1. Field of the Invention
This invention relates to mechanical devices that have a component in which large recoverable distortions at constant force provide a constant load fastening.
2. Description of Related Art
Ordinary bolts such as those made of steel and various alloys, used to secure two or more components together, are generally tightened by applying a known torque to the nut or stud. It is assumed that the holding force, or load, applied to the components of the joint is proportional to the torque. This is often not true: loads applied by this method may vary by a large factor from one installation to another.
Bolts subjected to high stress also are subject to ‘creep,’ a tendency to lose tension with time, due to a gradual relaxation of the material of which the bolts are made.
It is sometimes desirable to bind two or more objects together in such a way that the pressure exerted on the objects is limited to a known quantity. For example, fasteners exposed to changes in temperature (or regions having different temperatures) may experience differential thermal expansion that can cause the fastener to break. Failure could be prevented if constant tension was maintained by the fastener.
Literature available on the World Wide Web reveals that many inventions have been made to provide solutions to the problem of providing constant load to a bolted joint.
One such prior art method is by use of suitable lubricants on the bolt threads to reduce the variation in friction as the bolt is tightened. This method may be incompatible with the purpose of the joint. For example, this method may result in contamination from lubricants in a bolt used on a space mission.
Another prior art method uses a stack of Belleville washers that are engineered to provide nearly constant force as length is varied. Because Belleville washers generally have spring characteristics (force versus displacement) that are very different from that of the bolt, the forces generated are sufficient for limited applications.
Yet another prior art method provides an array of springs to produce constant force on a clamp. A further prior art method provides an elastic washer that compresses under load.
Described herein are new and improved fasteners and devices for securing together several components in such a way that the load applied to the components is constant or nearly constant. Fields of application for the invention include aerospace, military, transportation, mining, construction, seismic retrofitting, medical appliances, and consumer products.
In general, the fasteners described herein include a hyperelastic member having first and second ends to which retainers are coupled. As used herein, a hyperelastic material is a shape memory alloy (SMA) shaft that is fabricated as a single crystal. Single crystal SMAs are defined herein as “hyperelastic” because they can undergo recoverable distortions that are much larger than can be achieved by conventional materials. SMA materials that may be used to fabricate a hyperelastic member (e.g., a hyperelastic shaft) include CuAlNi, CuAlMn and CuAlBe. The retainers are configured to contact the structures being fastened and transfer the load from securing the structures to the hyperelastic member. The hyperelastic member may be an elongate shaft (e.g., a rod, cylinder, strut, etc.).
In some variations, a fastener for holding at least first and second structures together includes an elongate hyperelastic shaft having first and second ends, a first retainer coupled to the first end, wherein the first retainer is configured to secure to the first structure, and a second retainer coupled to the second end, wherein the second retainer is configured to secure to the second structure. The hyperelastic shaft is configured to respond to a load applied on the fastener from the first and second structures by distorting while maintaining the load constant.
The hyperelastic shaft may be made of a single crystal CuAlNi shape memory alloy (SMA), single crystal CuAlMn SMA, or single crystal CuAlBe SMA. The shaft may be a cylindrical shaft, and may be completely or partially hollow. In some variations the shaft is a bolt. The hyperelastic shaft may have a shank that is configured to distort by elongation responsive to the load. In some variations the shaft has proximal and distal ends that have a larger diameter (e.g., radial diameter) than the intermediate region between the proximal and distal ends. For example, the shaft may be a dog-bone shaped rod.
In general, the hyperelastic shaft does not contact the structures(s) to be fastened directly, but receives the load through two retainers that contact the structures to be retained. The retainers are typically attached at or near the distal ends of the hyperelastic shaft. The retainers (e.g., the first and second retainers) may have one or more load-bearing surfaces for engaging the structures to be retained. For example, the first retainer may have a load-bearing surface for engaging a first structure, and the second retainer may have a load-bearing surface for engaging a second structure. The load-bearing surface may be a flange, lip, edge, boss, or the like. In some variations the load-bearing surface is a structure such as a screw.
The retainers couple to the hyperelastic shaft so that the load from fastening the structures(s) is transferred to the hyperelastic shaft. For example, the retainers may be clamps (e.g., for clamping around and coupling to the ends of the hyperelastic shaft), bolts, or the like. The first and second retainers may be coupled to the ends of the hyperelastic shaft so that rotation of either retainer does not substantially torque the hyperelastic shaft. For example, the retainers may be freely rotated without rotating the hyperelastic shaft when the fastener is not loaded. In some variations, the hyperelastic shaft passes through an aperture in the retainer having a diameter that is smaller than the diameter of the end of the hyperelastic shaft, so that the end of the shaft cannot be withdrawn from the retainer, but the shaft can be moved independently of the retainer.
In some variations, the retainer has a cylindrical outer surface that is threaded. Thus, a retainer may be threaded to receive a nut for applying tension to the hyperelastic shaft, or to screw into the structure to be retained.
Also described herein are fasteners for securing a first structure and a second structure together that include an elongate hyperelastic shaft having a proximal end and a distal end, a fist retainer coupled to the proximal end of the hyperelastic shaft so that rotation of the first retainer does not substantially torque the hyperelastic shaft, and a second retainer coupled to the distal end of the hyperelastic shaft so that rotation of the second retainer does not substantially torque the hyperelastic shaft. As mentioned above, the hyperelastic shaft may be made of a single crystal SMA, such as a CuAlNi SMA, CuAlMn SMA or CuAlBe SMA.
The hyperelastic shaft may be a hollow cylinder, a rod, a bolt, etc. For example, the shaft may have a dog-bone shape. In some variations the region between the ends of the shaft (the intermediate region or shank) may be configured to distort by elongation responsive to a load applied to the fastener. For example, the intermediate region may have a smaller diameter than the ends of the shaft.
Also described herein are fasteners for securing a first structure and a second structure together that include an elongate, hyperelastic shaft having a proximal end and a distal end, and an intermediate region between the proximal and distal ends, wherein the intermediate region has a smaller radial diameter than either the proximal or distal ends, a fist retainer coupled to the proximal end of the hyperelastic shaft, and a second retainer coupled to the distal end of the hyperelastic shaft. The hyperelastic shaft may be made of a single crystal CuAlNi SMA, single crystal CuAlMn SMA or single crystal CuAlBe SMA.
Also described herein are methods for securing a first structure and a second structure together. These methods may include the use of any of the fasteners described herein to secure the structures. For example, the method may include the steps of contacting the first structure with a first retainer that is coupled to a hyperelastic shaft, contacting the second structure with a second retainer that is coupled to the hyperelastic shaft, and applying a holding force between the first and second retainer to secure the first and second structures together so that the load applied to the first and second retainers is transferred to the hyperelastic shaft. The hyperelastic shaft responds to a load applied on the fastener from the first and second structures by distorting while maintaining a constant load.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference in their entirety.
In general, the fasteners described herein include a hyperelastic shaft that is configured to receive the fastening load generated when the fastener secures two or more structures together. The fasteners also include a retainer coupled at each end of the hyperelastic shaft. The retainers typically connect to, and retain the structure(s) to be fastened by the fastener. The retainers therefore include one or more load bearing surface that is configured to contact a structure to be retained. The two retainers couple to the ends of the shaft and transfer the load to the shaft. These retainers do not typically directly contact each other, but are connected by the shaft.
The hyperelastic shaft is typically a shape memory alloy (SMA) shaft that is fabricated as a single crystal. Single crystal SMAs are defined herein as “hyperelastic” because they can undergo recoverable distortions that are much larger than can be achieved by conventional materials. Such distortions are greater than that which could be obtained if the component were made of non-SMA metals and alloys, and nearly an order of magnitude greater than can be obtained with polycrystalline SMA materials. The fabrication and performance of some single crystal SMA materials that may be used as part of the devices (e.g., fasteners) described herein are disclosed in U.S. application Ser. No. 10/588,413 (filed Jul. 31, 2006), the disclosure of which is herein incorporated by reference in its entirety.
The fasteners described herein place the hyperelastic shaft under sufficient stress so that it enters a superelastic plateau when the fastener is engaged. At this stress, small variations in length produce minimal effect on the load applied by the fastening device. There is less risk that the fastening device will break under usage conditions that cause the fastening device to be slightly elongated. Because the shaft is hyperelastic, the shaft may extend or contract if the securing force fastening the structure(s) increases or decreases, resulting in a constant load fastening. The single-crystal SMA material can tolerate huge strains and can elastically deform (e.g., up to 9% deformation along the length of the elongate shaft). The hyperelastic shafts described herein are also extremely durable, and have a long fatigue lifetime, particularly at up to about 1% deformation (which is very large deformation compared to ordinary materials). At greater deformations, the cyclic loading (elongation/contraction) of the shaft may result in fatigue fractures due to dislocation of the crystal structure. For example, at 9% deformation fatigue fractures may occur after approximately 1000 cycles. It is anticipated that during ordinary use of the fasteners described herein, the deformation will be less than 1%. However, during periods of extraordinary deformation the fastener may continue to operate until the load returns to a normal operating range. Thus, the fasteners described herein may be particularly useful in situations in which rare (or even catastrophic) events result in a high load. For example, the fasteners may continue to provide a constant force to fasten structures during a catastrophic event such as an earthquake, in which other fasteners would fail.
As mentioned above, any appropriate hyperelastic material may be used (particularly those described in U.S. Ser. No. 10/588,413 previously incorporated by reference). Examples of alloy components are Cu—Al—X where X may be Ni, Fe, Co, Mn, Be. Single crystals may be pulled from melt as in the Stepanov method and quenched by rapid cooling to prevent selective precipitation of individual elemental components. Conventional methods of finishing may be used, including milling, turning, electro-discharge machining, centerless grinding and abrasion. For example, a single crystal CuAlNi SMA may be particularly useful for forming the shaft.
The shaft may also be any appropriate shape. In general the shaft is an elongate shape extending between a first (e.g., distal) and a second (e.g., proximal) end. The retainers (for connecting to the structures to be fastened) are coupled to the ends (or end regions) of the shaft. In some variations, the shaft is a rod or bolt-shaped shaft. For example, the hyperelastic shaft may be dog-bone shaped shaft having ends that are a larger diameter than the region between the ends (e.g., the intermediate or shank region). This shape may be particularly advantageous when the retainers are coupled by surrounding the smaller-diameter region of the shaft that is slightly intermediate of the distal ends. The shaft and the retainers cannot be separated because the outer diameter (radial diameter) of the distal and proximal ends of the shaft are too large to pass through an opening in the retainers. The deformation of the shaft may take place by the formation of stress-induced martensite; but in elongating (e.g., 9%) in length, the shaft also shrinks in diameter (e.g., 3%), according to Poisson's ratio. Even when the shaft elongates in length and shrinks in diameter under load when fastened, the shaft can stay connected to the retainer because the shaft will preferentially transform to stress-induces martensite at the smaller diameter region first. Thus, shafts having a larger diameter region at their ends may be coupled to the retainers at these ends.
The shaft may be coupled to the retainers in any appropriate way, including clamping, soldering, gripping them, or retaining them with set screws. In some variations it is particularly advantageous to couple the retainers to the shaft so that torque applied to the retainers is not substantially transferred to the hyperelastic shaft. For example, the retainers may be coupled to the shaft so that each retainer may be rotated (torqued) independently of the shaft, particularly when the fastener is not loaded. Examples of retainers coupled to the distal ends of a hyperelastic shaft so that rotation of the retainer does not substantially torque the hyperelastic shafts are shown in
In one variation, the retainer includes an aperture (opening) into which the hyperelastic shaft passes. The shaft is held coupled to the retainer because the end of the shaft has a larger diameter than the aperture. The intermediate region of the shaft has a diameter that is slightly smaller than the diameter of the aperture. Thus the retainer can be secured around the distal end of the shaft, yet still rotate around the shaft freely in the unloaded state. When the fastener is loaded by fastening two structures, the region around the aperture of the retainer may be pressed against a surface of the shaft, and thus some torque on the retainer may be transferred to the shaft. The transfer of torque between the shaft and the retainer in the loaded state may be reduced or eliminated by reducing the friction between the surfaces of the retainer and the shaft that contact when the fastener is loaded. For example, a lubricious material may be located between these surfaces, or the surfaces may be smooth or polished.
In other variations, the shaft is configured as a cylinder having an aperture through which the retainer passes (see,
A retainer retains the structure or structures that are secured by the fastener when the fastener is engaged. A retainer may be any appropriate shape. A retainer may include one or more load-bearing surfaces for contacting the structure(s) to be retained. In some variations this load-bearing surface is configured to abut the structure(s) and secure the structure when the fastener is engaged. For example, the retainer may have a boss, flange, lip, rim, etc. The retainer may be configured to mate with another device (e.g. a screwdriver, wrench, lock, etc.). In some variations the retainer includes a threaded surface or a screw. For example, the retainer may be threaded for screwing into a structure. In some variations the retainer is threaded for engaging a nut that can be used to tighten the fastener and secure the structures in position. In some variations the retainer may be welded or otherwise affixed to the structure to be fastened.
Although a fastener typically includes two retainers (one at either end of the hyperelastic shaft), the two retainers of the fastener may be different shapes. For example, one retainer may be cylindrical, and my include threads for engaging a nut while the other retainer is a bolt-headed structure (e.g., at least partially polygonal in cross-section).
A retainer may be a unitary structure (e.g., a single piece) or it may be formed from multiple pieces that are joined together. For example, a retainer may be formed from two pieces that are connected around the end of a hyperelastic shaft. In some variations the pieces forming the retainer are welded or otherwise affixed together. Similarly, the retainer may be formed of any appropriate materials. For example, the retainer may be formed of steel (e.g., stainless steel).
The embodiment of
The retainers (threaded-end split bolt 32 and bossed-end split clamp 22) are each fabricated in two parts. For example, parts 33 and 35 which form the bossed-end split clamp. The retainers are coupled about the hyperelastic SMA bolt by a weld 37 for the bossed-end split clamp and a weld 39 along each of the two seams where the respective parts meet. This variation of the fastener resembles a cap screw.
Similarly, the embodiment of
As best shown in
High tension loads from the flanges when applied to fastener 40 are effectively resisted by hyperelastic shaft 62 which elongates within the bores 46, 48 under constant load conditions. The fastener proximal and distal ends (retainers 42, 44) are sized and proportioned so that a gap 49 is formed between their facing ends (
The embodiment of
While the devices (and method of using them) have been described in some detail here by way of illustration and example, such illustration and example is for purposes of clarity of understanding only. It will be readily apparent to those of ordinary skill in the art in light of the teachings herein that certain changes and modifications may be made thereto without departing from the spirit and scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/526,138, filed on Sep. 22, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 11526138 | Sep 2006 | US |
Child | 11859697 | US |