The present invention relates to a structural testing device, and more particularly to a load controlled bending moment testing device which applies a constant moment along an elongated member.
Conventional structural testing is often performed with a three-point or four-point testing device as illustrated in
Additionally, conventional point testing does not apply a constant bending moment along the entire length of the elongated member. Should the testing be structured as proof testing to eliminate flawed members, such testing may not eliminate all flawed members since a length ramped portion in
Accordingly, it is desirable to provide a structural testing device which determines nominal strength of an elongated member through application of a constant moment along the length of the elongated member without application of concentrated shear loads directly to the member.
The testing device according to the present invention applies a load controlled bending moment which is constant along a length of an elongated member. The load is applied to determine the nominal strength of the elongated member from the radius of curvature of the elongated member. The load can also be increased until the elongated member fractures such that the ultimate bending moment and radius of curvature are determined.
The testing device also includes a drive system which rotates the elongated member while the bending load is applied to rapidly find flaws or defects which may only appear at a particular rotational position and determine if bending stiffness is uniform about the entire diameter of the elongated member.
The present invention therefore provides a structural testing device which determines nominal strength of an elongated member through application of a constant moment along the length of the elongated member without application of concentrated shear loads directly to the member.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently disclosed embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The testing device 10 generally includes a first support 12 and a second support 14 which both rest on a support surface 16. A first holder 18 rests upon the first support 12 and a second holder 20 rests on the second support 14. The first holder 18 pivots upon the first support 12 about a first pivot axis P1 and the second holder 20 pivots upon the second support 14 about a second pivot axis P2. It should be understood that various pivot systems may be utilized to define the pivot axes P1, P2.
The first holder 18 and the second holder 20 include a respective opening 22, 24 which receives the elongated member M in a sliding relationship. That is, each opening 22, 24 is sized to receive the elongated member M such that the elongated member M is closely held but may slide therethrough along an axis A.
Each holder 18, 20 is subjected to a bending load (illustrated schematically by arrow L applied through an actuator system 26 such as a pneumatic actuator, hydraulic actuator or a mass application system (
The load L is applied to generate a bending moment which results in a radius of curvature of the elongated member M about the pivot axes P1, P2 (
Referring to
The load applied by the mass 30 through the mass application system 26′ may result in a radius of curvature of the elongated member M about the pivot axes P1, P2 (
Under a non-destructive proof test scenario, a predetermined load is applied and the radius of curvature of the elongated member M under the predetermined load is calculated to detect a flaw. That is, the predetermined load is applied such that if the radius of curvature remains below a predetermined value, the elongated member has successfully passed the test. Such testing is readily applied to an elongated member M of significant length which is continuously supplied through the holders 18, 20 so that a predetermined length of the elongated member is tested in an essentially continuous manner as the elongated member M passes therethrough. A continuous supply or transit of the elongated member M through the holders 18, 20 facilitates the test of discrete segments of the elongated member M. The discrete segment is that segment which is instantaneously between the holders 18, 20. Such testing is particularly applicable during manufacture, for example, along an assembly line in which lengths of elongated material M are communicated thereby.
Under a destructive test scenario, the load L is increased until the elongated member fractures or buckles, at which time the ultimate bending moment and radius of curvature is readily determined. That is, the elongated member is tested to failure. The structural member M stress and strain at various axial and radial positions may thereafter be determined as generally understood.
Referring to
Although particular step sequences are shown, described, and claimed herein, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated yet still benefit from the present invention.
The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The disclosed embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4958522 | McKinlay | Sep 1990 | A |
4986132 | Calomino | Jan 1991 | A |
5231882 | Bertele et al. | Aug 1993 | A |
5736646 | Dickinson et al. | Apr 1998 | A |
5789682 | Dickinson et al. | Aug 1998 | A |
6053052 | Starostovic | Apr 2000 | A |
6381546 | Starostovic | Apr 2002 | B1 |
6505129 | Starostovic et al. | Jan 2003 | B2 |
6668231 | Stylios | Dec 2003 | B2 |
6931942 | Uhlik et al. | Aug 2005 | B2 |
7201064 | Doak et al. | Apr 2007 | B2 |
7302860 | Uhlik et al. | Dec 2007 | B1 |
Number | Date | Country | |
---|---|---|---|
20080216585 A1 | Sep 2008 | US |