The accompanying drawings, which are incorporated herein and form part of the specification, illustrate various embodiments of the present invention. In the drawings, like reference numbers indicate identical or functionally similar elements.
As used herein, the words “a” and “an” mean “one or more.”
A system 100 according to one embodiment of the present is illustrated
As illustrated in
The phase detector 112 may be of the type with a voltage output as shown on the graph of
The output from the differential amplifier 118 is fed into a control input of the VCO 102, thereby forming a closed loop control system. A difference between the phase detector 112 output voltage and the voltage output by voltage source 122 will cause amplifier 118 to generate an error voltage, which, as described above, is provided to the control input of VCO 112. When the control input of VCO 112 receives the error voltage, the frequency of the signal output by VCO 112 is changed so as to minimize the error voltage.
Whatever voltage the voltage source 112 is set to output, the action of the above described closed loop will be to force the frequency to change and make the phase detector have that same output voltage. If the phase detector sees 180 degrees phase difference between the two inputs at resonance and the voltage source 122 is set to Vcc/2, then the system will operate at resonance, otherwise the system will operate off resonance with a controlled angle, that is determined by the output of the voltage source 122 (offset operation may be desired, for example, for best efficiency if there are other timing demands such as dead time (not shown)). Accordingly, voltage source 122 may be referred to as the “angle adjuster” or “phase angle adjuster.” This voltage source may be dynamically set rather than fixed during operation to meet other system constraints.
While various embodiments/variations of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments.
This application claims the benefit of U.S. Provisional Patent Application No. 60/836,689, filed on Aug. 10, 2006, which is incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
60836689 | Aug 2006 | US |