1. Field of the Invention
This invention relates to a constant current LED lamp with a linear driver.
2. Description of the Related Art
Light-emitting diodes (LEDs) for general illumination applications are gaining popularity for their long service life and low power consumption. In such applications, the LEDs have to be provided with a driver circuit to convert the AC power of the mains to DC, for the LEDs are driven by DC current.
As shown in
Although the conventional LED driver circuit 1 does drive the LED 12 to emit light, the architecture of the driver circuit is quite complicated, which results in a large circuit and a high cost. When the cost becomes a concern, the electromagnetic interference restraining circuit 11 is usually omitted, or the component specifications are downgraded, which could lead to poor power conversion efficiency.
A second conventional LED driver circuit is shown in
Although the second conventional LED driver circuit 1 does drive the LED 12 to emit light, this circuit is more suitable for low power applications. Since the capacitor C typically is a high voltage plastic capacitor of small capacitance and large size, in the case of higher power applications, several capacitors have to be connected in parallel to increase the capacitance, which leads to increased circuit size and cost.
The inventors of the present invention developed a constant current LED lamp, and particularly, a constant current LED lamp with a linear driver circuit.
The driver circuit of this invention drives multiple LEDs, or LED packages that comprise multiple chips, connected in series. The driver circuit allows the aggregate forward voltage drop of the LEDs connected in series to approach the rectified input voltage, such that the AC power is efficiently utilized. The driver circuit comprises a rectifier circuit, a filter circuit, a stable voltage circuit, and a constant current circuit. This circuit contains no switching component, and therefore causes no electromagnetic interference.
The foregoing and other technical characteristics of the present invention will become apparent with the detailed description of the preferred embodiments and the illustration of the related drawings.
With reference to
The rectifier circuit 23 may by way of example be a bridge rectifier for receiving an alternating current power and converting the alternating current power into a direct current power. The stable voltage circuit 21 is connected to the rectifier circuit 23 and comprises a first resistor 211 and a voltage stabilizer 212 (which may by way of example be a Zener diode) connected in series for generating a constant voltage. The constant current circuit 22 is connected to the stable voltage circuit 21, and is further connected in series to the light emitting diodes 3 to limit the driving current flowing into the light emitting diodes 3 and to maintain the current at a constant value.
According to the embodiment, the constant current circuit 22 may by way of example be a transistor 224, wherein the transistor 224 can be a MOSFET (metal-oxide-semiconductor field-effect transistor). When the MOSFET is operating in the saturation region, the characteristic of the MOSFET is such that the current flow through the light emitting diodes 3 remains constant when the gate to source voltage of the MOSFET, VGS, is fixed.
The present invention further includes a filter circuit 24 (which may by way of example be a capacitor) connected to the rectifier circuit 23. The filter circuit 24 dampens the voltage swings of the rectified DC power before transmitting the DC power to the stable voltage circuit 21 and the light emitting diodes 3, respectively.
According to the second embodiment shown in
In the first and second embodiments described above, the constant current circuit may be connected in series with a second resistor 222. The second resistor can be a variable resistor. The current flows through the LEDs, and consequently, the brightness of the LEDs can be regulated by adjusting the resistance of the resistor.
A power factor correction circuit may be further disposed in the foregoing embodiments to improve the power factor of the lamp. As shown in
The preferred embodiments offer the following advantages:
The LED driver circuit improves over the prior art and complies with patent application requirements, and thus is duly filed for patent application. While the invention has been described by device of specific embodiments, numerous modifications and variations could be made thereto by those generally skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
99221907 U | Nov 2010 | TW | national |
99225740 U | Dec 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20080143274 | Itou et al. | Jun 2008 | A1 |
20100295460 | Lin et al. | Nov 2010 | A1 |
20110163679 | Chiang et al. | Jul 2011 | A1 |
20110199003 | Muguruma et al. | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120119674 A1 | May 2012 | US |