Constant tension steel catenary riser system

Information

  • Patent Grant
  • 6824330
  • Patent Number
    6,824,330
  • Date Filed
    Thursday, September 19, 2002
    23 years ago
  • Date Issued
    Tuesday, November 30, 2004
    21 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Lagman; Frederick L.
    Agents
    • Klein, O'Neill & Singh, LLP
    • KIein; Howard J.
Abstract
A steel catenary riser (SCR) system includes a tensioning mechanism on a floating facility that controllably applies a substantially constant tension to an SCR that is fluidly coupled to the facility by a flexible jumper conduit. More specifically, the system includes a tensioning device located on the floating facility; and an SCR having an upper portion, which, in the preferred embodiment, extends above the surface of the body of water. The upper portion of the SCR is connected to the tensioning device by a connection element, such as a cable, chain, rope, or wire, whereby tension is controllably applied from the tensioning device to the SCR. A flexible jumper conduit is fluidly connected between the upper portion of the SCR and the floating facility for conducting fluid from the SCR to the floating facility. In a preferred embodiment, the connection element is attached to the upper portion of the SCR at an attachment point, and the flexible jumper conduit is fluidly coupled to the SCR near the attachment point.
Description




CROSS-REFERENCE TO RELATED APPLICATIONS




Not Applicable




FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not Applicable




BACKGROUND OF THE INVENTION




The present invention relates to riser systems used in the offshore production of fluid hydrocarbons (e.g., petroleum and natural gas). More particularly, it relates to the field of steel catenary risers (SCRs), and specifically it relates to a system for attaching an SCR to a floating offshore facility or vessel, in which a substantially constant tension is applied to the SCR.




In the production of fluid hydrocarbons (“product”) from undersea deposits, the movement of the product from the seabed to a surface facility, such as a floating production or storage platform or vessel, is critical. Typically, one or more conduits, or risers, are connected between a well-head or the like on the seabed and the surface facility.




Although the floating facility is typically moored or anchored, it is continuously exposed to a variety of forces from wind and water action that subject the facility to movements such as heave, roll, pitch, drift, and surge. Consequently, the riser system must be sufficiently compliant to compensate for such motion without experiencing undue stress and fatigue.




There have been a number of types of riser systems that have been developed to provide the requisite degree of compliance. One such system, as disclosed in, for example, U.S. Pat. No. 5,639,187—Mungall et al.; 6,257,801—Kelm et al.; and 5,957,074—de Baan et al., employs a plurality of rigid steel conduits that are laid between a subsea well or other fluid source on the seabed and a submerged buoy, the latter being tethered or moored to the seabed. The steel conduits are curved in a gentle catenary path between the seabed and the buoy, and are thus called “steel catenary risers” or “SCRs.” A plurality of flexible “jumper” conduits are then connected between the buoy and the surface facility to conduct fluid from the SCR to the facility. This approach necessitates the additional expense and time of deploying and anchoring the buoy. Such expense makes the submerged buoy arrangement not particularly cost effective, except perhaps in those systems employing a large number of risers.




Another approach, exemplified in the disclosure of U.S. Pat. No. 6,386,798—Finn, is to connect one or more SCRs directly to the surface facility, in a manner that allows the SCRs to move as the surface facility moves. One drawback with arrangements of this type, however, is that movement of the surface facility causes the touchdown point of the SCRs on the seabed to change. This is especially disadvantageous in relatively shallow water, where significant surface facility motions translate into large movements of the touchdown point along the seabed, thereby subjecting the SCRs to excessive fatigue, with consequent shortened fatigue life.




Consequently, there has been a long-felt need for an SCR system that provides for significant compliance of the riser system to compensate for substantial surface facility motion without the disadvantages attendant to the aforementioned prior art systems.




SUMMARY OF THE INVENTION




Broadly the present invention is an SCR system comprising a tensioning mechanism on a floating facility that controllably applies a substantially constant tension to an SCR that is fluidly coupled to the facility by a flexible jumper conduit. More specifically, the invention is a steel catenary riser (SCR) system for use with a floating facility on the surface of a body of water, comprising a tensioning device located on the floating facility, an SCR having an upper portion, connection means, connecting the upper portion of the SCR to the tensioning device, for controllably applying tension from the tensioning device to the SCR, and a flexible jumper conduit fluidly connected between the upper portion of the SCR and the floating facility for conducting fluid from the SCR to the floating facility. In a preferred embodiment, the upper portion of the SCR extends above the surface of the body of water; the connection means is attached to the upper portion of the SCR at an attachment point; and the flexible jumper conduit is fluidly coupled to the SCR near the attachment point.




As will be more fully appreciated from the detailed description that follows, by the application of a substantially constant tension to the SCR regardless of the relative motion between the SCR and the floating facility, the present invention provides improved fatigue life as compared with the fixed connection arrangements of the prior art, while being substantially more cost effective than the submerged buoy arrangement, especially for systems with a small number of risers.











BRIEF DESCRIPTION OF THE DRAWING




The single

FIG. 1

illustrates, semi-diagrammatically, a constant tension SCR in accordance with a preferred embodiment of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




In

FIG. 1

, a constant tension SCR system, in accordance with a preferred embodiment of the invention, is shown in use with a floating facility


10


on a body of water


12


. The floating facility


10


will typically be a semi-submersible offshore production vessel that is moored or anchored to the seabed


13


by conventional means (not shown), but the invention can be used with a large variety of floating facilities that are known in the art. The invention is particularly advantageous for use with a semi-submersible facility, however, because such a facility experiences motion and displacement such as heave, pitch, and surge due to environmental loads (i.e., from wind and water action).




A steel catenary riser (SCR)


14


extends from an undersea fixture


16


(such as a well-head) on the seabed


13


. The SCR


14


bends upwardly from the seabed


13


in a gentle catenary curve


20


to an upper portion


22


that, in the preferred embodiment, extends well above the surface of the body of water


12


. An attachment fitting


24


, of any suitable type known in the art, is located at an attachment point on the upper portion


22


of the SCR


14


. In the preferred embodiment, the attachment point is located above the surface of the body of water


12


, as shown in the drawing. Connection means, comprising a connecting element


26


(for example, a cable, a chain, a synthetic rope or line, or a wire), connect a tensioning device


28


located on the floating facility


10


to the attachment fitting


24


. The tensioning device


28


may be any suitable apparatus that is known for use in similar applications in the offshore oil production industry. Thus, the tensioning device


28


may be, for example, a winch, such as a linear, rotary or traction winch. In a preferred embodiment, the tensioning device is a short stroke hydraulic tensioner.




One end of a flexible jumper conduit


30


is fluidly connected, by a suitable fluid coupling (not shown), to the upper portion


22


of the SCR


14


near the attachment fitting


24


. The other end of the jumper conduit


30


is fluidly connected to an appropriate site (not shown) on the floating facility


10


, so that fluid can flow from the SCR


14


to the floating facility.




The tensioning device


28


is operated to apply a substantially constant tension to the SCR


14


through the connection means


26


as the floating facility


10


is moved by environmental forces. The flexible jumper conduit


30


allows a substantial degree of relative movement between the SCR


14


and the floating facility


10


, but the tensioning device


28


, acting through the connection means


26


, stabilizes the SCR


14


and minimizes its movement. In this manner, the riser system (i.e., the SCR


14


and the jumper conduit


30


) is sufficiently compliant to compensate for the motion of the floating facility


10


without subjecting the SCR


14


to undue motion-induced stress. Thus, the fatigue life of the SCR


14


is greatly improved in a highly cost-effective manner. Moreover, the above-described system of the present invention may be used with any number of SCRs, and in any depth of water. Furthermore, as mentioned above, it may be used with a wide variety of offshore facilities and vessels.




While a preferred embodiment has been described above, it will be appreciated that a number of variations and modifications will suggest themselves to those skilled in the pertinent arts. Such variations and modifications are considered to be within the spirit and scope of the present invention, as defined in the claims that follow.



Claims
  • 1. A steel catenary riser (SCR) system for use with a floating facility on the surface of a body of water, comprising:a tensioning device located on the floating facility; an SCR having an upper portion that extends above the surface of the body of water, and having an attachment point located above the surface of the body of water; a connecting element, connecting the attachment point on the upper portion of the SCR to the tensioning device, so as to controllably apply tension from the tensioning device to the upper portion of the SCR; and a flexible jumper conduit connected between the upper portion of the SCR and the floating facility for conducting fluid from the SCR to the floating facility.
  • 2. The steel catenary riser (SCR) system of claim 1, wherein the tensioning device applies a substantially constant tension to the upper portion of the SCR through the connecting element.
  • 3. The steel catenary riser (SCR) system of claim 1, wherein the connecting element is selected from the group consisting of at least one of a cable, a synthetic rope or line, a chain, and a wire.
  • 4. The steel catenary riser (SCR) system of claim 1, wherein the tensioning device is selected from the group consisting of a rotary winch, a linear winch, a traction winch, and a hydraulic tensioner.
  • 5. The steel catenary riser (SCR) system of claim 1, wherein the jumper conduit is fluidly coupled to the SCR near the attachment point.
  • 6. The steel catenary riser (SCR) system of claim 1, further comprising an attachment fitting at the attachment point to which the connecting element is attached.
US Referenced Citations (15)
Number Name Date Kind
3677310 Dobler et al. Jul 1972 A
4023517 Ryan May 1977 A
4065822 Wilbourn Jan 1978 A
4421173 Beakley et al. Dec 1983 A
4570716 Genini et al. Feb 1986 A
4587919 Loire et al. May 1986 A
4645467 Pollack Feb 1987 A
4733991 Myers Mar 1988 A
5479990 Peppel Jan 1996 A
5582252 Richmond et al. Dec 1996 A
5639187 Mungall et al. Jun 1997 A
5957074 de Baan et al. Sep 1999 A
6062769 Cunningham May 2000 A
6257801 Kelm et al. Jul 2001 B1
6386798 Finn May 2002 B2