some embodiments, a suitable emulsifying agent may also be a hardening agent. Examples of suitable emulsifying agents that may also function as a hardening agent include, but are not limited to, those described in U.S. Pat. No. 5,874,490, the relevant disclosure of which is herein incorporated by reference.


In some embodiments, the emulsifying agent may be present in the consolidating agent emulsion in an amount in the range of about 0.001% to about 10% by weight of the consolidating agent emulsion composition. In some embodiments, the emulsifying agent may be present in the consolidating agent emulsion in an amount in the range of about 0.05% to about 5% by weight of the consolidating agent emulsion composition.


3. Examples of Optional Additives


Optionally, the consolidating agent emulsions of the present invention may comprise additional additives such as emulsion stabilizers, emulsion destabilizers, antifreeze agents, biocides, algaecides, pH control additives, oxygen scavengers, clay stabilizers, and the like or any other additive that does not adversely affect the consolidating agent emulsion compositions. For instance, an emulsion stabilizer may be beneficial when stability of the emulsion is desired for a lengthened period of time or at specified temperatures. In some embodiments, the emulsion stabilizer may be substantially any acid. In some embodiments, the emulsion stabilizer may be an organic acid, such as acetic acid. In some embodiments, the emulsion stabilizer may be a plurality of nanoparticulates. If an emulsion stabilizer is utilized, it is preferably present in an amount necessary to stabilize the consolidating agent emulsion composition. An emulsion destabilizer may be beneficial when stability of the emulsion is not desired. The emulsion destabilizer may be, inter alia, an alcohol, a pH additive, a surfactant or an oil. If an emulsion destabilizer is utilized, it is preferably present in an amount necessary to break the emulsion. Additionally, antifreeze agents may be beneficial to improve the freezing point of the emulsion. In some embodiments, optional additives may be included in the consolidating agent emulsion in an amount in the range of about 0.001% to about 10% by weight of the consolidating agent emulsion composition. One of ordinary skill in the art with the benefit of this disclosure will recognize that the compatibility of any given additive should be tested to ensure that it does not adversely affect the performance of the consolidating agent emulsion.


In some embodiments, the consolidating agent emulsions of the present invention may further comprise a foaming agent. As used herein, the term “foamed” also refers to co-mingled fluids. In certain embodiments, it may desirable that the consolidating agent emulsion is foamed to, inter alia, provide enhanced placement of a consolidating agent emulsion composition and/or to reduce the amount of aqueous fluid that is required, e.g., in water sensitive subterranean formations. Various gases can be utilized for foaming the consolidating agent emulsions of this invention, including, but not limited to, nitrogen, carbon dioxide, air, methane, and mixtures thereof. One of ordinary skill in the art with the benefit of this disclosure will be able to select an appropriate gas that may be utilized for foaming the consolidating agent emulsions of the present invention. In some embodiments, the gas may be present in a consolidating agent emulsion of the present invention in an amount in the range of about 5% to about 98% by volume of the consolidating agent emulsion. In some embodiments, the gas may be present in a consolidating agent emulsion of the present invention in an amount in the range of about 20% to about 80% by volume of the consolidating agent emulsion. In some embodiments, the gas may be present in a consolidating agent emulsion of the present invention in an amount in the range of about 30% to about 70% by volume of the consolidating agent emulsion. The amount of gas to incorporate into the consolidating agent emulsion may be affected by factors including the viscosity of the consolidating agent emulsion and wellhead pressures involved in a particular application.


In those embodiments where it is desirable to foam the consolidating agent emulsions of the present invention, surfactants such as HY-CLEAN (HC-2)™ surface-active suspending agent, PEN-5, or AQF-2™ additive, all of which are commercially available from Halliburton Energy Services, Inc., of Duncan, Okla., may be used. Additional examples of foaming agents that may be utilized to foam and stabilize the consolidating agent emulsions may include, but are not limited to, betaines, amine oxides, methyl ester sulfonates, alkylamidobetaines such as cocoamidopropyl betaine, alpha-olefin sulfonate, trimethyltallowammonium chloride, C8 to C22 alkylethoxylate sulfate and trimethylcocoammonium chloride. Other suitable foaming agents and foam stabilizing agents may be included as well, which will be known to those skilled in the art with the benefit of this disclosure.


Other additives may be suitable as well as might be recognized by one skilled in the art with the benefit of this disclosure.


B. Examples of Some Suitable Methods of the Present Invention

The consolidating agent emulsions of the present invention may be used in any suitable subterranean operation in which it is desirable to control particulate migration and/or modify the stress-activated reactivity of subterranean fracture faces and other surfaces in subterranean formations. Additionally, when used in conjunction with a well bore, these methods can be performed at any time during the life of the well.


One example of a method of the present invention comprises: providing a consolidating agent emulsion that comprises an aqueous fluid, an emulsifying agent, and a consolidating agent; and treating at least a plurality of particulates with the consolidating agent emulsion to produce a plurality of consolidating agent coated particulates. In some embodiments, these consolidating agent coated particulates may then be used downhole, for example, in a fracturing or a gravel packing operation. The term “coated particulate” as used herein means particulates that have been at least partially coated with a process comprising a consolidating agent emulsion of the present invention. The particulates may be coated by any suitable method as recognized by one skilled in the art with the benefit of this disclosure. The term “coated” does not imply any particular degree of coverage of the particulates with a consolidating agent.


In other embodiments, the present invention provides a method comprising providing a treatment fluid that comprises a consolidating agent emulsion that comprises an aqueous fluid, an emulsifying agent, and a consolidating agent; and introducing the treatment fluid into a subterranean formation. In some embodiments, the consolidating agent emulsion may then control particulate migration by allowing the consolidating agent to at least partially coat or otherwise become incorporated with the formation surface (note that no specific depth of treatment is implied), and consolidate at least some particulates in a portion of a subterranean formation.


In other embodiments, the present invention provides a method comprising providing a treatment fluid that comprises at least a plurality of particulates coated using a consolidating agent emulsion that comprises an aqueous fluid, an emulsifying agent, and a consolidating agent; introducing the treatment fluid into a subterranean formation; and allowing the consolidating agent to interact with at least a portion of a mineral surface to modify the stress-activated reactivity of at least a portion of a mineral surface in the subterranean formation.


In some embodiments, the consolidating agent emulsions of the present invention may be used, inter alia, in primary, remedial, or proactive methods. Whether a particular method of this invention is “primary,” “remedial,” or “proactive” is determined relative to the timing of a fracturing treatment or a gravel packing treatment. In some embodiments, a primary method of the present invention may involve using the consolidating agent emulsions of the present invention in conjunction with a fracturing fluid or a gravel pack fluid (e.g., as a component of the fracturing fluid or a gravel pack fluid so that the consolidating agent emulsions of the present invention are introduced into the subterranean formation with the fluid). The remedial methods may be used in wells wherein a portion of the well has previously been fractured and/or propped. The remedial methods also may be used in a gravel packing situation, for example where there has been a screen problem or failure. The proactive methods may be used in wells that have not yet been fractured or gravel packed. In some embodiments, the proactive methods can be performed in conjunction with a fracturing treatment, for example, as a pre-pad to the fracturing treatment or in any diagnostic pumping stage performed before a fracturing, gravel packing, or acidizing procedure.


One of ordinary skill in the art will recognize that the present invention may be useful to stabilize other types of particulates, such as the coatings (also referred to as “grapeskin”) left over from some encapsulated materials.


In some embodiments, it may be desirable to utilize a preflush solution prior to the placement of the consolidating agent emulsion compositions in a subterranean formation, inter alia, to remove excess fluids from the pore spaces in the subterranean formation, to clean the subterranean formation, etc. Examples of suitable preflush solutions include, but are not limited to, aqueous fluids, solvents, and surfactants capable of altering the wetability of the formation surface. Examples of suitable preflush solvents may include mutual solvents such as MUSOL and N-VER-SPERSE A, both commercially available from Halliburton Energy Services, Inc., of Duncan, Okla. An example of a suitable preflush surfactant may also include an ethoxylated nonylphenol phosphate ester such as ES-5, which is commercially available from Halliburton Energy Services, Inc., of Duncan, Okla. Additionally, in those embodiments where the consolidating agent emulsions of the present invention comprise a resin composition, it may be desirable to include a hardening agent in a preflush solution.


Additionally, in some embodiments, it may be desirable to utilize a postflush solution subsequent to the placement of the consolidating agent emulsion compositions in a subterranean formation, inter alia, to displace excess resin from the near well bore region. Examples of suitable postflush solutions include, but are not limited to, aqueous fluids, solvents, gases, e.g. nitrogen, or any combination thereof. Additionally, in some embodiments, in may be desirable to include a hardening agent in the postflush solution. For example, certain types of resin compositions including, but not limited to, furan based resins, urethane resins, and epoxy based resins, may be catalyzed with a hardening agent placed in a postflush solution.


Below are some additional, but not exclusive, examples of some of the primary, remedial, and proactive methods of the present invention.


1. Primary Methods


In some embodiments, the consolidating agent emulsions of the present invention may be used in a primary method with a well treatment fluid, such as a fracturing fluid or a gravel pack fluid. One example of such a method comprises: providing a fracturing fluid that comprises a consolidating agent emulsion comprising an aqueous fluid, an emulsifying agent, and a consolidating agent; placing the fracturing fluid into a subterranean formation at a pressure sufficient to create or enhance a fracture therein; and allowing the consolidating agent to at least partially consolidate particulates within a portion of the subterranean formation. The fracturing fluids in these primary embodiments may comprise any suitable component usually found in fracturing fluids in view of the characteristics of the formation including, but not limited to, an aqueous base fluid, proppant particulates, gelling agents, surfactants, breakers, buffers, a gas phase (if the fracturing fluid is foamed or commingled), coupling agents, and the like. One of ordinary skill in the art with the benefit of this disclosure will likely recognize the appropriate components in conjunction with a consolidating agent emulsion composition of the present invention for use in a fracturing fluid for a given application.


One example of a primary gravel pack method of the present invention comprises: providing a gravel pack fluid that comprises gravel and a consolidating agent emulsion composition, the consolidating agent emulsion composition comprising an aqueous fluid, an emulsifying agent, and a consolidating agent; contacting a portion of the subterranean formation with the gravel pack fluid so as to place a gravel pack in or near a portion of the subterranean formation; and allowing the consolidating agent to stabilize particulates within the subterranean formation. The gravel pack fluids used in these embodiments may be any suitable gravel pack fluid, and it may comprise those things usually found in gravel pack fluids including, but not limited to, an aqueous base fluid, gravel particulates, gelling agents, surfactants, breakers, buffers, a gas phase (if the fluid is foamed or commingled), and the like. One of ordinary skill in the art with the benefit of this disclosure will likely recognize the appropriate components in conjunction with a consolidating agent emulsion composition of the present invention for use in a gravel pack fluid for a given application.


2. Remedial Measures


In some remedial embodiments of the present invention, after a fracturing treatment or a gravel pack treatment has been performed, the consolidating agent emulsions of the present invention may be introduced into an unconsolidated zone of a subterranean formation to stabilize particulates within the zone. The consolidating agent emulsions may disperse any loose fines within a proppant pack in a fracture, move any fines away from the fracture (or near well bore), stabilize gravel particulates around a screen, stabilize a screen failure, and/or lock the fines in the formation.


In another remedial embodiment, the consolidating agent emulsions of the present invention may be introduced into a subterranean formation that is producing unconsolidated particulate material as a result of, inter alia, depletion, water breakthrough, etc. The consolidating agent emulsions may stabilize and/or strengthen the particulates in the formation and thereby reduce their undesirable production.


3. The Proactive Methods


The proactive methods of the present invention are most suited for wells that have not been fractured or gravel packed yet. These methods can be used as a pre-treatment before a fracturing treatment or at the early stage of a fracturing treatment (including diagnostic pumping) as a pre-pad treatment.


In some proactive embodiments of the present invention, the consolidating agent emulsions of the present invention may be introduced into an unconsolidated zone of a subterranean formation to stabilize particulates within the zone.


In some embodiments, the proactive methods of the present invention comprise placing the consolidating agent emulsions before or as part of a pre-pad of a fracturing treatment into a subterranean formation. In some embodiments, subsequent to placing the consolidating agent emulsion composition in the formation, the subterranean formation may be fractured. This fracturing step may include the introduction of a plurality of particulates into the formation. In some embodiments, at least a portion of the particulates may be coated with a consolidating agent. In some embodiments, the coated particulates may be introduced into the fluid at the end of the fracturing treatment. In some embodiments, at least a plurality of the particulates may be of a larger size, such that the fracture has a higher conductivity. For example, the size of at least a plurality of the particulates may have a weight mean particle size (“d50”) of about 20 times to about 50 times the d50 of the formation particulates.


In some embodiments, the consolidating agent emulsions of the present invention may be used in a supported open hole well bore. In supported open hole well bores, a slotted liner or screen, for example, may be utilized to provide mechanical support and/or to allow the bore hole to conform and/or comply to the liner in very weak formation layers. In addition, in some supported open hole well bores, zonal isolation packers may also be used. It may be desirable in certain embodiments to use the consolidating agent emulsions of the present invention in a supported open hole well bore. One potential advantage of utilizing the consolidating agent emulsions of the present invention in a supported open hole well bore is that the formation around the well bore may be stabilized, thus mitigating any fines movement or long term plugging, such that the placement of a gravel pack may no longer be necessary.


4. Introducing Coated Particulates


In some embodiments, the consolidating agent emulsions of the present invention may be coated on particulates to be used in a fracturing or gravel packing process like those described above. As stated above, the term “coated” implies no particular degree of coverage or mechanism by which the consolidating agent becomes incorporated with the particulates. The term includes, but is not limited to, simple coating, adhesion, impregnation, etc. The resultant coated particulates may be introduced as part of a fracturing or gravel packing process, at any point during one of the methods described above. Preferably, the coated particulates are introduced towards the end of a fracturing or gravel packing treatment so that the maximum economic benefit can be obtained.


In accordance with the methods and compositions of the present invention, all or part of the particulates may be coated (preferably on-the-fly) with a consolidating agent using the consolidating agent emulsions of the present invention and may then be suspended in a fracturing fluid or used as part of a gravel packing process. The consolidating agent emulsions are used to coat the consolidating agent on dry particulates while the particulates are conveyed in a conveying and/or mixing device. The amount of consolidating agent coated on the particulates is in the range of about 0.1% to about 20% by weight of the particulate, with about 1-5% being preferred.


The term “on-the-fly” is used herein to mean that a flowing stream is continuously introduced into another flowing stream so that the streams are combined and mixed while continuing to flow as a single stream. The coating of the dry particulates with the consolidating agent emulsions and any mixing of the consolidating agent coated particulates with a fracturing fluid or treatment fluid are all preferably accomplished on-the-fly. However, as is well understood by those skilled in the art, such mixing can also be accomplished by batch mixing or partial batch mixing.


A wide variety of particulate materials may be used in accordance with the present invention, including, but not limited to, sand, bauxite, ceramic materials, glass materials, resin precoated proppant (e.g., commercially available from Borden Chemicals and Santrol, for example, both from Houston, Tex.), polymer materials, TEFLON (tetrafluoroethylene) materials, nut shells, ground or crushed nut shells, seed shells, ground or crushed seed shells, fruit pit pieces, ground or crushed fruit pits, processed wood, composite particulates prepared from a binder with filler particulate including silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, and mixtures thereof. The particulate material used may have a particle size in the range of about 2 to about 400 mesh, U.S. Sieve Series. Preferably, the particulate material is graded sand having a particle size in the range of about 10 to about 70 mesh, U.S. Sieve Series. Preferred sand particle size distribution ranges are one or more of 10-20 mesh, 20-40 mesh, 40-60 mesh or 50-70 mesh, depending on the particle size and distribution of the formation particulates to be screened out by the particulate materials. Other particulates that may be suitable for use in subterranean applications also may be useful.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the entire scope of the invention.


Example 1

Diagenesis tests were performed using 3-in. diameter radial API conductivity cells fitted with Ohio sandstone core wafers on the top and bottom of the proppant pack. Alumina-based proppant at a loading of 2 lb/ft2 was used for the proppant pack, with 2% KCl as the fluid medium. Sample proppant pack No. 1 contained untreated proppant and Sample proppant pack No. 2 contained proppant that was coated using the consolidating agent emulsions of the present invention.


After preparation, each sample was subjected to a stress load of 10,000 psi at 250° F. for 126 hours in static conditions. The API conductivity cell was then disassembled, and the Ohio sandstone wafers were examined to determine proppant particulate embedment by optical microscopy. For each sample, the proppant layer next to the Ohio sandstone wafer and the center of the proppant pack were examined by Environmental Scanning Electron Microscope. FIG. 1 is a microscopy image of proppant particulates used in each sample before exposure to the stress load and temperatures. FIG. 2 is a microscopy image of Sample proppant pack No. 1, containing untreated proppant particulates, after being exposed to the stress load and temperatures. FIG. 3 is a microscopy image of Sample proppant pack No. 2, containing proppant particulates that were coated using the consolidating agent emulsions of the present invention, after being exposed to the stress load and temperatures.


Electron dispersive X-ray (EDX) was also used to determine the silica-to-aluminum ratio in various areas of Sample proppant pack No. 1. The silica-to-aluminum ratio observed for the proppant was 0.9, as is typical for ceramic proppant, while that for the Ohio sandstone was 8.4. The porosity filling precipitate was found to be 4.9, or an intermediate concentration of these metals. The silica-to-aluminum ratio was not measured in Sample proppant pack No. 2 because the porosity filling precipitate was not found in the pack.


Thus, by treating the proppant pack with the consolidating agent emulsions of the present invention, diagenesis appeared to be reduced and the porosity filling precipitate at least appeared to be substantially eliminated from the pack.


Example 2

Conductivity tests were performed by preparing 5-lb/ft2 proppant packs of 20/40-mesh ceramic proppant. Sample proppant pack No. 3 and Sample proppant pack No. 4 were each separately placed between two unconsolidated silica wafers, which were used to simulate unconsolidated formation faces of a soft formation. Each sample proppant pack and the two unconsolidated silica wafers were then placed between two Ohio sandstone core wafers and placed in a linear API conductivity cell.


The two cells were then brought to an initial stress of 2,000 psi and 180° F. Sample proppant pack No. 3 was then treated with only 3% KCl and Sample proppant pack No. 4 was treated with a consolidating agent emulsion of the present invention. Both treatments were performed by injecting the proppant pack with 3 pore volumes of the treatment fluid. Flow was then initiated through each Sample proppant pack in the conventional linear direction to determine the initial conductivity of each of the Sample proppant packs at 2,000 psi closure stress. After stable flow was achieved, flow at a rate of 2 mL/min was initiated through the wafers to simulate production from the formation into the fracture. The effluent fluid was then captured to examine for fines production.


Sample proppant pack No. 3 failed with the continuous flow from the silica wafers into the proppant pack. This failure resulted in the fines exiting the test cell, thereby causing the overall width to collapse. The collapse was caused by the flow removing the fines that make up the wafer and transporting them through the proppant pack and out of the cell. After the failure of the proppant pack, all flow was stopped for this test cell. Differential pressure for the conductivity measurement increased beyond the capacity of the sensor because of the fines invasion into the pack. Therefore, no subsequent values were obtained for Sample proppant pack No. 3.


Sample proppant pack No. 4 continued to allow inflow through the silica wafers without failure or collapse of the overall width. After reaching stable conductivity measurements at 2,000 psi closure, the stress load was increased to 4,000 psi closure. Again, after reaching stable conductivity measurements, the stress load was decreased back to 2,000 psi closure. This stress cycle was repeated several times with a doubling in inflow rate with each cycle to try to destabilize the pack.


Conductivity results for Sample proppant pack No. 3 and Sample proppant pack No. 4 are shown in Table 1 below.













TABLE 1








Conductivity
Conductivity



Closure

(mD-ft) for
(mD-ft) for



Stress
Inflow Rate
Sample proppant
Sample proppant


Time (hr)
(psi)
(cc/min)
pack No. 3
pack No. 4



















0
2000
2
13787
12435


20
2000
2
  2
11089


43
2000
2

11362


67
2000
2

12283


95
4000
4

11708


139
4000
4

11540


164
2000
2

11822


187
2000
2

11905


235
2000
2

11504


307
4000
4

11166


332
2000
2

11756


355
2000
2

11327









Thus, Example 2 demonstrates, inter alia, that the consolidating agent emulsions of the present invention may effectively control or mitigate the invasion of formation fines into the proppant and may allow the proppant pack to maintain conductivity.


Example 3

Mechanical strength tests were performed using two Salt Wash South core samples having a 4 inch diameter with a ¼ inch perforation drilled into the end of each core. Sample Core No. 1 was untreated. Sample Core No. 2 was treated using consolidating agent emulsion “FDP-S 863,” which is available from Halliburton Energy Services, Inc., of Duncan, Okla. The consolidating agent emulsion was then displaced with a postflush comprising nitrogen, and then the resin composition in the consolidating agent emulsion was allowed to cure. Both sample cores were installed inside a 4 inch diameter Hassler Sleeve Assembly. A confining pressure of 1,500 psi was then applied on the core. A brine prepared from 3% (wt/vol) KCl was injected into the cores for testing. For Sample Core No. 1, the injection rates were increased while recording the change in pressure and flow rate at which sand was produced. For Sample Core No. 2, the test cell limitations were reached without inducing sand production. Core plugs were then drilled out of the large cores and the unconfined compressive strength was measured. FIGS. 4 and 5 are microscopy images of Sample Core No. 2, demonstrating how the consolidating agent may be concentrated at contact points between particulates to provide enhanced compressive strength without significantly damaging reservoir permeability.


Compressive strength results for Sample Core No. 1 and Sample Core No. 2 are shown in Table 2 below.












TABLE 2







Sample Core
Sample Core



No. 1 (untreated)
No. 2 (treated)


















Core Size
4 inch diameter,
4 inch diameter,



6 inch length
6 inch length











Perforation Diameter
¼
inch
¼
inch


Perforation Length
4
inches
4
inches










Confining Stress
1500
psi
1500 psi initially





to 3000 psi at high





flow conditions









Maximum Flow Conditions
300 mL/min,
3000 mL/min,



300 psi ΔP
2000 psi ΔP


Sand Produced
Yes
No











Unconfined Compressive
400
psi
1332
psi


Strength


Cohesive Strength
10
psi
100
psi









Thus, Example 3 demonstrates, inter alia, that the consolidating agent emulsions of the present invention may provide enhanced compressive and/or cohesive strength, and may also minimize the flow back of unconsolidated particulate material.


Example 4

A synthetic sand mixture prepared from 90% (wt/wt) of 70/170-mesh sand and 10% of silica flour was first packed inside a rubber sleeve. The sand pack was then installed inside a stainless flow cell. An annular pressure of 1,000 psi was then applied on the sand pack. A brine prepared from 3% (wt/vol) KCl was used to saturate the sand pack at an injection rate of 2 mL/min by flowing from the bottom up direction of the flow cell for a total volume of 1,000 mL. After the sand pack was saturated, the injection flow rate was increased to 10 mL/min until a steady pressure drop was obtained to determine initial permeability for the sand pack.


For Sample Pack No. 1, the treatment sequence included a pre-flush of 3% KCl brine containing 0.5% of a cationic surfactant with an injection rate of 10 mL/min for a total volume of 1,000 mL, a treatment of 1.5% active water-based resin mixture with an injection rate of 10 mL/min for a total volume of 1,000 mL, and a post-flush volume of 3% KCl brine containing 0.5% of a cationic surfactant with an injection rate of 10 mL/min for a total volume of 1,000 mL After the post-flush injection, all the values were shut off. Heat was applied to the flow cell by heat tape to bring the temperature to 180° F. and the treated sand pack was allowed to cure for 48 hours.


For Sample Pack No. 2, the treatment sequence included a pre-flush of 3% KCl brine containing 0.5% of a cationic surfactant with an injection rate of 10 mL/min for a total volume of 1,000 mL, a treatment of 3% active water-based resin mixture with an injection rate of 10 mL/min for a total volume of 1,000 mL, and a post-flush volume of 3% KCl brine containing 0.5% of a cationic surfactant with an injection rate of 10 mL/min for a total volume of 1,000 mL After the post-flush injection, all the values were shut off. Heat was applied to the flow cell by heat tape to bring the temperature to 180° F. and the treated sand pack was allowed to cure for 48 hours.


For Sample Pack No. 3, the treatment sequence included a pre-flush of 3% KCl brine containing 0.5% of a cationic surfactant with an injection rate of 10 mL/min for a total volume of 1,000 mL, a treatment of 3% active water-based resin mixture with an injection rate of 10 mL/min for a total volume of 1,000 mL, and a post-flush volume of 3% KCl brine containing 0.5% of a cationic surfactant with an injection rate of 10 mL/min for a total volume of 1,000 mL After the post-flush injection, all the values were shut off. Heat was applied to the flow cell by heat tape to bring the temperature to 180° F. and the treated sand pack was allowed to cure for 48 hours.


After the curing period for each Sample Pack, the temperature was allowed to cool down to room temperature. Again, a brine of 3% KCl was injected from the bottom up direction through the treated sand pack to determine its regained permeability. After this brine injection, the rubber sleeve containing the sand pack was removed from the flow cell. An incision was made from the top to the bottom of the sleeve to allow for the removal of the consolidated sand pack. Cores were then obtained from each of the sample consolidated sand packs to determine mechanical properties of the consolidated sand. Compressive strength results and regained permeability results for each sample are shown in FIGS. 6 and 7, respectively.


Thus, Example 4 demonstrates, inter alia, that the consolidating agent emulsions of the present invention may provide enhanced compressive strength and/or cohesive strength, and satisfactory regained permeability.


Example 5

Flow tests were conducted on a 7 inch diameter×24 inch long Castlegate core. In phase one, the core was saturated with a potassium chloride (KCl) brine and then taken to irreducible water saturation by flowing odorless mineral spirits (OMS). The core was then placed in a test assembly under simulated reservoir conditions of 6000 psi over burden pressure and 3000 psi pore pressure. The core was then perforated using 500 psi under balance to allow the perforation to surge and clean up slightly. The core was then removed and placed in a large flow cell where 3000 psi confining stress was applied. The core was then flowed at several flow rates using OMS and OMS+KCl. During this phase, significant quantities of formation sand were produced.


In phase two, the core was then heated to 170° F. and treated using I pore volume of a consolidating agent emulsion of the present invention, displaced with nitrogen, and allowed to cure over night. The core was once again flowed at several flow rates using OMS and OMS+KCl while maintaining 3000 psi confining stress. During this phase only very small quantities of sand production were observed. The core was removed and CT scanned to examine the perforation. FIG. 8 is a CT scan image from the core.


The Castlegate core had an unconfined compressive strength of 800 psi before treatment with a consolidating agent emulsion of the present invention and an unconfined compressive strength of 1500 psi after treatment with a consolidating agent emulsion. The permeability of the core was 500 to 1000 millidarcies and the porosity was 25% to 30%.


Flow tests results for phases 1 and 2 are shown in Table 3 below.










TABLE 3





Phase One
Phase Two







Max Flow Rate 1.796 gallons per
Max Flow Rate 1.969 gpm


minute (″gpm) (OMS and OMS + KCl)
(OMS and OMS + KCl)


Max ΔP - 592 psi
Max ΔP - 723 psi


Total sand produced - 353 gr
Total sand produced - 16.4 gr


0.7 gpm (OMS) - 70 gr sand
0.45 gpm (OMS) - 2.6 gr sand


0.75 gpm(OMS) - 22 gr sand
0.8 gpm (OMS) - 3.9 gr sand


0.9 gpm(OMS) - 61 gr sand
1.25 gpm (OMS + KCl)



0.74 gr sand


0.95 gpm (OMS + KCl) 160 gr sand
1.65 gpm (OMS + KCl)



1.65 gr sand


1.55 gpm (OMS + KCl) 40 gr sand
1.97 gpm (OMS + KCl)



1.69 gr sand









Thus, Example 5 demonstrates, inter alia, that the consolidating agent emulsions of the present invention may provide enhanced compressive and/or cohesive strength.


Example 6

Flow tests were conducted on a 7 inch diameter×24 inch long Castlegate core. The core was perforated using 504 psi under balance. The core was heated to 170° F. and treated using 2 pore volumes of a consolidating agent emulsion of the present invention, displaced with nitrogen, and allowed to cure over night. The core was flowed at a maximum rate of 1.788 gpm using OMS and OMS+a 3% KCl brine while maintaining 3000 psi confining stress. During this phase only very small quantities of sand production were observed. The core was removed and CT scanned to examine the perforation. FIG. 9 is a CT scan image from the core. Flow tests results are shown in Table 4 below.














TABLE 4








Delta Pressure
Flow Rate
Sand Produced



Fluid
(psi)
(gpm)
(gr)





















OMS
191
0.346
3.6



OMS
620
1.672
1.4



OMS + KCl
551
1.01
0



OMS + KCl
772
0.859
0










Thus, Example 6 demonstrates, inter alia, that the consolidating agent emulsions of the present invention may provide enhanced compressive and/or cohesive strength.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. In particular, every range of values (of the form, “of about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values, and set forth every range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an”, as used in the claims, are defined herein to mean one or more than one of the element that it introduces.

Claims
  • 1. A method comprising: providing a consolidating agent emulsion composition that comprises an aqueous fluid, an emulsifying agent, and a consolidating agent, wherein the consolidating agent emulsion composition comprises an aqueous external phase and an oil internal phase, and wherein the consolidating agent comprises a non-aqueous tackifying agent; andintroducing the consolidating agent emulsion composition into at least a portion of a subterranean formation.
  • 2. The method of claim 1 wherein the consolidating agent is present in the consolidating agent emulsion composition in an amount in the range of about 0.1% to about 40% by weight of the consolidating agent emulsion composition.
  • 3. The method of claim 1 wherein the consolidating agent further comprises at least one resin composition selected from the group consisting of a two-component epoxy based resin, a furan based resin, a phenolic based resin, a urethane resin, and a phenol/phenol formaldehyde/furfuryl alcohol resin.
  • 4. The method of claim 1 wherein the non-aqueous tackifying agent is selected from the group consisting of a polyamide, a polyester, a polycarbonate, a silyl-modified polyamide, a polycarbamate, and a urethane.
  • 5. The method of claim 1 wherein the consolidating agent further comprises particles having a size of about 0.01 micrometers to about 300 micrometers.
  • 6. The method of claim 1 wherein the aqueous fluid comprises a liquid hardening agent.
  • 7. The method of claim 1 further comprising introducing a postflush solution comprising a liquid hardening agent into at least a portion of the subterranean formation.
  • 8. The method of claim 1 further comprising introducing a preflush solution comprising a liquid hardening agent into at least a portion of the subterranean formation.
  • 9. The method of claim 1 further comprising introducing a preflush solution comprising at least one member selected from the group consisting of a surfactant and a mutual solvent into at least a portion of the subterranean formation.
  • 10. The method of claim 1 wherein the emulsifying agent is a surfactant.
  • 11. The method of claim 1 wherein the emulsifying agent is present in the consolidating agent emulsion composition in an amount in the range of about 0.001% to about 10% by weight of the consolidating agent emulsion composition.
  • 12. The method of claim 1 wherein the consolidating agent further comprises at least a plurality of filler particles.
  • 13. The method of claim 12 wherein the filler particles comprise at least a plurality of filler particles selected from the group consisting of particles with a size of about 0.01 micrometers to about 100 micrometers, silica, glass, clay, alumina, fumed silica, carbon black, graphite, mica, meta-silicate, calcium silicate, calcine, kaoline, talc, zirconia, titanium dioxide, fly ash, and boron.
  • 14. The method of claim 1 further comprising introducing at least a plurality of proppant particulates into at least a portion of the subterranean formation wherein the proppant particulates have a weight mean particle size of about 20 times to about 50 times the weight mean particle size of the formation particulates.
  • 15. The method of claim 1 further comprising metering the consolidating agent emulsion composition into a fracturing fluid containing particulates while being mixed; and placing the fracturing fluid into a subterranean formation at a pressure sufficient to create or enhance at least one or more fractures therein.
  • 16. A method comprising: providing a consolidating agent emulsion composition that comprises an aqueous fluid, an emulsifying agent, and a consolidating agent, wherein the consolidating agent emulsion composition comprises an aqueous external phase and an oil internal phase, and wherein the consolidating agent comprises at least one non-aqueous tackifying agent selected from the group consisting of a polyamide, a polyester, a polycarbonate, a silyl-modified polyamide, a polycarbamate, and a urethane;introducing the consolidating agent emulsion composition into at least a portion of a subterranean formation that comprises particulates; andallowing the consolidating agent to at least partially consolidate at least a portion of the particulates while maintaining permeability within the subterranean formation needed to extract hydrocarbons from the subterranean formation.
  • 17. The method of claim 16 wherein the consolidating agent is present in the consolidating agent emulsion composition in an amount in the range of about 0.1% to about 40% by weight of the consolidating agent emulsion composition.
  • 18. The method of claim 16 wherein the consolidating agent further comprises at least one resin composition selected from the group consisting of a furan based resin, a phenolic based resin, a urethane resin, and a phenol/phenol formaldehyde/furfuryl alcohol resin.
  • 19. The method of claim 16 wherein the consolidating agent further comprises particles having a size of about 0.01 micrometers to about 300 micrometers.
  • 20. The method of claim 16 wherein the aqueous fluid comprises a liquid hardening agent.
  • 21. The method of claim 16 further comprising introducing a postflush solution comprising a liquid hardening agent into at least a portion of the subterranean formation.
  • 22. The method of claim 16 wherein the emulsifying agent is a surfactant.
  • 23. The method of claim 16 wherein the emulsifying agent is present in the consolidating agent emulsion composition in an amount in the range of about 0.001% to about 10% by weight of the consolidating agent emulsion composition.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 11/351,931, entitled “Consolidating Agent Emulsions and Associated Methods,” filed on Feb. 10, 2006 now U.S. Pat. No. 7,819,192, the entirety of which is incorporated by reference.

US Referenced Citations (720)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2604947 Martin et al. Jul 1952 A
2611750 White Sep 1952 A
2703316 Schneider Mar 1955 A
2714929 Nowak et al. Aug 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3052298 Malott Sep 1962 A
3070165 Stratton Dec 1962 A
3123138 Robichaux Mar 1964 A
3173484 Huitt et al. Mar 1965 A
3176768 Brandt et al. Apr 1965 A
3195635 Fast Jul 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3302719 Fischer Feb 1967 A
3308885 Sandiford Mar 1967 A
3308886 Evans Mar 1967 A
3310111 Pavlich et al. Mar 1967 A
3316965 Watanabe May 1967 A
3329204 Brieger Jul 1967 A
3336980 Rike Aug 1967 A
3364995 Atkins et al. Jan 1968 A
3366178 Malone et al. Jan 1968 A
3371712 Adams Mar 1968 A
3373106 Lister et al. Mar 1968 A
3375872 McLaughlin et al. Apr 1968 A
3378074 Kiel Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3455390 Gallus Jul 1969 A
3478824 Hess et al. Nov 1969 A
3481403 Gidley et al. Dec 1969 A
3489222 Millhone et al. Jan 1970 A
3492147 Young et al. Jan 1970 A
3509951 Enochs May 1970 A
3525398 Fisher Aug 1970 A
3565176 Clifford Feb 1971 A
3592266 Tinsley Jul 1971 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3708013 Dismukes Jan 1973 A
3709298 Pramann Jan 1973 A
3709641 Sarem Jan 1973 A
3741308 Veley Jun 1973 A
3743019 Totty Jul 1973 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3769070 Schilt Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3826310 Karnes Jul 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Knox et al. Oct 1974 A
3850247 Tinsley Nov 1974 A
3854533 Gurley et al. Dec 1974 A
3857444 Copeland Dec 1974 A
3861467 Harnsberger Jan 1975 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3878893 Copeland Apr 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3933204 Knapp Jan 1976 A
3933205 Kiel Jan 1976 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice et al. May 1976 A
3960736 Free et al. Jun 1976 A
3976135 Anderson Aug 1976 A
3977472 Graham et al. Aug 1976 A
4000781 Knapp Jan 1977 A
4008763 Lowe, Jr. Feb 1977 A
4015995 Hess Apr 1977 A
4018285 Watkins et al. Apr 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4060988 Arnold Dec 1977 A
4068676 Thorn et al. Jan 1978 A
4068718 Cooke, Jr. et al. Jan 1978 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4085801 Sifferman et al. Apr 1978 A
4085802 Sifferman et al. Apr 1978 A
4089437 Chutter et al. May 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4220566 Constien et al. Sep 1980 A
4245702 Haafkens et al. Jan 1981 A
4247430 Constien Jan 1981 A
4259205 Murphey Mar 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstoesser et al. Jun 1983 A
4392988 Dobson et al. Jul 1983 A
4399866 Dearth Aug 1983 A
4415805 Fertl et al. Nov 1983 A
4428427 Friedman Jan 1984 A
4439489 Johnson et al. Mar 1984 A
4441556 Powers et al. Apr 1984 A
4443347 Underdown et al. Apr 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4493875 Beck et al. Jan 1985 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel et al. Feb 1985 A
4501328 Nichols Feb 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4585064 Graham et al. Apr 1986 A
4649998 Friedman Mar 1987 A
4662449 Friedman May 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4670501 Dymond et al. Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4681165 Bannister Jul 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4772646 Harms et al. Sep 1988 A
4777200 Dymond et al. Oct 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842070 Sharp Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4846118 Slattery et al. Jul 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4875525 Mana Oct 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4892147 Jennings, Jr. et al. Jan 1990 A
4895207 Friedman et al. Jan 1990 A
4898750 Friedman et al. Feb 1990 A
4903770 Friedman et al. Feb 1990 A
4921576 Hurd May 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4984635 Cullick et al. Jan 1991 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5056597 Stowe, III et al. Oct 1991 A
5082056 Tackett, Jr. et al. Jan 1992 A
5095987 Weaver et al. Mar 1992 A
5105886 Strubhar et al. Apr 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Facteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Facteau et al. Nov 1992 A
5173527 Calve et al. Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutta et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Csabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredrickson et al. Aug 1993 A
5244362 Conally et al. Sep 1993 A
5247059 Gruber et al. Sep 1993 A
5249627 Harms et al. Oct 1993 A
5249628 Surjaatmadia Oct 1993 A
5256729 Kutta et al. Oct 1993 A
5265678 Grundmann Nov 1993 A
5273115 Spafford Dec 1993 A
5278203 Harms Jan 1994 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrigues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358047 Himes et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmadja et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5377756 Northrop et al. Jan 1995 A
5377759 Surles Jan 1995 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5390741 Payton et al. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5403822 Mueller et al. Apr 1995 A
5420174 Dewprashad May 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Surles et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5492178 Nguyen et al. Feb 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5494178 Maharg Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Surles et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constien Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5663123 Goodhue, Jr. et al. Sep 1997 A
5670473 Scepanski Sep 1997 A
5692566 Surles Dec 1997 A
5697440 Weaver et al. Dec 1997 A
5697448 Johnson Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5701956 Hardy et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5738136 Rosenberg Apr 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Surles Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5836393 Johnson Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5874490 Arora et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Facteau Apr 1999 A
5893416 Read Apr 1999 A
5901789 Donnelly et al. May 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5913364 Sweatman Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5944105 Nguyen Aug 1999 A
5944106 Dalrymple et al. Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960784 Ryan Oct 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960878 Nguyen et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5969523 Martin et al. Oct 1999 A
5969823 Wurz et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
RE36466 Nelson et al. Dec 1999 E
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6035936 Whalen Mar 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6063738 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6070667 Gano Jun 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148911 Gipson et al. Nov 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6165947 Chang et al. Dec 2000 A
6167967 Sweatman Jan 2001 B1
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6184311 O'Keeffe et al. Feb 2001 B1
6186228 Wegener et al. Feb 2001 B1
6187834 Thayer et al. Feb 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209644 Brunet Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6238597 Yim et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6258757 Sweatman et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6274650 Cui Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6310008 Rietjens Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6315040 Donnelly Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330916 Rickards et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6342467 Chang et al. Jan 2002 B1
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364018 Brannon et al. Apr 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367165 Huttlin Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394181 Schnatzmeyer et al. May 2002 B2
6401817 Griffith et al. Jun 2002 B1
6405796 Meyer et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6415509 Echols et al. Jul 2002 B1
6422183 Kato Jul 2002 B1
6422314 Todd et al. Jul 2002 B1
6439309 Matherly et al. Aug 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6440255 Kohlhammer et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6457518 Castano-Mears et al. Oct 2002 B1
6458885 Stengel et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B2
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6510896 Bode et al. Jan 2003 B2
6520255 Tolman et al. Feb 2003 B2
6527051 Reddy et al. Mar 2003 B1
6528157 Hussain et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6534449 Gilmour et al. Mar 2003 B1
6536939 Blue Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6550959 Huber et al. Apr 2003 B2
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6582819 McDaniel et al. Jun 2003 B2
6588926 Huber et al. Jul 2003 B2
6588928 Huber et al. Jul 2003 B2
6593402 Chatterji et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6608162 Chiu et al. Aug 2003 B1
6609578 Patel et al. Aug 2003 B2
6616320 Huber et al. Sep 2003 B2
6620857 Valet Sep 2003 B2
6626241 Nguyen Sep 2003 B2
6632527 McDaniel et al. Oct 2003 B1
6632778 Ayoub et al. Oct 2003 B1
6632892 Rubinsztajn et al. Oct 2003 B2
6642309 Komitsu et al. Nov 2003 B2
6648501 Huber et al. Nov 2003 B2
6659179 Nguyen Dec 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6668926 Nguyen et al. Dec 2003 B2
6669771 Tokiwa et al. Dec 2003 B2
6677426 Noro et al. Jan 2004 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6705400 Nguyen et al. Mar 2004 B1
6705440 Nguyen et al. Mar 2004 B2
6710019 Sawdon et al. Mar 2004 B1
6713170 Kaneko et al. Mar 2004 B1
6725926 Nguyen et al. Apr 2004 B2
6725930 Boney et al. Apr 2004 B2
6725931 Nguyen et al. Apr 2004 B2
6725981 Nguyen et al. Apr 2004 B1
6729404 Nguyen et al. May 2004 B2
6729405 DiLullo et al. May 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6749025 Brannon et al. Jun 2004 B1
6753299 Longhofer et al. Jun 2004 B2
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6776235 England Aug 2004 B1
6776236 Nguyen Aug 2004 B1
6817414 Lee Nov 2004 B2
6830105 Thesing Dec 2004 B2
6832650 Nguyen et al. Dec 2004 B2
6832655 Ravensbergen et al. Dec 2004 B2
6837309 Boney et al. Jan 2005 B2
6840318 Lee et al. Jan 2005 B2
6851474 Nguyen Feb 2005 B2
6852173 Banerjee et al. Feb 2005 B2
6861394 Ballard et al. Mar 2005 B2
6866099 Nguyen Mar 2005 B2
6877560 Nguyen et al. Apr 2005 B2
6881709 Nelson et al. Apr 2005 B2
6886635 Nguyen et al. May 2005 B2
6887834 Nguyen et al. May 2005 B2
6892813 Nguyen et al. May 2005 B2
6920929 Bour Jul 2005 B2
6949491 Cooke, Jr. Sep 2005 B2
6962200 Nguyen et al. Nov 2005 B2
6978836 Nguyen et al. Dec 2005 B2
6981560 Nguyen et al. Jan 2006 B2
6997259 Nguyen Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7013976 Nguyen et al. Mar 2006 B2
7017665 Nguyen Mar 2006 B2
7021379 Nguyen et al. Apr 2006 B2
7025134 Byrd et al. Apr 2006 B2
7028774 Nguyen et al. Apr 2006 B2
7032667 Nguyen et al. Apr 2006 B2
7036589 Nguyen May 2006 B2
7040403 Nguyen et al. May 2006 B2
7044220 Nguyen et al. May 2006 B2
7049272 Sinclair et al. May 2006 B2
7059406 Nguyen Jun 2006 B2
7063150 Slabaugh et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7073581 Nguyen et al. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7081439 Sullivan et al. Jul 2006 B2
7093658 Chatterji et al. Aug 2006 B2
7104325 Nguyen et al. Sep 2006 B2
7114560 Nguyen et al. Oct 2006 B2
7114570 Nguyen et al. Oct 2006 B2
7117942 Dalrymple et al. Oct 2006 B2
7131491 Blauch et al. Nov 2006 B2
7153575 Anderson et al. Dec 2006 B2
7156194 Nguyen Jan 2007 B2
7166560 Still et al. Jan 2007 B2
7178596 Blauch et al. Feb 2007 B2
7204311 Welton et al. Apr 2007 B2
7210528 Brannon et al. May 2007 B1
7211547 Nguyen May 2007 B2
7216711 Nguyen et al. May 2007 B2
7237609 Nguyen Jul 2007 B2
7252146 Slabaugh et al. Aug 2007 B2
7255169 van Batenburg et al. Aug 2007 B2
7261156 Nguyen et al. Aug 2007 B2
7264051 Nguyen et al. Sep 2007 B2
7264052 Nguyen et al. Sep 2007 B2
7265079 Willberg et al. Sep 2007 B2
7267171 Dusterhoft et al. Sep 2007 B2
7267717 Watanabe et al. Sep 2007 B2
7273099 East, Jr. et al. Sep 2007 B2
7281580 Nguyen et al. Oct 2007 B2
7281581 Nguyen et al. Oct 2007 B2
7281583 Whitfill et al. Oct 2007 B2
7299875 Nguyen et al. Nov 2007 B2
7306037 Nguyen et al. Dec 2007 B2
7334635 Nguyen Feb 2008 B2
7334636 Nguyen Feb 2008 B2
7343973 Dusterhoft et al. Mar 2008 B2
1208064 Dalrymple et al. Apr 2008 A1
7541318 Weaver et al. Jun 2009 B2
7766099 Nguyen Aug 2010 B2
7819192 Weaver et al. Oct 2010 B2
7926591 Nguyen et al. Apr 2011 B2
20010016562 Muir et al. Aug 2001 A1
20020036088 Todd Mar 2002 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20020104217 Echols et al. Aug 2002 A1
20020160920 Dawson et al. Oct 2002 A1
20020169085 Miller et al. Nov 2002 A1
20020189808 Nguyen et al. Dec 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030013871 Mallon et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030106690 Boney et al. Jun 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030114317 Benton et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030131999 Nguyen et al. Jul 2003 A1
20030148893 Lunghofer et al. Aug 2003 A1
20030186820 Thesing Oct 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030188872 Nguyen et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030230431 Reddy et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040000402 Nguyen et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040014608 Nguyen et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040712 Ravi et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040043906 Heath et al. Mar 2004 A1
20040045712 Eoff et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040060702 Kotlar et al. Apr 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040152602 Boles Aug 2004 A1
20040173354 Hinkel et al. Sep 2004 A1
20040177961 Nguyen et al. Sep 2004 A1
20040194960 Nguyen et al. Oct 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040226717 Reddy et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256097 Byrd et al. Dec 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261993 Nguyen Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20040261999 Nguyen Dec 2004 A1
20050000694 Dalrymple et al. Jan 2005 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050028976 Nguyen Feb 2005 A1
20050028979 Brannon et al. Feb 2005 A1
20050034862 Nguyen Feb 2005 A1
20050034865 Todd et al. Feb 2005 A1
20050045326 Nguyen Mar 2005 A1
20050045330 Nguyen et al. Mar 2005 A1
20050045384 Nguyen Mar 2005 A1
20050051331 Nguyen et al. Mar 2005 A1
20050051332 Nguyen et al. Mar 2005 A1
20050059555 Dusterhoft et al. Mar 2005 A1
20050061509 Nguyen Mar 2005 A1
20050092489 Welton et al. May 2005 A1
20050126780 Todd et al. Jun 2005 A1
20050139359 Maurer et al. Jun 2005 A1
20050145385 Nguyen Jul 2005 A1
20050173116 Nguyen et al. Aug 2005 A1
20050178551 Tolman et al. Aug 2005 A1
20050194135 Nguyen et al. Sep 2005 A1
20050194136 Nguyen et al. Sep 2005 A1
20050194140 Dalrymple et al. Sep 2005 A1
20050194142 Nguyen Sep 2005 A1
20050197258 Nguyen Sep 2005 A1
20050207001 Laufer et al. Sep 2005 A1
20050257929 Nguyen et al. Nov 2005 A1
20050263283 Nguyen Dec 2005 A1
20050267001 Weaver et al. Dec 2005 A1
20050269086 Nguyen et al. Dec 2005 A1
20050269101 Stegent et al. Dec 2005 A1
20050274510 Nguyen et al. Dec 2005 A1
20050274517 Blauch et al. Dec 2005 A1
20050274520 Nguyen et al. Dec 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20050284632 Dalrymple et al. Dec 2005 A1
20050284637 Stegent et al. Dec 2005 A1
20060048943 Parker et al. Mar 2006 A1
20060048944 van Batenburg et al. Mar 2006 A1
20060052251 Anderson et al. Mar 2006 A1
20060089266 Dusterhoft et al. Apr 2006 A1
20060113078 Nguyen et al. Jun 2006 A1
20060124303 Nguyen et al. Jun 2006 A1
20060124309 Nguyen et al. Jun 2006 A1
20060137875 Dusterhoft et al. Jun 2006 A1
20060157243 Nguyen Jul 2006 A1
20060175058 Nguyen Aug 2006 A1
20060219405 Nguyen et al. Oct 2006 A1
20060219408 Nguyen et al. Oct 2006 A1
20060234871 Dalrymple et al. Oct 2006 A1
20060234874 Eoff et al. Oct 2006 A1
20060240994 Eoff et al. Oct 2006 A1
20060240995 Rickman et al. Oct 2006 A1
20060260810 Weaver et al. Nov 2006 A1
20060260813 Welton et al. Nov 2006 A1
20060264332 Welton et al. Nov 2006 A1
20060266522 Eoff et al. Nov 2006 A1
20060283592 Sierra et al. Dec 2006 A1
20060289160 van Batenburg et al. Dec 2006 A1
20070007010 Welton et al. Jan 2007 A1
20070012445 Nguyen et al. Jan 2007 A1
20070029087 Nguyen et al. Feb 2007 A1
20070114032 Stegent et al. May 2007 A1
20070131422 Gatlin et al. Jun 2007 A1
20070131425 Gatlin et al. Jun 2007 A1
20070187097 Weaver et al. Aug 2007 A1
20070215354 Rickman et al. Sep 2007 A1
20070267194 Nguyen et al. Nov 2007 A1
20070289781 Rickman et al. Dec 2007 A1
20080006405 Rickman et al. Jan 2008 A1
20080006406 Nguyen et al. Jan 2008 A1
20080110624 Nguyen et al. May 2008 A1
20080135251 Nguyen et al. Jun 2008 A1
20090253594 Dalrymple et al. Oct 2009 A1
20100270023 Dusterhoft Oct 2010 A1
20120205107 Rickman Aug 2012 A1
Foreign Referenced Citations (50)
Number Date Country
2063877 Sep 1992 CA
0313243 Apr 1989 EP
0506934 Oct 1992 EP
0510762 Nov 1992 EP
0528595 Feb 1993 EP
0643196 Mar 1995 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0864726 Sep 1998 EP
0879935 Nov 1998 EP
0933498 Aug 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1326003 Jul 2003 EP
1362978 Nov 2003 EP
1394355 Mar 2004 EP
1396606 Mar 2004 EP
1398460 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1607572 Dec 2005 EP
1107584 Mar 1968 GB
1264180 Feb 1972 GB
1292718 Oct 1972 GB
2298440 Sep 1996 GB
2382143 May 2003 GB
2 431 949 May 2007 GB
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0187797 Nov 2001 WO
WO0181914 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 2004009956 Jan 2004 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 2004083600 Sep 2004 WO
WO2004090281 Oct 2004 WO
WO2004104368 Dec 2004 WO
WO 2005021928 Mar 2005 WO
WO2005080749 Sep 2005 WO
WO 2006116868 May 2006 WO
WO2006103385 Oct 2006 WO
WO2007091007 Aug 2007 WO
WO 2007091058 Aug 2007 WO
Non-Patent Literature Citations (116)
Entry
Search Report and Written Opinion for International Patent Application No. PCT/GB2007/000421 mailed on May 10, 2007 and filed on Feb. 7, 2007 (Re: U.S. Appl. No. 11/351,931).
U.S. Appl. No. 11/482,601 by Richard D. Rickman, et al. entitled “Methods and Compositions for Enhancing Proppant Pack Conductivity”, Jul. 6, 2006.
Office Action dated Mar. 19, 2008 from U.S. Appl. No. 11/482,601.
Notice of Publication dated Jun. 12, 2008 from U.S. Appl. No. 12/070,301.
“Santrol Bioballs”; http://www.fairmounminerals.comtsub.—SANTROL/SANTROL%20Web%20Site/B.sub-.—TD.htm. Sep. 30, 2004.
CDX Gas, “What is Coalbed Methane?” CDX, LLC. Available @ www.cdxgas.com/what.html, printed p. 1, undated. Feb. 16, 2005.
CDX Gas, CDX Solution, 2003, CDX, LLC, Available @ www.cdxgas.com/solution.html, printed pp. 1-2, Feb. 16, 2005.
Dusseault, et al., “Pressure Pulse Workovers in Heavy Oil,” SPE 79033, Nov. 2002.
Feisenthal et al., “Pressure Pulsing—An Improved Method of Waterflooding Fractured Reservoirs,” SPE 1788, 1967.
International Search Report and Opinion (PCT/GB2004/002412), Sep. 16, 2004.
International Search Report and Opinion (PCT/GB2005/003845), Jul. 31, 2006.
International Search Report and Opinion (PCT/GB2005/004009), Jan. 11, 2006.
International Search Report (CPW 21582 EP), Mar. 11, 2005.
International Search Report and Opinion (PCT/GB2004/001497), Jul. 20, 2004.
International Search Report and Opinion (PCT/GB2004/001842), Dec. 10, 2004.
International Search Report and Opinion (PCT/GB2004/002674), Dec. 16, 2004.
International Search Report and Opinion (PCT/GB2004/002968), Nov. 16, 2004.
International Search Report and Opinion (PCT/GB2004/004242), Feb. 10, 2005.
International Search Report and Opinion (PCT/GB2004-000689), Jun. 4, 2004.
International Search Report and Opinion (PCT/GB2004/002727), Mar. 11, 2005.
International Search Report and Opinion (PCT/GB2004/002747), Mar. 11, 2005.
International Search Report and Opinion (PCT/GB2005/004010), Feb. 21, 2006.
International Search Report and Opinion (PCT/GB2006/004102), Feb. 20, 2007.
International Search Report and Opinion (PCT/GB2006/004137), Jun. 5, 2008.
International Search Report and Opinion (PCT/GB2006/004852), Mar. 7, 2007.
International Search Report and Opinion (PCT/GB2006/000366), Jun. 22, 2006.
International Search Report and Opinion (PCT/GB2005/003747), Dec. 12, 2005.
Gidley, et al., “Recent Advances in Hydraulic Fracturing,” Chapter 6, pp. 109-130, 1989.
Gorman, “Plastic Electric: Lining up the Future of Conducting Polymers Science News,” vol. 163, pp. 312-313, May 17, 2003.
Halliburton brochure entitled “H2Zero Service: Introducing the Next Generation of Cost-Effective Conformance Control Solutions”, 2002.
Halliburton brochure entitled “CobraFrac Service, Cost-Effective Method for Stimulation Untapped Reserves—Proved in More Than 30,000 Fracture Treatments”, 2004.
Halliburton brochure entitled “CobraJetFrac Service, Cost-Effective Technology That Can Help Reduce Cost per BOE Produced, Shorten Cycle time and Reduce Capex”.
Halliburton brochure entitled “SurgiFrac Service, a Quick and cost-Effective Method to Help Boost Production From Openhole Horizontal Completions”, 2005.
Halliburton brochure entitled “Sanfix A Resin”, 1999.
Halliburton brochure entitled “Injectrol A Component”, 1999.
Halliburton brochure entitled “Injectrol U Sealant”, 1999.
Halliburton brochure entitled “Injectrol G Sealant”, 1999.
Halliburton brochure entitled “Injectrol IT Sealant”, 1999.
Halliburton brochure entitled “Injectrol Service Treatment”, 1999.
Halliburton brochure entitled “Pillar Frac Stimulation Technique” Fracturing Service Technical Data Sheet.
Halliburton Cobra Frac Advertisement, 2001.
Halliburton Technical Flier—“Multi Stage Frac Completion Methods”.
Halliburton brochure entitled “CoalStim Service, Helps Boost Cash Flow From CBM Assets”, 2003.
Halliburton brochure entitled “Conductivity Endurance Technology for High Permeability Reserviors, Helps Prevent Intrusion of Formation Material Into the Proppant Pack for Improved Long-term Production”, 2003.
Halliburton brochure entitled “Expedite Service, A Step-Change Improvement Over Conventional Proppant Flowback Control Systems. Provides Up to Three Times the Conductivity of RCPs”, 2004.
Halliburton brochure entitled “SandWedge NT Conductivity Enhancement System, Enahances Proppant Pack Conductivity and Helps Prevent Intrusion of Formation Material for Improved Long-Term Production”, 2004.
International Search Report and Opinion (PCT/GB007/002273), Sep. 3, 2007.
International Search Report and Opinion (PCT/GB2004/002948 ), May 24, 2005.
International Search Report and Opinion (PCT/GB2005/000637), Jun. 2, 2005.
International Search Report and Opinion (PCT/GB2005/000634), Jun. 8, 2005.
Kazakov, et al., “Optimizing and Managing Coiled Tubing Frac Strings,” SPE 60747, Apr. 2000.
Nguyen, et al., “A Novel Approach for Enhancing Proppant Consolidation: Laboratory Testing and Field Applications,” SPE 77748, Oct. 2002.
Nguyen, et al., “New Guidelines for Applying Curable Resin-Coated Proppants,” SPE 39582, 1997.
Owens, et al., “Waterflood Pressure Pulsing for Fractured Reservoirs,” SPE 1123, Jun. 1966.
Peng, et al., “Pressure Pulsing Waterflooding in Dual Porosity Naturally Fractured Reservoirs,” SPE 17587, Nov. 1988.
Raza, “Water and Gas Cyclic Pulsing Method for Improved Oil Recovery,” SPE 3005, Dec. 1971.
Almond, et al., “Factors Affecting Proppant Flowback With Resin Coated Proppants,” SPE 30096, May 1995.
Wagner, et al., “Field Application of Lignosulfonate Gels to Reduce Channeling, South Swan Hills Miscible Unit, Alberta, Canada”, Oct. 1986.
Paccaloni, et al., Key Factors for Enhanced Results of Matrix Stimulation Treatments, SPE 17154, Feb. 1988.
Paccaloni, et al., “Advances in Matrix Stimulation Technology,” SPE 20623, Mar. 1993.
Nguyen, et al., “Controlling Proppant Flowback in High-Temperature, High-Production Wells,” SPE 82215, May 2003.
Dusterhoft, et al., “Maximizing Effective Proppant Permeability Under High-Stress, High Gas-Rate Conditions,” SPE 90398, Sep. 2004.
Yang, et al., “Experimental Study on Fracture Initiation by Pressure Pulse,” SPE 63035, Oct. 2000.
Office action from U.S. Appl. No. 11/351,931, Feb. 10, 2006.
Office Action mailed Sep. 8, 2008 for U.S. Appl. No. 12/070,301.
Office Action mailed Sep. 2, 2008 for U.S. Appl. No. 11/482,601.
Office Action for U.S. Appl. No. 11/351,931, mailed Jan. 21, 2009.
U.S. Appl. No. 10/603,492, filed Jun. 25, 2003, Nguyen, et al.
U.S. Appl. No. 10/649,029, filed Aug. 27, 2003, Nguyen et al.
U.S. Appl. No. 10/727,365, filed Dec. 4, 2003, Reddy et al.
U.S. Appl. No. 10/853,879, filed May 26, 2004, Nguyen et al.
U.S. Appl. No. 10/861,829, filed Jun. 4, 2004, Stegent et al.
U.S. Appl. No. 10/868,593, filed Jun. 15, 2004, Nguyen et al.
U.S. Appl. No. 10/937,076, filed Sep. 9, 1994, Nguyen et al.
U.S. Appl. No. 10/944,973, filed Sep. 20, 2004, Nguyen et al.
U.S. Appl. No. 11/011,394, filed Dec. 12, 2004, Nguyen et al.
U.S. Appl. No. 11/035,833, filed Jan. 14, 2005, Nguyen et al.
U.S. Appl. No. 11/049,252, filed Feb. 2, 2005, Van Batenburg et al.
U.S. Appl. No. 11/053,280, filed Feb. 8, 2005, Nguyen.
U.S. Appl. No. 11/056,635, filed Feb. 11, 2005, Dusterhoft et al.
U.S. Appl. No. 12/080,647, filed Apr. 4, 2008, Dalrymple et al.
Halliburton “CobraFracSM Service, Coiled Tubing Fracturing—Cost-Effective Method for Stimulating Untapped Reserves,” 2 pages, 2004.
“Degradable Aliphatic Polyesters,” Advances in Polymer Science, vol. 157, edited by A.C. Albertson, pp. 1-138, 2001.
Simmons, et al., “Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation,” Biomacromolecules, vol. 2, No. 2, pp. 658-663, 2001.
Yin, et al., “Preparation and Characterization of Substituted Polylactides,” American Chemical Society, vol. 32, No. 223, pp. 7711-7718, 1999.
Yin, et al., “Synthesis and Properties of Polymers Derived From Substituted Lactic Acids,” American Chemical Society, Ch. 12, pp. 147-159, 2001.
Cantu, et al., “Laboratory and Field Evaluation of a Combined Fluid-Loss Control Additive and Gel Breaker for Fracturing Fluids,” SPE 18211, 1990.
Love, et al., “Selectively Placing Many Fractures in Openhole Horizontal Wells Improves Production,” SPE 50422, 1998.
McDaniel, et al., “Evolving New Stimulation Process Proves Highly Effective in Level 1 Dual-Lateral Completion,” SPE 78697, 2002.
Dechy-Cabaret, et al., “Controlled Ring-Operated Polymerization of Lactide and Glycolide,” American Chemical Society, Chemical Reviews, A-Z, AA-AD, 2004.
Funkhouser, et al., “Synthetic Polymer Fracturing Fluid for High-Temperature Applications,” SPE 80236, 2003.
“Chelating Agents,” Encyclopedia of Chemical Technology, vol. 5 (764-795), 2001.
Vichaibun, et al., “A New Assay for the Enzymatic Degradation of Polylactic Acid, Short Report,” ScienceAsia, vol. 29, pp. 297-300, 2003.
International Preliminary Report on Patentability (PCT/GB2005/000634), Sep. 14, 2006.
International Search Report and Opinion (PCT/GB2007/000467), Jun. 15, 2007.
Office Action mailed Mar. 11, 2009 for U.S. Appl. No. 12/070,301, 2009.
Office Action mailed Apr. 10, 2007 for U.S. Appl. No. 11/482,601, 2007.
Office Action mailed Sep. 21, 2007 for U.S. Appl. No. 11/482,601, 2007.
Office Action mailed Dec. 14, 2006 for U.S. Appl. No. 11/351,931, 2006.
Office Action mailed Oct. 4, 2007 for U.S. Appl. No. 11/351,931, 2007.
Office Action mailed Apr. 8, 2008 for U.S. Appl. No. 11/351,931, 2008.
U.S. Appl. No. 11/351,931 by Jimmie D. Weaver entitled “Consolidating Agent Emulsions and Associated Methods”, Feb. 10, 2006.
U.S. Appl. No. 11/482,601 by Richard D. Rickman, et al. entitled “Methods and Compositions for Enhancing Proppant Pack Conductivity and Strength”, Jul. 6, 2006.
U.S. Appl. No. 12/070,301 by Philip D. Nguyen, et al. entitled “Compositions and Applications of Resins in Treating Subterranean Formations”, Feb. 15, 2008.
U.S. Appl. No. 12/319,730 by Philip G. Nguyen, et al. entitled “Aqueous-Based Emulsified Consolidating Agents Suitable for Use in Drill-In Applications”, Jan. 12, 2009.
Office Action for U.S. Appl. No. 11/351,931 dated Feb. 3, 2010.
Office Action for U.S. Appl. No. 12/070,301 dated Jun. 29, 2010.
Notice of Allowance for U.S. Appl. No. 11/351,931 dated Aug. 9, 2010.
Office Action for U.S. Appl. No. 11/351,931 dated Aug. 3, 2009.
Examination Report for European Patent Application No. 07705152.2, dated Jul. 2, 2009.
Office Action for U.S. Appl. No. 12/319,730 dated Dec. 15, 2010.
Official Action for Australian Patent Application No. 2007213494 dated Feb. 7, 2011.
Notice of Allowance and Notice of Allowability for U.S. Appl. No. 12/319,730 dated Feb. 15, 2011.
Office Action for U.S. Appl. No. 12/070,301 dated Apr. 19, 2011.
Office Action for U.S. Appl. No. 12/070,301 dated Aug. 12, 2011.
Ali, Syed A.; Sandstone Diagenesis, Applications to Hydrocarbon Exploration and Production; Gulf Science & Technology Company; Pittsburgh, PA; Geology & Interpretation Department, Department Report No. 4231R006; Dec. 1981.
Related Publications (1)
Number Date Country
20070289781 A1 Dec 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11351931 Feb 2006 US
Child 11880230 US