The present invention relates to a scoring device that applies a constant force while scoring a piece of material so that there is a consistent score quality (or vent depth) within the scored piece of material. In one embodiment, the piece of material is a bowed shaped glass sheet that is supported by a conformable nosing device which has been configured to have a bowed shape that substantially matches the bowed shape of the glass sheet.
A scoring device which includes a score wheel is commonly used in the glass industry to score a glass sheet so that the glass sheet can be broken into a desired shape. An exemplary scoring device used today to score a glass sheet includes a score wheel mounted on a ball bearing pivot which is secured to a shaft which is in turn mounted on a linear actuator (air cylinder) that moves the score wheel towards the glass sheet so it can be drawn across and score the side of the glass sheet. An issue with this particular scoring device is that the scoring pressure between the score wheel and the glass sheet varies as the score wheel moves along the side of the glass sheet because of variations in the thickness of the glass sheet, the flatness of the glass sheet and the position of the glass sheet. This causes an inconsistent scoring quality (e.g., vent depth) and a variable scoring force along the score line within the glass sheet. If the scoring force is too high, then that can cause a lateral crack (or chip) along the score line within the glass sheet. If the scoring force is too low, then that can cause vent loss which can adversely affect the separation of the scored glass sheet. Another issue with this particular scoring device is that large glass chips are created by the “cutter in” motion of the linear actuator (air cylinder) where the score wheel is moved towards and first makes contact with the surface of the glass sheet. The presence of these large glass chips can adversely affect the rotation of the score wheel on the glass sheet. Accordingly, there is a need for a new scoring device that can address these shortcomings and other shortcomings which are associated with this particular scoring device and other commonly known scoring devices. These needs and other needs are satisfied by the scoring device and scoring method of the present invention.
The present invention provides a scoring device that is capable of applying a pre-set and a regulated scoring force while scoring a glass sheet so that there is a consistent score quality (or vent depth) within the scored glass sheet. In one embodiment, the scoring device includes: (a) a score wheel; (b) a horizontal linear motor/actuator that moves the score wheel in an X-direction along a side of a glass sheet; (c) a coarse vertical linear motor/actuator that moves the score wheel in a Y-direction towards the side of the glass sheet; (d) a fine vertical linear motor/actuator (or voice coil actuator) that moves the score wheel in the Y-direction even closer towards the side of the glass sheet; and (e) a ranging sensor. In operation, the ranging sensor functions to obtain positional information about a location of the side of the glass sheet so that the horizontal linear motor/actuator, the coarse vertical linear motor/actuator and the fine vertical linear motor/actuator can be moved such that the score wheel remains at a substantially constant distance from the side of the glass sheet which enables the score wheel to be extended so as to apply a substantially constant scoring force while the score wheel moves along and scores the side of the glass sheet. In addition, the present invention provides a glass manufacturing system and a method which uses the scoring device to produce a glass sheet.
A more complete understanding of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
Referring to
The delivery vessel 125 delivers the molten glass 126 through a downcomer 130 into the FDM 141 which includes an inlet 132, a forming vessel 135 (e.g., isopipe 135), and a pull roll assembly 140. As shown, the molten glass 126 from the downcomer 130 flows into the inlet 132 which leads to the forming vessel 135 (e.g., isopipe 135). The forming vessel 135 includes an opening 136 that receives the molten glass 126 which flows into a trough 137 and then overflows and runs down two sides 138a and 138b before fusing together at what is known as a root 139. The root 139 is where the two sides 138a and 138b come together and where the two overflow walls of molten glass 126 rejoin (e.g., refuse) before being drawn downward by the pull roll assembly 140 to form the glass sheet 105.
The pull roll assembly 140 delivers the drawn glass sheet 105 (which at this point in the process has a curved/bowed shape) to the TAM 150 which includes a conformable nosing device 152 and the scoring device 154 that are used to score and separate the bowed glass sheet 105 into distinct pieces of glass sheets 105. The conformable nosing device 152 is setup to have a bowed shape that substantially matches the bowed shape of the glass sheet 105 (see the enlarged top view of the TAM 150 illustrated in
Referring to
In this example, the scoring device 154 is shown scoring a bowed glass sheet 105 (a positive bell shaped glass sheet 105 which is common with Gen 5 glass sheets 105) that is being supported by the conformable nosing device 152 that has been set up to have a shape that substantially matches the shape of the bowed glass sheet 105. Alternatively, the glass sheet 105 can have any one of a wide variety of shapes during a manufacturing process and the conformable nosing device 152 can be set up to have a shape that corresponds with the particular shape of the glass sheet 105. For example, the conformable nosing device 152 has a support bracket 212 securing one of the ends of an array of extendable elements 214 which is setup such that a flexible beam 216 (with a nosing material 218 applied thereto) has any one of the following configurations: (1) the negative bell shape (see FIG. 3A—this shape is common with Gen 5 glass sheets 105); (2) the S-shape (see FIG. 3B—this shape is common with Gen 7 glass sheets 105); (3) the M-shape (see FIG. 3C—this shape is common with Gen 7 glass sheets 105); (4) the W-shape (see FIG. 3D—this shape is common with Gen 7 glass sheets 105); and the flat-shape (see FIG. 3E—this shape is common with glass sheets 105 that are scored on a substantially flat nosing device) (note 1: very large GEN glass sheets, i.e. 8, 9, & 10, that have an increased tendency for “S”, “W”, “M” bows can be easily scored by the constant force scoring device 154) (note 2: the start-up time to produce large GEN glass sheets may be reduced as the constant force scoring device 154 can tolerate a wide range of glass shapes found during the start-up process) (note 3: future applications with specially curved glass which have curves greater than the typical bows observed today could be easily scored by the constant force scoring device 154).
Referring to
In operation, the ranging sensor 410 (e.g., laser sensor 410) obtains positional information about a location of the side of the glass sheet 105 during the scoring process and provides that positional information to a computer/controller 414 (note: the laser sensor 410 can be manufactured by the KEYENCE Corporation (model no. KEYENCE-LKG Series). Then, the computer/controller 414 instructs the horizontal linear motor/actuator 402, the coarse vertical linear motor/actuator 404 and the fine vertical linear motor/actuator 406 to all move so that the score wheel 400 follows the contour of the bowed glass sheet 105 (note: the coarse vertical linear motor/actuator 404 can be manufactured by the SMC Corporation (model no. SMC-MXS20-50A) and the fine vertical linear motor/actuator 406 can be manufactured by the Parker Hannifin Coporation (model no. PARKER-MX80L-TO4)). At the same time, the computer/controller 414 instructs the low friction pneumatic actuator 408 to extend the score wheel 400 such that it is able to apply a substantially constant scoring force while it moves and scores the exposed side of the glass sheet 105 (note: the low friction pneumatic actuator 408 can be manufactured by the AIRPOT Corporation (model no. AIRPOT-915U)).
Referring to
In operation, the ranging sensor 608 (e.g., laser sensor 608) obtains positional information about a location of the side of the glass sheet 105 during the scoring process and provides that positional information to a computer/controller 612 (note: the laser sensor 608 can be manufactured by the KEYENCE Corporation (model no. KEYENCE-LKG Series). Then, the computer/controller 612 instructs the horizontal linear motor/actuator 602, the coarse vertical linear motor/actuator 604 and the voice coil actuator 606 to all move or operate so that the score wheel 600 follows the contour of the bowed glass sheet 105 (note: the coarse vertical linear motor/actuator 604 can be manufactured by the SMC Corporation (model no. SMC-MXS20-50A) and the voice coil actuator 606 can be manufactured by the SMAC Inc. and have a model number SMAC-LAL95-50-53)). At the same time, the computer/controller 612 instructs the voice coil actuator 606 to extend the score wheel 600 such that it is able to apply a substantially constant scoring force while it is moving and scoring the exposed side of the glass sheet 105.
Referring to
As shown, the voice coil actuator 606 moves the score wheel 600 in a direction perpendicular to the surface of the glass sheet 105. The voice coil actuator 606 also uses velocity control servos to make-sure the score wheel 600 has a soft landing onto the glass sheet 105. This helps to eliminate the problematic large glass chips that can be created when the score wheel 600 penetrates the glass sheet 105. Once the score wheel 600 has penetrated the glass sheet 105, the control of the voice coil actuator 606 can be switched to a force control mode where a substantially constant scoring force is maintained while the score wheel 600 scores the glass sheet 105. Plus, at the end of the score process, the voice coil actuator 606 can have the cutter force changed (up or down) to ensure a proper and consistent vent is created to help assist with the propagation of the crack.
This setup also utilizes the air bushing pivot 712 (e.g., porous graphite air bushing pivot 712) which allows the second shaft 708 to pivot freely in a plane parallel with the direction of the cut so as to help avoid any over constraining during the scoring process. In this embodiment, the stop pins 718 limit this pivot motion to +/−10 degrees of motion. In addition, the air bushing pivot 712 provides a very stiff, zero friction pivot that is self-cleaning (due to the supply of positive compressed air) and thus helps reduce the problematical stiction which occurs when the score wheel 600 sticks to the glass sheet 105 (note: the voice coil actuator 606 if desired could have a force feedback system which could help an operator track and analyze changes in the ribbon characteristics such as the shape, the motion etc. . . . of the glass sheet 105).
From the foregoing, it should be readily appreciated by those skilled in the art that a glass manufacturing system 100 can incorporate and use the scoring device 154 which applies a constant force while scoring a glass sheet 105 (e.g., bowed glass sheet 105, flat glass sheet 105). In addition, it should be appreciated that any type of glass manufacturing system that draws molten glass to make a glass sheet can also incorporate and use the scoring device 154. In fact, the scoring device 154 could be used to score other types of materials in addition to a glass sheet like a plexi-glass sheet etc. . . . . Accordingly, the scoring device 154 of the present invention should not be construed in a limited manner.
Although several embodiments of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it should be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
This is a divisional of U.S. patent application Ser. No. 11/801,212 filed on May 9, 2007, now U.S. Pat. No. 8,051,681 the content of which is relied upon and incorporated herein by reference in its entirety, and the benefit of priority under 35 U.S.C. §120 is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
1339141 | Sharpnack | May 1920 | A |
3338696 | Dockerty | Aug 1967 | A |
3682609 | Dockerty | Aug 1972 | A |
3880028 | Frederick, Jr. | Apr 1975 | A |
4133233 | Pearl | Jan 1979 | A |
4137803 | Goldinger | Feb 1979 | A |
4204445 | Goldinger | May 1980 | A |
4213550 | Bonaddio | Jul 1980 | A |
4226153 | Insolio | Oct 1980 | A |
4291824 | DeTorre | Sep 1981 | A |
4412700 | Zitz et al. | Nov 1983 | A |
4494444 | Masse | Jan 1985 | A |
4511386 | Kellar et al. | Apr 1985 | A |
5038654 | Mackey | Aug 1991 | A |
5154334 | Dekker et al. | Oct 1992 | A |
5634388 | Fuchigami et al. | Jun 1997 | A |
5860349 | Takeda | Jan 1999 | A |
5865576 | Arai et al. | Feb 1999 | A |
6247625 | Chakrabarti et al. | Jun 2001 | B1 |
6269994 | Harrington | Aug 2001 | B1 |
6460258 | Shimotoyodome | Oct 2002 | B1 |
6536121 | Ishikawa et al. | Mar 2003 | B1 |
6616025 | Andrewlavage, Jr. | Sep 2003 | B1 |
6832439 | Ishikawa | Dec 2004 | B2 |
6901677 | Smith et al. | Jun 2005 | B2 |
7260959 | Chang et al. | Aug 2007 | B2 |
20030047538 | Trpkovski | Mar 2003 | A1 |
20040154456 | Wakayama et al. | Aug 2004 | A1 |
20040187523 | Cox | Sep 2004 | A1 |
20060042315 | Chang et al. | Mar 2006 | A1 |
20060163306 | John et al. | Jul 2006 | A1 |
20060255083 | Bonaddio et al. | Nov 2006 | A1 |
20060261118 | Cox et al. | Nov 2006 | A1 |
20070039990 | Kemmerer et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
0740986 | Nov 1996 | EP |
740986 | Nov 1996 | EP |
1339141 | Aug 1971 | GB |
10158022 | Jun 1998 | JP |
2008019102 | Jan 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20120006058 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11801212 | May 2007 | US |
Child | 13237332 | US |